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Abstract: Reference targets with stability, uniformity, and known reflectance on the Earth’s surface,
such as deserts, can be used for the absolute radiometric calibration of satellite sensors. A wide-angle
hyperspectral reflectance model at the top of atmosphere (TOA) over such a reference target will
expand the applicability of on-orbit calibration to different spectral bands and angles. To achieve the
long-term, continuous, and high-precision absolute radiometric calibration of remote sensors, a wide-
angle hyperspectral TOA reflectance model of the Libyan Desert was constructed based on spectral
reflectance data, satellite overpass parameters, and atmospheric parameters from the Terra/Aqua
and Earth Observation-1 (EO-1) satellites between 2003 and 2012. By means of angle fitting, viewing
angle grouping, and spectral extension, the model is applicable for absolute radiometric calibration
of the visible to short-wave infrared (SWIR) bands for sensors within viewing zenith angles of
65 degrees. To validate the accuracy and precision of the model, a total of 3120 long-term validations
of model accuracy and 949 cross-validations with the Landsat 8 Operational Land Imager (OLI) and
Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS)
satellite sensors between 2013 and 2020 were conducted. The results show that the TOA reflectance
calculated by the model had a standard deviation (SD) of relative differences below 1.9% and a
root-mean-square error (RMSE) below 0.8% when compared with observations from the Moderate
Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 OLI. The SD of the relative differences
and the RMSE were within 2.7% when predicting VIIRS data.

Keywords: radiometric calibration; TOA reflectance; hyperspectral; Libyan Desert; PICS

1. Introduction

High temporal radiometric calibration updates enable the long-term monitoring and
correction of the on-orbit degradation of a remote sensor’s radiometric response character-
istics. This ensures the continuity and consistency of long-term observation data, which are
crucial for observing long-term climate and environmental changes and for the fusion of
multisensor remote sensing data [1–5].

Commonly used on-orbit calibration methods include stable target field tracking and
cross-calibration [6,7]. Earth-based invariant targets, ground sites, and targets actively
monitored by aircraft utilize satellite products from ground pseudo-invariant calibration
sites (PICSs) to achieve long-term tracking calibration. However, its accuracy is limited by
the accuracy of the surface reflectance retrieved from remote sensing data and atmospheric
parameters, such as the aerosol optical depth (AOD), water vapor, and ozone, as well as
the asynchrony of satellite product acquisition times. To further improve the calibration
accuracy, cross-calibration methods can be employed. Cross-calibration uses a sensor with
recognized high accuracy and stability as a reference to perform a degradation correction
of the sensor to be calibrated through matching in terms of the location, time, spectrum,
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and angle. Cross-calibration is advantageous in eliminating atmospheric effects. However,
strict adherence to the cross-calibration conditions can limit the calibration frequency
of the sensor. It is also challenging to find an Earth observation sensor with sufficient
long-term stability that meets the requirements for monitoring climate and environmental
changes over decades. In addition, alternative means, such as aircraft, can be used for
cross-calibration; such means offer better synchronization but at higher costs and with
challenges in operationalization [8,9].

In recent years, to increase the calibration frequency while effectively managing the
budget, researchers have proposed on-orbit calibration methods using an absolute radio-
metric calibration model based on ground PICSs. Helder et al. [10] discussed how to
use PICSs for the absolute radiometric calibration of Landsat satellites. He established
a simple empirical model for the solar zenith angle (SZA) based on years of accumu-
lated data from Terra MODIS by considering only nadir-looking view angles within ±7.5°
in the Libyan Desert. The model predicted the TOA reflectance for selected bands of
Landsat 7 and used gain factors to correct for spectral differences between the two sensors.
The comparison between the model calculations and actual measurements from Landsat
7 showed an accuracy within 6% and a precision within 3%, demonstrating the feasibility of
using PICSs for absolute calibration. Mishra et al. [11] further expanded on Helder’s work
and made improvements by introducing the viewing zenith angle (VZA) into the model
by considering atmospheric effects and performing atmospheric corrections, which was
applicable to moderate-resolution sensors with viewing angles of up to 20°. Comparisons
between the improved model’s predictions and satellite observations from Landsat 7 ETM+,
Aqua MODIS, MERIS, Landsat 8 OLI, and UK-2 DMC indicated an accuracy of 3% and a
precision of 2%. Raut et al. [12] extended the model to five PICSs in the Sahara Desert and
achieved accuracy and precision comparable with those of the Libyan Desert model. How-
ever, existing models restrict the viewing angle to within 20° during calibration, making
them challenging to apply to sensors with larger viewing angles.

For the spectral differences between different sensors, Helder et al. utilized Hy-
perion to extend the applicable bands of a model. He strictly matched five pairs of
MODIS/Hyperion images with VZAs within ±5° and an observation time difference
of less than 30 min. The scaling factors for each band were calculated and averaged
to obtain corresponding gain factors. However, the calculation of the gain factors was
constrained by strict spatiotemporal matching, and the number of image pairs was limited.

To enhance the model applicability and performance, this study established a wide-
angle hyperspectral TOA reflectance model for the Libyan Desert. Based on the stable
characteristics of stable targets, both on the surface and in the atmosphere, a TOA re-
flectance model for the Libyan Desert was fitted using long-term multisatellite TOA data.
By inputting the SZA, solar azimuth angle (SAA), VZA, viewing azimuth angle (VAA),
and atmospheric parameters, the TOA reflectance results could be calculated. This model
is suitable for absolute radiometric calibration of the visible to SWIR bands within VZAs
up to 65°. The accuracy and applicability of the model were validated by comparing the
model results with Landsat and VIIRS observations.

The remainder of this article is organized as follows. Section 2 describes the prepara-
tory work for modeling, including the study site and the sources of satellite image data.
It also presents the data quality control methods and analyzes the sensitivity of TOA re-
flectance to atmospheric parameters. Section 3 explains how the multiband TOA reflectance
model was established and extended to a hyperspectral resolution, along with performance
evaluation methods. Section 4 presents validation of the long-term accuracy of the model
using MODIS data and presents a cross-validation performed using Landsat 8 OLI and
Suomi NPP VIIRS data. Section 5 provides a summary and discusses the broader feasibility
of the model.
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2. Data Collection and Analysis
2.1. PICSs Overview

The Committee on Earth Observation Satellites (CEOS) recommends six PICSs for the
long-term on-orbit radiometric calibration of Earth observation optical sensors. These sites
possess several favorable characteristics, including temporal stability, spatial uniformity,
and homogeneity [13,14].

One of these PICSs is Libya 4, which is located in the Libyan Desert, with consistently
high reflectance throughout the year. Libya 4 is widely recognized as one of the most
stable PICSs and has been extensively utilized [11,15]. Following CEOS recommendations,
this study considered a circular area with a center at coordinates (28.55°N, 23.39°E) and a
diameter of 20 km [13]. Figure 1 is an image generated using the near-infrared (NIR) band
(865 nm) of Landsat 8’s TOA reflectance that was captured on 20 August 2018. The region
of interest is highlighted in red.

Figure 1. The Libyan Desert in a satellite image. The overview map at the upper-right corner indicates
the site’s location.

Figure 2 shows the stability of the TOA reflectance in the Libyan Desert from 1985
to 2021. The TOA reflectance data in the red band are extracted from the Landsat series
of satellites. There are minor variations in the relative spectral response profiles among
corresponding bands from different Landsat sensors [16]. The data from Landsats 4, 5, and
7 were spectrally adjusted to match Landsat 8 OLI band 4 [17]. The TOA reflectance does
not exhibit any significant trend.

2.2. Data Sources

The study presented in this article relied on data from the following five satellite
sensors: Terra/Aqua MODIS, Landsat 8 OLI, Suomi NPP VIIRS, and EO-1 Hyperion. The
spatial resolutions and temporal ranges of the sensors used in this study are presented in
Table 1.
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Figure 2. Long-term clear-sky TOA reflectance in the red band of Landsat satellites.

Table 1. Sensors and their spatial resolutions and temporal ranges used in this study.

Satellite Sensor Spatial Resolution (m) Temporal Range

Terra MODIS 250/500 2003–2020
Aqua MODIS 250/500 2003–2020

Landsat 8 OLI 30 2013–2020
Suomi NPP VIIRS 750 2013–2020

EO-1 Hyperion 30 2008–2017

MODIS is a remote sensing sensor developed by NASA for studying the Earth’s atmo-
spheric system. This study used MODIS data from the Terra (morning overpass) and Aqua
(afternoon overpass) satellites, which image the entire Earth every one to two days [18,19].

MODIS has a radiometric resolution of 12 bits and offers up to 36 spectral bands [20,21].
The data used in this study for establishing the TOA reflectance model are derived from
the first seven bands, covering the visible to SWIR region. The spatial resolution of these
bands is either 250 m (bands 1 and 2) or 500 m (bands 3–7), as shown in Table 2.

Table 2. Spectral bands of Terra/Aqua MODIS.

Band Start (nm) End (nm) Center (nm)

1 620 670 659
2 841 876 865
3 459 479 470
4 545 565 555
5 1230 1250 1240
6 1628 1652 1640
7 2105 2155 2130

The MODIS data products used in this study include version 6.1 of MOD021KM,
MYD021KM, and MYD08_D3. These products resample the data from bands 1 to 7 to a
spatial resolution of 1000 m. MOD021KM/MYD021KM provides level 1B TOA radiance,
reflectance, and related parameters [22,23]. MYD08_D3 provides daily atmospheric data,
including AOD, water vapor, and ozone, which are used for atmospheric correction of the
TOA reflectance model [24].

Figure 3 illustrates the long-term TOA reflectance for bands 1 to 7 of Aqua MODIS
over the Libyan Desert from 2003 to 2012. The TOA reflectance remained stable over time
for each band.
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Figure 3. Long-term TOA reflectance of Aqua MODIS bands 1–7.

Landsat 8 was launched in 2013 and is currently operated by the United States Geo-
logical Survey (USGS). It carries the OLI instrument, which has a swath width of 185 km
and a length of 180 km, with a ground resolution of 30 m [25]. This study focused on the
first seven spectral bands for validation, covering wavelengths from visible to SWIR, as
shown in Table 3.

Table 3. Spectral bands of Landsat 8 OLI.

Band Start (nm) End (nm) Center (nm)

1 434.97 450.95 442.96
2 452.02 512.06 482.04
3 532.74 590.07 561.41
4 635.85 673.32 654.59
5 850.54 878.79 864.67
6 1566.50 1651.22 1608.86
7 2107.40 2294.06 2200.73
8 503.30 675.70 589.50
9 1363.24 1383.63 1373.43

Suomi NPP is a low-Earth-orbit meteorological satellite that was launched in 2011.
One of the key instruments on board Suomi NPP is VIIRS, which is a cross-track scanning
radiometer. It provides twice-daily global coverage of the Earth’s surface and collects
imagery data at a moderate spatial resolution of 750 m. VIIRS has 22 spectral bands,
covering the wavelength range from 0.4 to 11.8 mm [26]. The VIIRS data are from NASA’s
ArchiveSet 5200. This article studies the moderate-resolution bands in the visible and NIR
region of VIIRS, as shown in Table 4.

Table 4. Moderate-resolution spectral bands of Suomi NPP VIIRS.

Band Start (nm) End (nm) Center (nm)

1 402 422 415
2 436 454 445
3 478 498 490
4 545 565 555
5 662 682 673
6 739 754 746
7 846 885 865
8 1230 1250 1240
9 1371 1386 1378
10 1580 1640 1610
11 2225 2275 2250
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EO-1 was launched in 2000. Hyperion is one of the primary instruments on board
and the first space-based high-resolution hyperspectral imaging instrument. It provides
198 calibrated spectral bands, including visible to NIR bands (8–57) and SWIR bands
(77–224), covering wavelengths from 430 to 2400 nm. The sampling interval is approx-
imately 10 nm. In this article, Hyperion data were used to provide spectral reflectance
profiles [27].

MODIS images have a large coverage area, high temporal resolution, and the longest
operational period among all mentioned satellites, making more angle inputs available for
the TOA reflectance model. Figure 4 shows the band coverage of the four sensors. Differ-
ently colored lines represent different sensor bands, with the numbers below indicating
their respective band numbers.

400 800 1200 1600 2000 2400
Wavelength (nm)
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r
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123 4 5 6 7 8 9 10 11
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Figure 4. Band coverage of the sensors.

Over 7000 Level 1B MODIS images obtained from NASA yield calculated TOA re-
flectance data and corresponding angle data with which to fit the model parameters. After
model establishment, these data were used to validate the accuracy of the long-term TOA
reflectance predictions.

To further validate the accuracy and test the computational precision of the TOA
reflectance model compared with other satellite sensors, this study used satellite data
acquired from EO-1 Hyperion, Landsat 8 OLI, and Suomi NPP VIIRS. OLI’s Level 1T TOA
reflectance data and Hyperion’s TOA hyperspectral radiance data are publicly available
from the USGS [28,29]. The VIIRS data were obtained from NASA’s public database [30].

This study primarily used Python 3.10 during the data processing and analysis, along
with several third-party libraries [31]. NumPy 1.24 and pandas 2.0 were used for funda-
mental computations [32,33]. Matplotlib 3.7, OpenCV 4.7, and seaborn 0.12 were used for
data visualization [34–36]. Statsmodels 0.14 was used for modeling [37]. The acquisition
of satellite images was facilitated using the requests 2.31 library. The processing of image
data involved the application of pyhdf 0.10, netCDF4 1.6, and GDAL 3.8 libraries [38,39].
All of these libraries were adopted for comprehensive data analysis and presentation.

2.3. Data Quality Control

Daily TOA reflectance data were extracted from Terra/Aqua MODIS images between
2003 and 2012 and used to build the TOA reflectance model. A single image may contain
cloud cover, reducing the model’s accuracy. Therefore, the data quality was assessed based
on the nonuniformity of the target area. Non-clear-sky records were removed by setting
a threshold for spatial nonuniformity. Any data with spatial nonuniformity higher than
this threshold were considered associated with non-clear-sky weather and were ignored
during the model fitting process. The spatial nonuniformity was defined as the coefficient
of variation (CV) of all pixels within the target area in the image as follows:

CV =
σ

µ
. (1)
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Here, µ represents the mean of all pixels within the target area in the satellite image,
and σ represents the SD. This is a normalized measure of dispersion, also known as the
relative standard deviation. An abnormally large CV value indicates cloud cover in the
target area, meaning that it is not applicable for radiometric calibration. By calculating the
CV for the target area in all images, a histogram of the daily nonuniformity distribution for
the Libyan Desert was obtained, as shown in Figure 5. The CV values roughly followed a
normal distribution.

0% 2% 4% 6% 8% 10%
CV

0

200

400

600

800

1000
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nt
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Figure 5. Daily nonuniformity distribution of the TOA reflectance and the iterative shrinking method.

According to the 3σ rule, nearly 99.7% of the values drawn from a normal distribution
fall within three SDs. Due to the sparsity of the distribution and the presence of outliers, an
iterative shrinking method was used to determine the threshold for spatial nonuniformity.
This method gradually narrows down the boundary of the CV distribution through iterative
steps, approaching the central region of the distribution. In each iteration, µ and σ were
recalculated, and values outside the µ ± 3σ interval were removed until all values fell
within the interval. In the last iteration, the upper threshold limit was set to µ + 3σ. Data
points with CV values exceeding this threshold were labeled “non-clear-sky” data and
were not used in the modeling process.

The dashed lines in Figure 5 represent the boundaries of the 3σ intervals for each
iteration. For readability, these boundaries are only partially shown. The boundaries
for iterations 1–7, which were far from the peak, are not shown, and the boundaries for
iterations 9–13, which were densely packed, are not labeled. By the 14th iteration, all values
fell within the 3σ interval. At this point, the iteration process was terminated, and the
upper limit of 2.4% represented the desired threshold for nonuniformity.

2.4. Sensitivity Analysis of Atmospheric Parameters

During the imaging process of a remote sensor, solar radiation first enters the Earth’s
atmosphere from outer space and reaches the Earth’s surface [40]. It is then reflected
from the surface and scattered back to the onboard sensor through the atmosphere. Solar
radiation is absorbed and scattered along its transmission path by various atmospheric
molecules and aerosols. Due to the influence of atmospheric absorption and scattering, the
apparent surface reflectance decreases once the reflected radiation reaches the TOA [41,42].

Second Simulation of a Satellite Signal in the Solar Spectrum (6S) is a computer code
that accurately simulates the above process [43,44]. In this study, the vector version of the
6S model was used to simulate atmospheric radiative transfer in the visible and NIR bands
under different atmospheric conditions. By taking geometrical conditions, atmospheric
conditions, spectral bands, altitude, aerosol model type, ground reflectance, and other
parameters as inputs, this model can produce the apparent reflectance values at the TOA
after the traversal of the atmospheric path.

Understanding the influence of the atmosphere is valuable for model development.
To quantify the impact of the atmosphere on the radiometric calibration of an onboard
sensor, it is necessary to evaluate the sensitivity of the sensor to AOD, water vapor, and
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ozone. For this purpose, this study considers data from a clear-sky day on 3 July 2019. The
atmospheric parameters for that day were extracted from the Aqua MODIS atmospheric
product [24], as shown in Table 5.

Table 5. Atmospheric and surface parameters in the Libyan Desert on 3 July 2019.

Date AOD Water Vapor Ozone

3 July 2019 0.126 1.823 cm 267.5 DU

The analysis was performed using a single-variable method. In each test focusing on a
specific atmospheric parameter, that parameter was varied while other parameters were
held constant. Multiple values were chosen for each parameter based on its distribution.
The TOA reflectance was recalculated for each value using the 6S model and compared
with the actual TOA reflectance value using

∆ρvi =
ρvi − ρv0

ρv0
(2)

Here, ρv0 is the original TOA reflectance calculated by the actual atmospheric parame-
ters (as shown in Table 5). ρvi represents the reflectance result recalculated after a specific
value is taken from the distribution of a single variable among AOD, water vapor, and
ozone. ∆ρvi is their relative difference.

After all the calculations were complete, the impacts of different atmospheric parame-
ter variations on radiative transfer were analyzed.

The AOD data over the Libyan Desert were extracted from MODIS MYD08_D3’s
Deep_Blue_Aerosol_Optical_Depth_550_Land_Mean dataset. The AOD values were mainly
between 0.1 and 0.5, as shown in Figure 6a.

Nine AOD values ranging from 0.1 to 0.5 at uniform intervals of 0.05 were selected.
Figure 6b shows that in the blue (470 nm) and red (650 nm) bands, the relative difference
∆ρvi varied by 8.0% as the AOD value increased from 0.1 to 0.5. The relative differences for
other bands were within 2.3%.

The long-term column water vapor data were extracted from MYD08_D3’s Wa-
ter_Vapor_Near_Infrared_Clear_Mean dataset. The values over the Libyan Desert ranged
mainly between 0.5 and 5 cm, as shown in Figure 6c.

Ten water vapor values ranging from 0.5 to 5.0 cm were uniformly sampled at intervals
of 0.5 cm. As the value increased from 0.5 to 5.0 cm, the relative difference in the 2130 nm
SWIR band decreased by 11.6%, while those in the other bands remained below 2.8%, as
shown in Figure 6d.

Considering the electromagnetic absorption of water vapor, it can be inferred that the
2130 nm SWIR band was influenced by atmospheric water vapor absorption. This indicates
that the performance of the TOA reflectance model near 2130 nm could also be affected by
water vapor [45].

The total ozone burden data were extracted from the Total_Ozone_Mean dataset in
the MYD08_D3 product. The ozone values in the Libyan Desert were primarily distributed
between 200 and 350 DU (Dobson unit), as shown in Figure 6e.

Nine ozone values ranging from 200 to 400 DU were uniformly sampled at intervals
of 25 DU. Figure 6f shows that as the ozone increased from 200 to 400 DU, the relative
differences in the green (555 nm) and red (659 nm) bands increased by 5.3% and 4.2%,
respectively, indicating the influence of atmospheric ozone absorption [46]. In other bands,
particularly between 865 and 2130 nm, the relative difference remained below 0.01%.



Remote Sens. 2024, 16, 1406 9 of 27

0.1 0.2 0.3 0.4 0.5 0.6 0.7
AOD

0

100

200

300

400

C
ou

nt

(a)

500 750 1000 1250 1500 1750 2000
Wavelength (nm)

5%

0%

5%

R
el

at
iv

e 
D

iff
er

en
ce

(b)

AOD
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

1 2 3 4
Water Vapor (cm)

0

100

200

300

400

C
ou

nt

(c)

500 750 1000 1250 1500 1750 2000
Wavelength (nm)

5%

0%

5%

R
el

at
iv

e 
D

iff
er

en
ce

(d)

Water
Vapor
(cm)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

240 260 280 300 320
Ozone (DU)

0

100

200

300

400

C
ou

nt

(e)

500 750 1000 1250 1500 1750 2000
Wavelength (nm)

2%

0%

2%

R
el

at
iv

e 
D

iff
er

en
ce

(f)

Ozone
(DU)

200.0
225.0
250.0
275.0
300.0
325.0
350.0
375.0
400.0

Figure 6. Distributions and sensitivity analyses of atmospheric parameters: AOD, water vapor, and
ozone. (a) Distribution of AOD. (b) Relative difference analysis for AOD. (c) Distribution of water
vapor. (d) Sensitivity analysis for water vapor. (e) Distribution of ozone. (f) Relative difference
analysis for ozone. A positive relative difference corresponds to a brighter TOA reflectance.

From the single-variable sensitivity analyses above, it is evident that the AOD and
ozone had more significant impacts on the visible spectrum, while water vapor significantly
influenced the 2130 nm SWIR band. This suggests that atmospheric parameters could
affect a model’s accuracy, particularly at solid absorption wavelengths. Therefore, it was
necessary to perform atmospheric correction and introduce atmospheric parameters into
the TOA reflectance model.

3. Methods
3.1. Grouping by Viewing Angles

To improve the fit performance of the TOA reflectance model, the relationships be-
tween the TOA reflectance and solar/viewing angles were investigated using correspond-
ing data collected from over 7000 Aqua MODIS images. Taking the blue band (470 nm) as
an example, the data revealed a positive correlation between the TOA reflectance and SZA,
as shown in Figure 7.
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Figure 7. TOA reflectance as a function of the SZA and VZA in the blue band.

In Figure 7, the dots are plotted with different colors based on their VAA values.
The azimuth is defined as a horizontal angle measured clockwise from north. The TOA
reflectance exhibited significant variations for different VZA and VAA values. Therefore,
grouping the data based on the viewing angles enhanced the fit performance.

The collected angle data indicate that the VAA values of Terra/Aqua MODIS were
mainly distributed in two zones, representing the east and west directions. Additionally,
the VZA was spread out across 16 zones, numbered from 1 to 16, as illustrated by the
dashed lines in Figure 8.
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Figure 8. Viewing angle distributions of Terra and Aqua.

Within each group, the TOA reflectance exhibited a closer correlation with the SZA. A
set of model coefficients was fitted for each group. When the model was applied, input
data from other sensors could be matched with the appropriate model parameters based
on the VZA and VAA for computation.

3.2. Multiband TOA Reflectance Modeling

Based on the analysis above, it can be concluded that the multiangle TOA reflectance
was directly related to the solar angles, satellite viewing angles, and atmospheric parameters
(AOD, water vapor, and ozone, which were extracted from the MODIS products). Therefore,
after grouping, the multiangle TOA reflectance model could be constructed as follows:

ρ∗i (θs, θv, ϕs, ϕv, va, vw, vz) = fiso + fvolKvol(θs, θv, ϕs, ϕv) + fgeoKgeo(θs, θv, ϕs, ϕv) + fava + fwvw + fzvz,

i = 1, 2, . . . , 7.
(3)
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Here, ρ∗i (θs, θv, ϕs, ϕv, va, vw, vz) represents the computed TOA reflectance in band i,
which was determined by the relevant geometric angles, namely, the SZA (θs), VZA (θv),
SAA (ϕs), and VAA (ϕv), as well as atmospheric parameters, namely, AOD (va), water
vapor (vw) as precipitable water (cm), and ozone (vz) as DU.

Kvol(θs, θv, ϕs, ϕv) and Kgeo(θs, θv, ϕs, ϕv) represent the volumetric scattering kernel
and geometric scattering kernel, respectively, of the Ross–Li bidirectional reflectance distri-
bution function (BRDF) model [47,48]. Both are functions of the SZA, SAA, VZA, and VAA.
fvol and fgeo are the coefficients associated with the two kernels, while fiso represents the
isotropic coefficient. fa, fw, and fz represent the fit coefficients for AOD, water vapor, and
ozone, respectively.

The coefficients of the BRDF model and the atmospheric parameters were determined
by fitting long-term data of the observed TOA reflectance over the target area of the Libyan
Desert PICS. The optimal coefficients were obtained by minimizing the fitting errors.

3.3. Spectral Extension

Because the TOA reflectance model was established based on MODIS data, it was
most accurate when used with the specific spectral bands of MODIS. It may not work as
well for other sensors with different spectral bands.

This study considered the hyperspectral TOA reflectance measured by Hyperion
as a reference reflectance profile due to its lower spectral sampling interval. Given the
relative spectral response (RSR) functions of different multiband sensors, corresponding
hyperspectral TOA reflectance profiles could be obtained by scaling the reference reflectance
profile to match the multiband reflectance results.

Using cloud-free Hyperion images acquired from the USGS, hyperspectral TOA radi-
ance data were extracted and transformed into TOA reflectance data as follows:

ρh =
πL

E0 cos θs
. (4)

Here, ρh is the Hyperion TOA reflectance, L is the TOA radiance extracted from the
Hyperion images, E0 is the solar irradiance, and θs is the SZA.

The hyperspectral reflectance profiles extracted from 301 Hyperion images had similar
shapes, as shown in Figure 9.

500 750 1000 1250 1500 1750 2000 2250
Wavelength (nm)

0%

20%

40%

60%

80%

100%

TO
A 

R
ef

le
ct

an
ce

Hyperion Profiles Averaged

Figure 9. Hyperion hyperspectral TOA reflectance profiles.

By averaging the hyperspectral TOA reflectance from these 301 cloud-free Hyperion
images, a reference hyperspectral reflectance profile was obtained, as shown by the blue
lines in Figures 9 and 10.
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Figure 10. Spectral extension of the model results to Landsat 8 OLI bands ρ′′j .

Figure 10 shows the spectral extension process of the model results from MODIS
bands to Landsat 8 OLI bands. By convolving the reference hyperspectral reflectance
profile with the MODIS RSR functions, the reflectance for each MODIS band was obtained,
as shown by the blue dots in Figure 10. Due to Hyperion’s spectral resolution of 10 nm,
there was insufficient coverage of the RSR wavelength of sensors, including MODIS, OLI,
and VIIRS. As a result, the TOA reflectance of Hyperion was linearly interpolated into the
RSR wavelength before the convolution. In this way, scaling factors were calculated for
each MODIS band to establish a quantitative relationship between the reference reflectance
and the model results as follows:

ki =
ρ∗i

ρh ∗ f M
i

, i = 1, 2, . . . , 7. (5)

Here, ρ∗i is the model result for MODIS band i represented by the orange dots in
Figure 10, ρh is the Hyperion hyperspectral reflectance, and f M

i is the RSR function for
MODIS band i. The operator denoted by the symbol ∗ represents convolution.

The orange line in Figure 10 represents the scaled hyperspectral reflectance, which is
expressed as

ρ′h = ρh · kh, h = 8, 9, . . . , 57, 77, 78, . . . , 224. (6)

Here, ρ′h is the scaled reference hyperspectral TOA reflectance for Hyperion band
h, ρh is the Hyperion hyperspectral reflectance, and kh is the scaling factors across 198
Hyperion bands (8–57 and 77–224), which is linearly interpolated from ki. Thus, the TOA
reflectance model was spectrally extended beyond the original seven bands of MODIS to
cover wavelengths from 430 to 2400 nm.

Finally, to obtain the banded TOA reflectance of a particular target sensor, the scaled
hyperspectral reflectance profile was convolved with the corresponding RSR of that sensor.
The results are illustrated as green dots in Figure 10 and are expressed as

ρ′′j = ρ′ ∗ f T
j . (7)

Here, ρ′′j is the model result for the TOA reflectance of the target sensor in band j, ρ′′ is

the scaled hyperspectral reflectance profile, and f T
j is the target sensor’s RSR function for

band j. Figure 11 illustrates the process of spectral extension.
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Figure 11. Spectral extension process.

As shown in Figure 11, given a set of input parameters, the established model generates
multiband results in the MODIS bands, which are then spectrally extended to cover a
hyperspectral range. Finally, by convolving the spectrally extended results with the target
sensor’s RSR functions, the TOA reflectance results for the target bands are obtained.

3.4. Evaluation

Once the TOA reflectance model had been established, its accuracy was validated
using long-term multisource satellite data. First, the model was applied to calculate TOA
reflectance using MODIS observations from 2013 to 2020. The computed results were
compared with the actual MODIS observations to assess the accuracy of the model. Second,
Landsat 8 OLI and Suomi NPP VIIRS observations were used for cross-validation to
evaluate the performance of the TOA reflectance model for different sensors.

After the calculated results were obtained from the model, the model performance
was evaluated using two metrics: accuracy and precision. The relative differences between
the model results and the corresponding observations were calculated as follows:

∆ρj =
ρ∗j − ρo

j

ρo
j
× 100%. (8)

Here, ρ∗j is the model result for the target sensor in band j, and ρo
j is the observed TOA

reflectance in band j extracted from the satellite images.
Accuracy is defined in terms of the RMSE, which quantifies the difference between

the model’s predicted results and the actual values from satellite images, as follows:

RMSE =

√
∑n

j (ρ
∗
j − ρo

j )
2

n
. (9)

Here, n represents the number of images.
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Precision refers to the magnitude of the random errors. A higher level of precision
implies that the relative difference values are more closely grouped together. Accordingly,
the precision is determined by calculating the SD of the relative differences using the
expression given below:

σ∆ρ =

√
∑n

j (∆ρi − µ∆ρ)2

n
. (10)

Here, σ∆ρ is the SD of the long-term relative differences, ∆ρj is the difference between
the model result and the observed value in band j, and µ∆ρ represents the average of the
long-term relative differences, which is defined as

µ∆ρ =
∑n

j ∆ρj

n
. (11)

4. Results
4.1. Model Fitting Results

In accordance with the flowchart in Figure 11, solar angles; satellite viewing angles;
TOA reflectance for each band; and corresponding atmospheric parameters, including
AOD, water vapor, and ozone, were extracted from a 10-year (2003–2012) Terra/Aqua
MODIS dataset to establish a multiband TOA reflectance model. The fit accuracy of the
TOA reflectance model was then validated by comparing the model-predicted results with
the actual observations from 2013 to 2020.

Following the method described in Section 3.1, the mentioned data were divided into
16 groups based on the viewing angles, as shown in Table 6.

Table 6. Model grouping overview.

Group
VZA (°) VAA (°)

Start End Start End

1 0 15 −180 0
2 15 27 −180 0
3 27 37 −180 0
4 37 46 −180 0
5 46 52 −180 0
6 52 58 −180 0
7 58 62 −180 0
8 62 65 −180 0

9 0 11 0 180
10 11 23 0 180
11 23 33 0 180
12 33 43 0 180
13 43 50 0 180
14 50 56 0 180
15 56 61 0 180
16 61 65 0 180

Each group of data was separately input into Equation (3). Sixteen groups of fitted
model coefficients grouped by viewing angle were obtained. Each group contained seven
bands, with six fit coefficients per band, for a total of 672 coefficients. Table 7 shows the
coefficients for groups 1, 2, 9, and 10 with a VZA of less than 30°.
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Table 7. Fit coefficients for groups 1, 2, 9, and 10.

Group Band
fiso fvol fgeo fa fw fz

×10−1 ×10−1 ×10−2 ×10−2 ×10−2 ×10−4

1

1 4.98 2.02 1.16 −0.38 −0.28 −1.39
2 6.06 0.95 2.14 −0.41 −0.52 −0.35
3 2.35 1.87 −0.29 0.36 −0.01 0.10
4 3.50 1.61 0.37 0.00 −0.10 −0.71
5 7.06 −0.62 3.82 −0.89 −0.46 −0.63
6 7.42 0.51 3.70 −1.01 −0.09 −0.50
7 7.18 −0.39 4.99 −0.81 −1.50 −0.45

2

1 4.92 1.31 1.46 −0.35 −0.31 −1.00
2 5.98 0.77 2.02 −0.31 −0.57 0.05
3 2.35 1.95 −0.28 0.59 −0.05 0.22
4 3.49 1.48 0.44 0.06 −0.12 −0.57
5 7.02 0.07 3.15 −0.77 −0.54 −0.42
6 7.44 0.33 3.38 −0.06 −0.22 −0.51
7 7.22 −0.26 4.54 −0.49 −1.68 −0.48

9

1 4.76 −1.29 2.52 0.79 −0.25 −0.71
2 5.93 0.86 2.12 0.53 −0.51 0.04
3 2.18 3.00 −1.23 1.84 −0.03 0.47
4 3.26 1.76 −0.15 1.55 −0.08 −0.12
5 7.05 3.34 1.72 −0.64 −0.44 −0.72
6 7.40 0.12 3.75 −0.44 −0.17 −0.48
7 7.22 0.20 4.98 −0.95 −1.53 −0.53

10

1 4.71 0.58 1.38 2.07 −0.30 −0.61
2 5.82 0.95 1.92 1.81 −0.56 0.42
3 2.26 2.27 −0.51 2.69 −0.03 0.20
4 3.28 1.61 0.14 2.59 −0.10 −0.20
5 6.77 1.10 2.72 0.73 −0.54 0.41
6 7.17 0.24 3.47 0.61 −0.25 0.42
7 6.95 −0.25 4.78 0.04 −1.58 0.47

After the model fitting, based on the viewing angles, the corresponding fit coefficients
from Table 6 were matched and combined with the respective atmospheric parameters.
This enabled the calculation of TOA reflectance results for each MODIS band, which were
the final results for the Terra/Aqua MODIS sensors.

For other satellite sensors, such as Landsat 8 OLI and Suomi NPP VIIRS, which have
different spectral bands than MODIS, the multiband TOA reflectance results needed to be
spectrally extended to their own bands. Following the approach described in Section 3.3,
the model results were extended from seven bands to a hyperspectral profile, which was
then convolved with the RSR functions of the target sensor to obtain the TOA reflectance
model results for that sensor’s bands.

Once the calculations were complete, the model results were compared with the actual
values observed by the satellites to obtain the long-term relative differences. On this basis,
the accuracy and precision of the model were calculated as error statistics.

4.2. Long-Term Validation with Terra MODIS

As described in Section 4.1, the Terra/Aqua MODIS data from 2003 to 2012 are grouped
according to their viewing angles in Table 6 and were used for modeling. Then, angle
and atmospheric data from 2013 to 2020 were used with the corresponding model fit
coefficients to validate the fit performance of the multiband TOA reflectance model. Since
the MODIS data were used for both modeling and validation, there was no need to consider
spectral extension.

Figure 12 compares the model results with the actual observed TOA reflectance data
extracted from 1644 Terra MODIS images from 2013 to 2020.
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Figure 12. Observed and predicted TOA reflectance data for Terra MODIS.

Figure 13 shows the long-term relative differences between the observed and predicted
data. In bands 5 and 7, there was a noticeable decrease in the relative differences after
2016. In other words, the observed values from Terra MODIS were increased, as shown
in Figure 12. This finding is consistent with other researchers’ studies. This phenomenon
may be related to electronic crosstalk in the SWIR bands and instrument performance
degradation due to an instrument anomaly (safety mode event) in early 2016 [21,49–51].
A fluctuation was observed in bands 1 and 2 between 2015 and 2018, which could be
attributed to a decrease in the observed TOA reflectance from Collection 6.1 of Terra
MODIS during this period [12]. This decrease may be indicative of adjustments to the
instruments or calibration parameters.

Due to performance degradation issues in the SWIR bands, data from bands 5, 6, and 7
after 2016 were not used for statistical analysis. For the purpose of comparison, Table 8 also
includes statistical results derived from data spanning beyond 2016, which are presented in
parentheses. The SDs for bands 1–7 were all below 1.9%, and the RMSEs were within 0.8%.
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Figure 13. Relative differences between predictions and observations for Terra MODIS.

Table 8. Statistics of the model results for Terra MODIS between 2013 and 2020.

Band Wavelength (nm)
Relative Difference (%)

RMSE (%)
Mean SD

1 659 −0.37 1.00 0.48
2 865 −0.16 0.91 0.54
3 470 −0.17 1.88 0.48
4 555 −0.48 1.29 0.47
5 1240 −0.27 (−0.63) 0.87 (0.96) 0.60 (0.77)
6 1640 −0.29 (−0.63) 0.70 (0.74) 0.53 (0.69)
7 2130 −0.83 (−1.96) 0.80 (1.32) 0.73 (1.53)

The data spanning from 2013 to 2015 were used for statistical analysis of bands 5, 6, and 7. Values enclosed in
parentheses within each table cell correspond to statistical outcomes derived from an extended period, from 2013
to 2020, for comparison.

4.3. Long-Term Validation with Aqua MODIS

The multiband TOA reflectance model was also used to predict Aqua MODIS data.
Similar to the Terra analysis, data from 2003 to 2012 were grouped based on the viewing
angles, as shown in Table 6, and used for modeling. Data from 2013 to 2020 were then used
for prediction. The model predictions were compared with the actual observations from
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1482 Aqua MODIS images for long-term validation. The spectral bands of Aqua MODIS
are shown in Table 1.

The TOA reflectance model was used to calculate the long-term TOA reflectance data
for MODIS bands 1–7. Figure 14 shows that most of the model results for bands 1–7 had
relative differences of within 2.5% with respect to the observations.
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Figure 14. Relative differences between predictions and observations for Aqua MODIS.

Table 9 shows that the average relative differences for bands 1–7 were within ±0.6%
or less, with a precision within 1.4% and an accuracy within 0.6%. The results are similar to
those for Terra MODIS but indicate slightly better performance, which could have been due
to differences between the instruments [52,53]. Based on the analysis of the model results
from 2013 to 2020, the long-term trends of the Aqua MODIS bands show clear stability with
no significant degradation or offset.
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Table 9. Statistics of the model results for Aqua MODIS between 2013 and 2020.

Band Wavelength (nm)
Relative Difference (%)

RMSE (%)
Mean SD

1 659 −0.49 0.97 0.49
2 865 −0.27 0.92 0.56
3 470 −0.40 1.31 0.37
4 555 −0.58 1.21 0.46
5 1240 −0.20 0.76 0.51
6 1640 −0.13 0.72 0.51
7 2130 0.06 0.74 0.46

4.4. Cross-Validation with Landsat 8 OLI

To validate the accuracy and performance of the model, the hyperspectral TOA re-
flectance model was also evaluated using Landsat 8 OLI observations with a high spatial
resolution and small viewing angles. The spectral bands of Landsat 8 OLI are shown in
Table 3.

First, 351 Landsat 8 OLI images from 2013 to 2020 were obtained from the USGS web-
site. Then, following the method described in Section 4.1, the angle data and corresponding
atmospheric parameters of Landsat 8 OLI were grouped by viewing angle, as shown in
Table 6, and input into the developed TOA reflectance model to calculate the results for the
seven MODIS bands. Due to the differences in band coverage between Landsat 8 OLI and
MODIS, the spectral extension method described in Section 3.3 was applied to extend the
multiband model results to obtain the hyperspectral TOA reflectance. After the convolution,
the TOA reflectance model results for seven bands of Landsat 8 OLI were obtained. They
were then compared against the actual observed values from Landsat 8 OLI to evaluate the
performance of the TOA reflectance model.

Figure 15 shows the calculated long-term differences between the model results and
observations for Landsat 8 OLI. In bands 1–7, the relative differences were within 5% or
better. In bands 1 and 2, however, the relative differences were scattered around two
values, resulting in poorer precision. Further analysis revealed a specific correlation with
different VAAs.

Table 10 shows that the mean relative differences in bands 1–7 were within ±1.8%,
their SDs were within 1.7%, and the RMSE values were within 1.2%.

The precision and accuracy of the model predictions were close to those for MODIS.
The prediction bias was slightly worse, which may have been due to either instrument
differences between the two sensors or the spectral extension process.

Landsat 8 is a high-resolution Earth observation satellite. The observation angles of
OLI were within 10° and close to the vertical, resulting in a shorter atmospheric transmission
path and less atmospheric interference. These factors made it conducive to radiometric
calibration. The calibration results show no obvious change trend, indicating stable data.

Table 10. Statistics of the model results for Landsat 8 OLI.

Band Wavelength (nm)
Relative Difference (%)

RMSE (%)
Mean SD

1 443 1.48 1.60 0.50
2 482 1.59 1.63 0.55
3 561 −0.39 1.33 0.46
4 655 −1.35 1.10 0.79
5 865 1.01 1.15 0.87
6 1609 0.44 0.77 0.58
7 2201 −1.74 0.91 1.16
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Figure 15. Relative differences between predictions and observations for Landsat 8 OLI.

4.5. Cross-Validation with Suomi NPP VIIRS

Regarding the TOA reflectance calculation for Suomi NPP VIIRS, it was noted that
VIIRS band M1 was not within the coverage range of the MODIS and Hyperion bands, and
was relatively far from MODIS band 3, as shown in Tables 2 and 4 and Figure 4. Bands
M6 and M9 also contained abnormally saturated data in the target area [54]. Additionally,
Figure 9 illustrates that the Hyperion reflectance profile had an abnormal decrease between
430 and 450 nm. Therefore, bands M1, M6, and M9 are ignored in this section.

Similar to the validation process for Landsat in Section 4.4, the angle data from
598 Suomi NPP VIIRS images and the corresponding atmospheric parameters from 2013
to 2020 were input into the TOA reflectance model following the method described in
Section 4.1. This yielded the TOA reflectance results for the seven MODIS bands. Then,
the model results were spectrally extended using the method described in Section 3.3,
producing TOA reflectance results for bands 2, 3, 4, 5, 7, 8, and 10 of Suomi NPP VIIRS.
These results were then compared against the actual observed values from Suomi NPP
VIIRS images to obtain the relative difference sequences shown in Figure 16.
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Figure 16. Relative differences between predictions and observations for Suomi NPP VIIRS.

The relative differences were within ±8% or better. The model results were generally
lower than the observations for bands 2, 4, 5, 7, 8, and 10. Different colors in Figure 16
represent different VZA values. The distribution of the VZA values indicates that lower
VZA values were associated with higher precision, suggesting that the TOA reflectance
model performed better for Suomi NPP VIIRS data obtained at lower VZAs.

In analyzing long-term trends, it was observed that the VIIRS NIR and SWIR bands
had low relative differences between 2013 and 2014. Larger differences were observed at
VZAs close to 60°. Overall, the trend remained stable beyond this point.

The error statistics shown in Table 11 indicate that the accuracy and precision for the
seven studied bands were all within 2.7%.

Figure 17 presents the statistical results for the relative difference sequences from the
validations on Terra/Aqua MODIS, Landsat 8 OLI, and Suomi NPP VIIRS.
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Table 11. Statistics of the model results for Suomi NPP VIIRS.

Band Wavelength (nm)
Relative Difference (%)

RMSE (%)
Mean SD

2 445 −1.21 2.42 0.80
3 490 2.17 1.80 0.74
4 555 −2.18 1.35 0.90
5 673 −2.99 1.11 1.61
7 865 −2.66 0.93 1.69
8 1240 −3.76 0.84 2.58
10 1610 −3.62 0.93 2.62
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Figure 17. Statistics of the model results. The positions of the circles along the y-axis represent the
mean values of the relative differences. The error bars have a width of ±1 SD around the circles.

The overall predicted values of VIIRS were lower than the observations, but higher
at 490 nm. This was in line with the validation results of Landsat 8 OLI, which may be
attributed to the Hyperion hyperspectral profiles. Hyperion observations exhibited lower
values near 470 nm when compared with MODIS and other sensors [55]. This difference
could cause an increase in the adjacent hyperspectral profiles during the spectral extension
process, leading to slightly higher predicted values. This was consistent with the results
from Landsat 8 OLI and may have been caused by the Hyperion hyperspectral profiles.
Hyperion observations were lower near 470 nm compared with MODIS and other sensors,
which could lead to an elevation of adjacent hyperspectral profiles during the spectral
extension process, resulting in slightly higher predicted values [55]. The trend across
the visible-to-SWIR spectrum was similar to that of OLI, indicating that the errors were
possibly related to the spectral extension process. Attention will be focused on the methods
of spectral extension in a future study.

In the long-term validation of MODIS data, the differences were primarily attributed to
the model’s inherent uncertainty. Theoretically, if the model’s accuracy is sufficiently high,
the difference between MODIS’s predicted and observed values should approach zero. For
Landsat 8 OLI and Suomi NPP VIIRS, the relative difference between the model predictions
and observed values was influenced not only by the model accuracy but also by factors
such as spectral extension and calibration errors. Differences in the RSR of bands introduce
additional uncertainty during the spectral extension process, which impacts the assessment
of model accuracy. The inherent accuracy limitations of the sensors also affect accuracy
assessment. Due to differences in the calibration methods and instrument performance, ob-
servations from sensors, such as VIIRS, exhibit certain magnitude discrepancies compared
with MODIS [56]. VIIRS’s observation data were directly calibrated using an onboard solar
diffuser, which was supplemented by lunar calibration, among other methods [57]. In
contrast, the TOA reflectance model indirectly transfered MODIS’s onboard calibration
results, which was theoretically less accurate than VIIRS’s onboard calibration. Despite
these issues, the validation results for VIIRS remained within an acceptable range, with
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both the accuracy and precision maintained within 3%. The long-term validation results
demonstrate that thanks to the high stability of the PICS and the high precision of the
MODIS observational data, our model could monitor long-term trends in satellite data and
assist in identifying potential performance issues with remote sensing instruments.

4.6. Uncertainty Analysis

According to the International Organization for Standardization’s guide to the expres-
sion of uncertainty in measurement [58], the construction principles of the TOA reflectance
model, as outlined in Equation (3), reveal several main sources of uncertainty. These
sources include the uncertainty in the multiband TOA reflectance model, the uncertain-
ties in MODIS TOA reflectance, the uncertainties associated with the scaling factors, and
the uncertainties in the Hyperion spectral profiles [12]. Consequently, the total uncer-
tainty of the model was calculated by aggregating the uncertainties from each of these
components using

utotal =
√

u2
model + u2

MODIS + u2
scaling + u2

Hyperion. (12)

The multiband model’s sources of uncertainty included the solar angles, satellite view-
ing angles, and atmospheric properties according to Equation (3). The model’s uncertainty
could be determined by analyzing its validation SD for MODIS. Uncertainties for each
band were calculated based on VZA, which was divided into 10° intervals. As shown in
Table 12, the multiband model’s uncertainties ranged from 0.51% to 1.42%.

Table 12. Uncertainties in the multiband model.

Band Wavelength (nm)
VZA (°)

0–10 10–20 20–30 30–40 40–50 50–60

1 659 0.58% 0.68% 0.95% 1.07% 0.91% 1.03%
2 865 0.51% 0.70% 0.93% 0.97% 0.85% 0.95%
3 470 0.79% 1.11% 1.42% 1.26% 1.16% 1.34%
4 555 0.73% 1.00% 1.26% 1.39% 1.12% 1.24%
5 1240 0.55% 0.59% 0.64% 0.80% 0.76% 0.78%
6 1640 0.58% 0.63% 0.69% 0.81% 0.70% 0.70%
7 2130 0.57% 0.66% 0.66% 0.75% 0.71% 0.76%

The model fit used data obtained from MODIS observations, implying that the uncer-
tainty associated with MODIS TOA reflectance contributed to the overall uncertainty of
this model. Specifically, the uncertainty in MODIS TOA reflectance for the reflective solar
bands was 2% [59,60].

The use of hyperspectral scaling factors in the spectral extension process of this
model introduced uncertainty when scaling the reference hyperspectral TOA reflectance
to the appropriate hyperspectral profile. To address this, the SD of the scaling factors
was calculated in each hyperspectral band, obtaining uncertainties in the scaling factors,
ranging from 1.23% to 5.80%.

The hyperspectral profiles of Hyperion’s TOA reflectance were extracted from multiple
images. Their magnitudes were different, introducing the spectral uncertainty in Hyperion.
The SD of Hyperion in each band was used to calculate the spectral uncertainties, which
ranged from 0.03% to 4.66%.

The uncertainties for each source of uncertainty were presented in Table 13.
Equation (12) was used to calculate the total uncertainty, which ranged from 2.40%
to 7.83%.
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Table 13. Total uncertainty.

Uncertainty Source Uncertainty

Multiband model 0.51–1.42%
MODIS TOA reflectance 2%

Scaling factors 1.23–5.80%
Hyperion spectral profiles 0.03–4.66%

Total 2.40–7.83%

5. Conclusions

The TOA reflectance model in this study was established using a 10-year dataset of
Terra/Aqua MODIS data collected over the Libyan Desert. To account for the significant
influence of atmospheric effects on the absorption bands during radiative transfer, atmo-
spheric correction parameters were introduced into the model. Spectral extension of the
model using Hyperion’s hyperspectral profile allows the model to cover a wider range of
wavelengths from the visible to SWIR bands, making it applicable to more sensors.

With the established TOA reflectance model, calculating the TOA reflectance over
the Libyan Desert becomes more convenient. By taking angles and local atmospheric
parameters as input, the model provides calculated results for the corresponding TOA
reflectance. The model’s long-term fit accuracy was validated using MODIS data, and
the results indicate an accuracy within 0.8% and a precision within 1.9% for bands 1–7.
The performance for Aqua was slightly better than that for Terra, with an accuracy within
0.6% and a precision within 1.4% for bands 1–7. Cross-validation of the model was then
conducted using Landsat 8 OLI and Suomi NPP VIIRS data. The results show that the
model achieved an accuracy within 2.5% and a precision within 2.7% for the studied bands.
It effectively characterized the directional characteristics of TOA reflectance and could be
applied for the absolute radiometric calibration of various on-orbit sensors. At the end of
this article, the analysis results of the model’s uncertainties are given. The total uncertainty
of the model ranged from 2.40% to 7.83%.

In future research, the model’s prediction accuracy can theoretically continue to be
improved by increasing the number of data sources and expanding the angular cover-
age. The model will also be applied to additional stable targets and different types of
sensors to enhance its applicability. Field testing using automated devices will also be
conducted to obtain more ground surface data and atmospheric parameters for further
model improvement.
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Abbreviations
The following abbreviations are used in this manuscript:

TOA Top of atmosphere
EO-1 Earth Observation-1
SWIR Short-wave infrared
OLI Operational Land Imager
NPP National Polar-Orbiting Partnership
VIIRS Visible Infrared Imaging Radiometer Suite
SD Standard deviation
RMSE Root-mean-square error
MODIS Moderate Resolution Imaging Spectroradiometer
PICS Pseudo-invariant calibration sites
AOD Aerosol optical depth
SZA Solar zenith angle
VZA Viewing zenith angle
SAA Solar azimuth angle
VAA Viewing azimuth angle
CEOS The Committee on Earth Observation Satellites
NIR Near infrared
USGS United States Geological Survey
CV Coefficient of variation
DU Dobson unit
6S Second Simulation of a Satellite Signal in the Solar Spectrum
BRDF Bidirectional reflectance distribution function
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