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Abstract: Shallow water passive source localization is an essential problem in underwater detection
and localization. Traditional matched-field processing (MFP) methods are sensitive to environment
mismatches. Many neural network localization methods still have room for improvement in accuracy
if they are further adjusted to underwater acoustic characteristics. To address these problems, we
propose a deep learning localization method via improved input features and network structure,
which can effectively estimate the depth and the closest point of approach (CPA) range of the acoustic
source. Firstly, we put forward a feature preprocessing scheme to enhance the localization accuracy
and robustness. Secondly, we design a deep learning network structure to improve the localization
accuracy further. Finally, we propose a method of visualizing the network to optimize the estimated
localization results. Simulations show that the accuracy of the proposed method is better than other
compared features and network structures, and the robustness is significantly better than that of the
MFP methods. Experimental results further prove the effectiveness of the proposed method.

Keywords: shallow water; neural network; feature preprocessing; matched-field processing; network
visualization

1. Introduction

Passive source localization in shallow water has always been an essential problem in
underwater acoustic detection and localization [1,2]. The matched-field processing (MFP)
methods constitute the most common methods, which utilize the acoustic propagation
model to generate the replica field and then match it with the measured field to obtain
a two-dimensional ambiguity plane whose peaks indicate the source localization [3,4].
An incoherent matched-field processor can effectively enhance the main lobe ratio and
improve localization performance when extending single-frequency MFP methods to
multifrequency MFP methods [5,6]. Furthermore, the matched-phase coherent processor
has been proven to be superior than the incoherent matched-field processor when there is a
mismatch between the environment and variations in noise levels [7,8]. Gregory J. Orris
et al. [9] proposed a magnitude crossfrequency processor, which reduced the side lobe
more effectively than the conventional matched-phase coherent processor. Chen et al. [10]
proposed a matched-phase coherent processor based on the phase descent search, which
achieved lower complexity than the simulated annealing algorithm while possessing high
localization accuracy. However, there are two major unavoidable drawbacks with respect
to the existing MFP methods. First, the localization performance is heavily dependent
on the environment parameters and has limited resistance to environment mismatches,
thus making the MFP methods difficult to apply in the complex ocean environment [11,12].
Second, the improved algorithms usually require a large amount of running time [13].
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In recent years, the artificial intelligence (AI) localization methods have gradually
gained importance [14–16]. In underwater source localization, unlike the MFP methods
that utilize sound propagation models, AI methods are data-driven and directly learn
the relationship between input features and source position through powerful nonlinear
fitting capabilities [17,18]. Neural networks are widely used models in AI and have been
employed in various localization scenarios to achieve higher accuracy in localization and
stronger resistance against environment mismatches compared to the MFP methods [19,20].
Niu et al. [21] used a feedforward neural network to estimate the horizontal distance
between a target and a vertical linear array (VLA) in shallow water, thus surpassing the
accuracy of the MFP methods in simulations and the Noise09 experiment. Zhu et al. [22]
used a two-step semisupervised framework for underwater source localization, and they
proposed an interpretable feature selection method based on principal component regres-
sion (PCR) to accelerate the training stage operation time in the SWellEx-96 experiment. T.B.
Neilsen et al. [23] used a convolutional neural network of multitask learning (CNN-MTL)
to estimate parameters such as distance, velocity, and seabed type of a moving target
simultaneously. The SBCEX 2017 experiment verified the ability of CNN-MTL by using a
75 min midfrequency source.

With the rapid development of computer arithmetic power, deep learning has become
the mainstream trend for a variety of research fields, especially in signal processing such
as images and speech [24]. In recent years, it has also been used in underwater acoustic
localization [25,26]. Niu et al. [27] used ResNet50 in a shallow water environment to
estimate the depth and range of a multifrequency source by using the source magnitude.
The method obtained better localization performance than SAGA (a software package for
MFP), which has been verified in the 2011 Yellow Sea experiment. Huang et al. [28] used a
time delay neural network (TDNN) and a convolutional and deep neural network (CNN-
DNN) to estimate the depth and the range of a wideband source. The network trained on
the simulation data achieved a fairly good performance on the 1999 Yellow Sea experiment,
which estimated a near-surface vessel at a distance of 12 km. However, many researchers
directly apply the classical feature processing schemes and deep network structures to
underwater acoustic localization problems without making sufficient improvements based
on underwater acoustic characteristics. On the one hand, the underwater acoustic features
make it more difficult to establish mapping relationships than traditional image and speech
features. If the classical feature scheme and network structure are used directly, the
localization accuracy may not be high enough. Therefore, it is necessary to design the
input features and the network structure based on the underwater acoustic scene [29].
On the other hand, the ability of deep learning method depends on the quantity and
diversity of training samples, but ensuring that the underwater acoustic data meet such
requirements is difficult. The challenge lies in obtaining a deep learning method with
strong robustness [30].

To address the shortcomings of the existing localization methods, we propose a deep
learning localization method via improved input features and network structure. The
proposed method can estimate the depth and the closest point of approach (CPA) range of
an acoustic source, and it excels in achieving high accuracy and robustness in shallow water
passive source localization problems. The main contributions of the proposed method are
summarized in the following three aspects:

• A feature preprocessing scheme is proposed. To improve the localization accuracy, the
feature processing step creates the multitime pressure and eigenvector feature (MT-
PEF). To enhance the localization robustness, the feature augmentation step expands
the training datasets in environment parameters and target motion parameters.

• An inception and residual in-series network (IRSNet) is designed. To further improve
the localization accuracy, the main module IRS concatenates inception modules and
residual modules in the series, and the number of network parameters has been
adjusted to account for the acoustic source localization problem.
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• A visualization method of the network is presented using hidden layer features. To
optimize the estimated localization results, the localization confidence interval (LCI)
is defined using the visualization method and can obtain the source position interval
of high confidence.

The simulation and experimental results have shown that the proposed method has
better localization accuracy compared to three other features and ten network structures,
and significantly improves the localization robustness compared to the improved MFP
methods when there is a mismatch in the environment. Additionally, the visualization
method further provides high confidence localization intervals. The capability of the
proposed method has been further verified by the SWellEx-96 experiment.

The rest of the paper is organized as follows. Section 2 describes the materials and
methods of the proposed method. Section 3 shows the simulation and experimental results.
Section 4 introduces the discussion of the method. Section 5 summarizes the paper.

2. Materials and Methods
2.1. Features Preprocessing Module Design

In this section, we design a feature preprocessing scheme that includes feature pro-
cessing and feature augmentation. Firstly, we design a composite input feature MTPEF in
the feature processing step. It is preprocessed from the raw time domain signals received
using VLAs, which can improve the localization accuracy. Secondly, we expand the training
datasets in the feature augmentation step. It can enhance the robustness of environment
parameters and target motion parameters.

2.1.1. Conventional Features

Consider a single acoustic source with several line spectrums; the signal is received by
the VLA. The complex pressure at frequency f obtained by array element l can be modeled
as a combination of the source term s and noise ε

pl( f ) = s( f , l, µ, η) + ε. (1)

In Equation (1), µ represents the set of target information (distance, depth, etc.). η
represents the set of environment parameters and target motion parameters. At every
sampling time, the signal with F frequency points received by L element VLAs can be
processed as F×L dimensional complex pressures:

P =


p1( f1) p2( f1) · · · pL( f1)
p1( f2) p2( f2) · · · pL( f2)

...
...

. . .
...

p1(F) p2(F) · · · pL(F)

 =


p( f1)
p( f2)

...
p(F)

. (2)

The input features for localization should reduce the effect of source amplitude, so the
complex pressures are always normalized, and the normalized sample covariance matrices
(SCMs) form the conjugate symmetric matrix [21]:

p̂( f ) =
p( f )

∥p( f )∥2
=

p( f )√
∑L

l=1 |pl( f )|2
. (3)

C( f ) = p̂( f )+ p̂( f ). (4)

In Equation (4), (·)+ stands for Hermitian transpose, and the matrix C( f ) reflects
the amplitude and phase difference of sound pressure between each element, but it also
contains noise and interference information. Eigenvalue decomposition can effectively
retain the critical information [28].
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C( f ) = Λ f
+Σ f Λ f

=


e f 1
e f 2

...
e f L


+

λ f 1 0 · · · 0
0 λ f 2 · · · 0
...

...
. . .

...
0 0 · · · λ f L




e f 1
e f 2

...
e f L

. (5)

In Equation (5), Σ f represents the eigenvalue diagonal matrix, and λ f 1 ≥ λ f 2 ≥ · · · ≥
λ f L. Σ f represents the eigenvector. For a single source, the eigenvector e f 1 corresponding
to the largest eigenvalue λ f 1 contains the most signal information.

2.1.2. Features Processing

Based on the above feature processing methods, we proposed the MTPEF as an input
feature. The design of the MTPEF includes the following two parts [31]:

• We used complex pressure and eigenvector features at each sampling time as single-
time input features. The complex pressure features are general features without
complex preprocessing and retain much of the original information. The eigenvector
features are specific features created by the SCMs using eigenvalue decomposition.
They consume some original information but can better represent the nonlinear map-
ping relationship. When using the deep learning model, combining general and
specific features often performs better than the features used alone.

• We extended the single-time features to multitime features. In general, as the source
moves for a period of time, the depth can be regarded as a constant, and the distance
between the VLA and the source will change. The CPA range is a constant in this
process, which can replace the distance. For the depth and the CPA range, the extension
of the time domain dimension is equivalent to increasing the original information, and
it will make the nonlinear relationship mentioned in Equation (1) more stable to learn.

The overall feature processing step is shown in Figure 1. Firstly, Fast Fourier Transform
(FFT) was used to obtain complex pressures from the raw time domain signals collected by
VLA. Secondly, the complex pressures were converted to the SCMs by Equations (3) and (4),
and then we reduced the dimension of the SCMs to obtain e f 1 by Equation (5). Finally, the
composite features of each sampling time were normalized, and the MTPEF was formed
by multiple normalization composite single-time features. In addition, the network model
cannot directly take complex numbers as input features, so the MTPEF was composed of
four parts at each frequency point: the complex pressures amplitude abs(p( f )), the complex
pressures phase(p( f )), the real part of eigenvector features real(e f 1), and the imaginary
part imag(e f 1). Assuming that the single acoustic source is in uniform linear motion; the
L-element VLA can obtain (F × L) × N × 4 dimension input features from F frequency points
at N sampling times. The estimators of the network are the depth and the CPA range,
which are normalized as labels.
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Figure 1. The overall feature processing step of the MTPEF.

2.1.3. Features Augmentation

From the probabilistic standpoint, the network model learns the nonlinear relationship
between µ and pl( f ), in other words, the distribution of P(µ|pl( f )) [32]. In Equation (1),
η can influence the distribution; therefore, training the network model in various η cases
of input features is an effective way to improve the robustness. The feature augmentation
only needs to select parameters with a more significant impact, because not all parameters
in η impact the localization results. A sensitivity analysis of environmental parameters
and location results has been studied. It has been verified in [27] that the water depth, the
substrate thickness, and the sound velocity at the top of the substrate greatly impact the
localization results.

On this basis, we analyzed the sensitivity of the target motion parameters. We assumed
that the target motion trajectory is approximated as a certain tangent line on the circle
centered at the location of the VLA and radiused at the CPA range. As shown in Figure 2,
while maintaining the same depth and the CPA range, the target motion has various
possibilities. Figure 3 gives the input features corresponding to various motion parameters
when the simulation source position is the same (depth = 100 m and CPA range = 1 km);
the simulation input features were built by using the parameters mentioned in Section
2.3.1. The following conclusions can be drawn about the sensitivity analysis of motion
parameters:

• The input features almost did not change with the source course β, as can be seen by
comparing Figure 3a and Figure 3b.

• The source velocity v changed; then, the visualized stripes of the input features
changed accordingly, as can be seen by comparing Figure 3a and Figure 3c.

• The shape of the visualized stripes was almost unchanged, but an overall translation
ensued with the change in the starting point of the target, as can be seen by comparing
Figure 3a and Figure 3d.

In summary, the change in the source velocity v and the starting point greatly impacted
the input features, which we need to further augment to enhance the robustness. Assuming
that the starting point is at CPA time, the change in the starting point can be represented by
the time difference ∆t between the starting point and the CPA time.
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Figure 2. The overall feature processing flow of the MTPEF.

(a) (b)

(c) (d)

Figure 3. The simulation input feature maps in different target motion parameters: (a) v = 2.5 m/s,
∆t = 0 s, β = 30◦. (b) v = 2.5 m/s, ∆t = 0 s, β = 120◦. (c) v = 5 m/s, ∆t = 0 s, β = 30◦.
(d) v = 2.5 m/s, ∆t = −30 s, β = 30◦.

2.2. Deep Learning Network Design

In this section, we design a deep network structure IRSNet for underwater acoustic
localization. The main module of the proposed network not only has the ability of the
inception module to learn multiple scale features simultaneously but also has the ability of
the residual module to inhibit overfitting. In addition, we propose a network visualization
method and define the LCI to optimize the estimated localization results.
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2.2.1. Residual Module and Inception Module

The convolutional structure is good at abstracting advanced features from simple edge
information, and the essence is to use convolutional kernels as filters to multiply the input
features to achieve edge detection, sharpening, and blurring. Therefore, convolutional
neural networks are suitable for processing image features, including pseudo image features
made by feature splicing [33]. Deep neural networks can capture richer semantic features
than shallow neural networks. However, the increase in the number of layers of the network
causes the critical information of the input features to be lost layer by layer, thus making the
network more difficult to converge [34]. The residual module and the inception module are
effective structures for solving the convergence problem of deep neural networks [35–38].

The residual module proposes a jump connection residual structure, which mitigates
the information loss by learning the residuals of x → F(x) + x instead of the mapping
relations of x → F(x). The residual structure can effectively suppress overfitting, and the
deepening of layers will not cause the vanishing gradient problem, which will affect the
performance of the network. The inception module proposes a multiscale convolutional
kernel structure, which uses multiple convolutional kernels of different sizes in parallel
at the same network level and utilizes convolutional kernels with varying fields of view
to filter the same input features so that the critical information can be retained as much as
possible.

However, the classical deep network structures based on these two modules are
relatively complex, which not only dramatically increases the training time and the difficulty
of training but also does not apply to such model complexity in some application scenarios.
So, it is necessary to adjust the deep network structure according to the characteristics of
the underwater acoustic localization problem.

2.2.2. Inception and Residual in Series Network

According to the characteristics of the underwater acoustic localization problem based
on VLA, we designed a deep network structure IRSNet. The key points for designing the
structure can be summarized as follows:

• The input features designed in Section 2.1 can be considered as image features that
contain localization information for a period of time. To improve the understanding
of features, the multiscale kernel was used to understand the information of different
time and characteristic scales in input features. To prevent the abnormal degradation
of network performance when deepening the layers, the structure of the residual
module is the most suitable structure for suppressing overfitting.

• The complexity of the deep network structure should be appropriate: being too simple
or too complex will affect network performance. To balance localization accuracy and
training time, we carried out a lightweight design of the deep network structure and
improved the training speed without losing the network localization accuracy.

• The IRS module was designed in series form rather than the nested form in [39]. This is
because nested modules are very complex: the amount of training data for underwater
acoustic localization problems makes it difficult to make the model converge.

Figure 4 presents the overall structure of the proposed IRSNet. The convolution mod-
ule consists of the convolution, batch normalization, and activation (CBA) combination
structure and max pooling structure. The main module IRS contains an improved inception
module and residual module, which has been designed to be lightweight. The inception
module consists of two V2 blocks with strides = 1 and one V2 block with strides = 2. The
residual module can be decomposed into convolutional blocks and identity blocks. The
global average pooling module replaces the average pooling module for rapid dimen-
sionality reduction. The underwater acoustic localization can be regarded as a regression
problem, and the output layer contains two neurons to estimate the depth and the CPA
range. The activation function does not exist in the output layer.
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Figure 4. The overall deep network structure of the IRSNet.

2.2.3. Localization Confidence Interval for Visualization

Unlike the MFP methods, the neural network method gives localization results directly.
But in a sense, the results are hard to trust because they do not show any calculation process.
Although the calculation process of the neural network is a black box, there are also methods
to prove that the network has learned the relationship between the input features and the
label. It has been demonstrated in the study of convolutional neural network visualization
that the features learned by the network close to the input layer are low-level features [40].
The features learned by the layers close to the output layer are discriminative vital features,
which can reflect the mapping relationship between the input features and the quantity to
be estimated.

In underwater acoustic localization, the crosscorrelation between the last hidden layer
features, can prove the ability of the network. The grid points with a higher correlation
value are more likely to correspond to the position of the measured source. The last
hidden layer features are used to visualize the localization results of the network, and the
visualization results can be regarded as a two-dimensional ambiguity plane similar to the
MFP methods. The LCI is defined by setting a threshold for the visualization results. It is
calculated by the formula

R(m) = 1
N ∑N−1

n=0 Hxsimulation(n)Hxreal (n − m)
R̂ = (R − min(R))/(max(R)− min(R))
LCI = R̂( f ind(R̂ ≥ ζ))

. (6)

In (6), Hxsimulation and Hxreal represent the last hidden layer features for all the grid points
and the measured source, respectively. R(m) represents the crosscorrelation between the
nth point of Hxsimulation and the (n − m)th point of Hxsimulation . R̂ represents the normalized
results of R̂ . ζ represents the threshold.

The overall processing flow is shown in Figure 5. First, the measured source and the
simulation source at grid points (dreal , rreal) and (d1, r1), (d2, r2) · · · (dn, rn) were prepro-
cessed into input features xreal and xsimulation. Second, the last hidden layer features were
obtained through the trained network. Then, the visual localization results were obtained
by the hidden features Hxreal and Hxsimulation via the crosscorrelation R̂. In addition, the
region with a correlation value above the threshold ζ is defined as the LCI. It can give
the localization interval with high confidence. If there is more than one region above the
threshold, the envelope that has the largest correlation value will be taken as the LCI.
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Figure 5. The overall calculation processing flow of the LCI.

2.3. Experimental Settings
2.3.1. Simulation Datasets

In our experiments, we trained the neural network model on simulation datasets,
which were built with reference to the SWellEx-96 experiment environment. The shallow
waveguide environment was simulated with a seafloor substrate consisting of a sediment
layer, a mudstone layer, and a fluid half space, as shown in Figure 6. The 21-element VLA
covers the depth range of 94–216 m, and the spacing of the array elements is about 5.6 m.
The frequency of the simulation source consists of several single frequency points, with the
following nine specific values: 112 Hz, 130 Hz, 148 Hz, 166 Hz, 201 Hz, 235 Hz, 283 Hz,
338 Hz, and 388 Hz. The source motion duration was chosen to be N = 200 s, so the input
features have a dimension of 189 × 200 × 4 in each case.

Figure 6. The simulation shallow waveguide environment.

We created two training datasets named Train-A and Train-B. Both training datasets
take into account the influence of the environment parameter changes on localization perfor-
mance, but the target motion parameters were regarded as fixed constants (set v = 2.5 m/s
and ∆t = 0 s) in Train-A, while the influence of the target motion parameter changes was
considered in Train–B. Both the environment parameters and motion parameters were
randomly perturbed within the given range.

In the training datasets, 50 points were evenly selected in the depth range of 1–200
m, and 100 points were evenly selected in the distance range of 0.1–10 km. The validation
datasets and test datasets both include two types of targets: fixed depth and variable CPA
range targets, as well as fixed CPA range and variable depth targets. The depth covers the
range of 1–200 m in steps of 1 m, and the CPA range covers the range of 0.1–10 km in steps
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of 0.05 km. The specific parameter settings of those simulation datasets are shown in Table
1.

Table 1. The parameters for simulation datasets.

Environment and Target Motion Parameters Train-A Train-B Validation Dataset

Water layer depth (m) 220 220–240 220

Sediment layer depth (m) 19 10–30 19

Sound velocity at the top of sediment layer (m/s) 1550 1530–1570 1550

Mudstone layer depth (m) 800 780–820 800

Sound velocity at the top of mudstone layer (m/s) 1881 1860–1900 1881

Source velocity (m/s) 2.5 1–10 2.5

Time difference (s) 0 (−200)–200 0

2.3.2. Network Training

The neural network model was built in the Keras 2.6.0 and Python 3.7.0 environments.
The GPU is NVIDIA (NVIDIA Corporation, Santa Clara, CA, USA) GeForce RTX 2060. The
initial values of the neural network model parameters were set as random numbers with
zero mean and a variance of 1. The training epochs were set to 200, and the early-stopping
module was used, which orders the training stops when the validation loss function does
not decrease in more than 10 epochs. For every 5 epochs, the validation loss function did
not decrease, so the learning rate decreased to 0.1 of the original one. The batch size was
set to 8, and Adam was chosen as the optimizer.

The training datasets had almost the same influence trends on different network
models. In order to save training time, a baseline network OriginNet was constructed
to analyze the influence of the training datasets. The structure of the baseline network
OriginNet differs only in the main module shown in Figure 4, which consists of five CBA
blocks rather than the IRS module.

2.3.3. Evaluation Metrics

An evaluation metric was defined to measure the localization performance of the
proposed method. The root mean square error (RMSE) is the metric that can intuitively
reflect the strengths and weaknesses of the localization performance. The RMSE for the
depth and the CPA range can be expressed as

RMSEdepth =

√
1
M ∑M

m=1 (A1 f (xm)1 − A1(ym)1)
2, (7)

RMSECPA =

√
1
M ∑M

m=1 (A2 f (xm)2 − A2(ym)2)
2, (8)

where M is the number of samples in the test dataset, and A1 and A2 are the constants that
restore the estimation values to the true scale. f (xm)1 and f (xm)2 represent the mth estima-
tion result for the depth and the CPA range.(ym)1 and (ym)2 are the corresponding labels.

3. Results
3.1. Different Input Features

In this section, we conduct two comparative experiments: the first comparing the
localization performance of the proposed MTPEF features with other features and the
second comparing the MTPEF features before and after augmentation. The localization
performance is evaluated by RMSE.

In the first experiment, we contrasted the proposed MTPEF features with the following
three features: the pressure and eigenvector feature (PEF), the multitime pressure feature
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(MTPF), and the multitime eigenvector feature (MTEF); the RMSE values trained on Orig-
inNet are shown in Table 2. The RMSE values of the four input features reached 15.65 m,
9.39 m, 8.73 m, and 7.72 m for the depth and reached 1.17 km, 1 km, 1.09 km, and 0.92 km
for the CPA range. This indicates that the MTPEF obtained better localization performance
than the case where a certain feature (MTPF or MTEF) was used alone and the case where
only one sampling time (PEF) was used.

Table 2. The comparison of different input features.

Features Element (at Each Frequency Point) RMSEdepth (m) RMSECPA (km)

PEF
[
abs(p( f )) angle(p( f )) real

(
e f 1

)
imag

(
e f 1

)]
t=1

15.646 1.165

MTPF [abs(p( f )) angle(p( f )) ]t=N 9.385 1.001
MTEF

[
real

(
e f 1

)
imag

(
e f 1

)]
t=N

8.733 1.094

MTPEF (ours)
[
abs(p( f )) angle(p( f )) real

(
e f 1

)
imag

(
e f 1

)]
t=N

7.722 0.921

In the second experiment, we compared the localization results before and after feature
augmentation. The test datasets were constructed such that the source velocity v ranges
from 1 m/s to 10 m/s in steps of 1 m/s, and the time difference ∆t ranges from −200 s to
200 s in steps of 40 s. As shown in Figure 7, if the network model was trained by Train-A,
only when the test datasets basically matched Train-A (v = 2.5 m/s and ∆t = 0 s), the RMSE
values did not rise rapidly. Meanwhile, the network model trained by Train-B was not
seriously affected when the target motion parameters changed. It can be concluded that
the feature augmentation significantly improves the robustness of the network model.

(a) (b)

Figure 7. The RMSE values of the network trained by Train-A and Train-B: (a) The source velocity v
varied from 1 m/s to 10 m/s. (b) The time difference ∆t varied from −200 s to 200 s.

3.2. Different Network Structures

In this section, we compare different network structures on the localization results.
The MTPEF has been proven to achieve high accuracy on the baseline network structure
OriginNet in Section 3.1, so it can be assumed that the localization accuracy of different
networks is only affected by the structures rather than the input features. We contrast
the proposed IRSNet with other neural network structures. Some are the structures that
have been used in other fields, and others are the structures that replace the main module
in Figure 4 with classical modules (such as ResNet18, ResNet34, and so on). The RMSE,
the number of network parameters, and the training time of different network structures
are shown in Table 3. The influence of various network structures can be summarized
as follows:
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• Compared the proposed IRSNet to the network structures that differ only in the
main module, the localization accuracy of the IRSNet reached 3.657 m for the depth
and 0.523 km for the CPA range. The network with only residual blocks and only
inception modules was inferior to that of the IRSNet. The IRS module made the
network localization accuracy further improved.

• The localization accuracies of the networks with residual modules and inception
modules were generally better than that of the baseline network OriginNet. Deepening
the network layers properly can not only improve the localization accuracy but also
increase the training time. However, too many parameters can cause an increase in the
RMSE, such as the results of the OriginNet with ResNet50 and the OriginNet with a
15 × V2 block. IRSNet has a reasonable number of parameters so that the network will
not fall into overfitting. In addition, the lightweight transformation of the network
reduces the training time without losing the localization accuracy.

• Compared the OriginNet with Inception-ResNet to the proposed IRSNet, although
both structures use residual modules and inception modules together, the localization
accuracy difference is huge. It shows that nesting inception modules and residual
modules are too complicated and are not suitable structures for underwater acoustic
localization. IRSNet connected the two kinds of modules in series and obtained a
lower RMSE. In addition, the CNN-MTL [23] and CNN-Selkie3 [41] achieved good
results in seabed parameter estimation, but the network structures could not directly
transfer to the shallow water source localization because of the changes in input
feature dimension and type. Improper network structures have a great influence on
localization accuracy.

Table 3. Comparison of different network structures.

Network Structure Parameter Number Training Time (min) RMSEdepth (m) RMSECPA (km)

OriginNet (baseline) 8.15 × 105 40 7.720 0.920
OriginNet with ResNet18 1.11 × 107 73 4.647 0.755
OriginNet with ResNet34 2.13 × 107 120 3.993 0.660
OriginNet with ResNet50 2.35 × 107 177 12.930 1.758
OriginNet with 3 × V2 block 4.51 × 106 77 4.074 0.634
OriginNet with 10 × V2 block 1.02 × 107 153 3.721 0.668
OriginNet with 15 × V2 block 2.17 × 107 187 5.178 0.972
OriginNet with Inception-ResNet 2.10 × 107 227 21.097 2.433
CNN-Selkie3 2.62 × 107 83 17.357 2.016
CNN-MTL 3.21 × 106 23 14.335 1.287
IRSNet (ours) 1.87 × 107 106 3.657 0.523

In conclusion, the IRSNet obtains high localization accuracy and short training time in
all comparison networks, which has a suitable network structure and number of network
parameters. The proposed IRSNet has been proven to be appropriate for acoustic source
localization problems based on VLA.

3.3. Comparison with Improved MFP Methods

In this section, we compare the proposed method with two improved MFP methods,
named magnitude crossfrequency component MFP (MFP-M) in [9] and phase descent
search method MFP (MFP-PDS) in [10]. We compare the methods under the environment
mismatch conditions and give the visual localization results.

In order to compare the environment robustness of the methods, we created three types
of environment mismatches. The first experiment changes the environment parameters
perturbation size. The environment parameters of the test datasets vary from 0% to 300%
of the Train-B environment parameters extent shown in Table 1. The second experiment
changes the angle of the VLA, which varies from 0◦ to 60◦ . The third experiment changes
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the SNR of the environment, which varies from −10 dB to 10 dB. The latter two experiments
were conducted in 50% of the Train-B environment parameters extent.

As shown in Figure 8a, the proposed method had significantly stronger environment
robustness than the MFP methods, and the RMSE remained low even for environment
parameters that never appeared on the Train-B. When the angle of VLA and the SNR
changed, the proposed method was less affected than the MFP methods. Assuming that
RMSEdepth ≤ 20 m and RMSECPA ≤ 2 km are tolerable localization accuracies, according
to Figure 8b and Figure 8c, the proposed method failed at 60◦ VLA tilting and −4 dB SNR,
while the MFP-PDS method failed at 330◦ VLA tilting and 2 dB SNR.

(a) (b) (c)

Figure 8. The RMSE of MFP-M, MFP-PDS, and proposed method in different environment mismatch
cases: (a) The different environment mismatch extent according to Train-B. (b) The different angle of
VLA tilting. (c) The different SNR condition.

We visualized a target with depth = 100 m and CPA range = 1 km using the MFP
methods and the proposed method in Section 2.2.3, as shown in Figure 9. The MFP-PDS
obviously suppressed the pseudopeak interference compared with the MFP-M, but it was
still inevitably affected by the environment mismatch. The pseudopeak interference of the
proposed method basically disappeared, and the closer the area was to the actual source
location, the higher the correlation degree. This can prove that the network has learned the
probability distribution. In addition, when we set the threshold at ζ = 0.95, the LCI gave a
high-confidence depth range and a CPA range of 87–116 m and 0.7–1.4 km.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. The visualization results of the simulation target: (a) MFP-M. (b) MFP-PDS. (c) Proposed
method. (d) The LCI. The true value of the simulation target is depth = 100 m and CPA range = 1 km.

In conclusion, the proposed method has higher environment robustness than the MFP
methods, and the visualization results back this conclusion up.

3.4. Evaluation on SWellEx-96 Experiment

SWellEx-96 is an experiment conducted by the University of California San Diego
Marine Physical Lab in the waters off Point Loma between 10–18 May 1996. During the
partial motion in the S5 event, the source ship traveled north from the south side of the
emplaced VLA at about 2.5 m/s from 00:05 on May 11, and a GPS recorded the track of 1200
s. A deep source of about 54 m and a shallow source of about 9 m are towed simultaneously,
and both sources emitted varied single-frequency signals with frequencies between 49 and
400 Hz. As shown in Figure 10a, the GPS was read to obtain the distance variation between
the source ship and the VLA, and the source ship reached the CPA point at 565 s, when the
CPA range = 0.902 km. As shown in Figure 10b, the doppler shift phenomenon of a specific
frequency on the acoustic source also proves the credibility of the CPA moment, which is
estimated at about 570 s on the LOFAR.

(a) (b)

Figure 10. The GPS and LOFAR results of SWellEx-96: (a) GPS between 00:05 and 0:25 on May 11.
(b) LOFAR between 00:05 and 0:25 on May 11.

The localization results obtained by MFP-M, MFP-PDS, and the proposed method are
shown in Table 4. The proposed method was less affected by environmental mismatches;
in particular, the localization result of the deep source was closer to the actual situation
than the MFP methods. The trained network only needed to make parameter calls, and the
computation speed was about four times faster than the MFP methods. The visualization
results are shown in Figure 11. The proposed method had less sidelobe interference



Remote Sens. 2024, 16, 1391 15 of 18

compared to the MFP methods. The LCI gave a high confidence depth range, and the CPA
range was 5–26 m and 0.4–1.3 km for the shallow source, while it was 30–65 m and 0.4–1.6
km for the deep source.

Table 4. Comparison of different network structures.

Method Shallow Source Deep Source Running Time
Depth (Error) CPA Range (Error) Depth (Error) CPA Range (Error)

MFP-M 9 m (0 m) 1 km (+0.1 km) 47 m (−7 m) 1.54 km (+0.64 km) 7.2 s
MFP-PDS 13 m (+4 m) 1.24 km (+0.34 km) 34 m (−20 m) 1.14 km (+0.24 km) 8.9 s

Proposed method 9 m (0 m) 1 km (0.1 km) 53 m (−1 m) 0.90 km (0 km) 2 s

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. The visualization results of the shallow source and the deep source: (a) MFP-M on shallow
source. (b) MFP-PDS on shallow source. (c) Proposed method on shallow source. (d) The LCI on
shallow source. (e) MFP-M on deep source. (f) MFP-PDS on deep source. (g) Proposed method on
deep source. (h) The LCI on deep source.

4. Discussion

Due to the mismatch in complex ocean environments, the past MFP methods are
difficult to apply. Many neural network methods directly transfer the classical features
and network structures to underwater acoustic localization problems and still have room
for improvement in accuracy. Aiming at solving the shortcomings of those methods, the
proposed method mainly involves the following three parts. Firstly, we put forward a
feature preprocessing scheme. The MTPEF features in the feature processing step are
proposed to improve the localization accuracy. Meanwhile, feature augmentation is used to
improve the localization robustness. Secondly, we design a deep network structure IRSNet.
The IRSNet takes into account the advantages of the multiscale convolution kernel and
the residual structure, which can enhance the localization accuracy. Finally, we propose a
network visualization method to prove the ability of the proposed method, and the LCI is
defined to optimize the estimated localization results.

Subsequent research will be categorized into three main directions. Firstly, our research
focuses on the shallow water passive source localization problem. It should be noted that
the environment can be divided into shallow water and deep water based on varying
water depths, and the modeling methods are different. Whether the proposed method
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is applicable to deep water localization problem is a future research direction. Secondly,
the design of network parameter quantity is based on the empirical value obtained from
simulation results. If the type and dimension of input features are changed, the impact on
the network parameter quantity needs to be further studied. Finally, our research can be
extended from single target localization to multitarget localization.

5. Conclusions

In this article, a deep learning localization method via improved input features and
network structure has been proposed to estimate the depth and the CPA range for shallow
water passive source. The simulation results have proven that the improved input feature
MTPEF has the best localization accuracy compared to the other three features, and it
is robust to both environment parameters and target motion parameters. Taking into
account training time and localization accuracy, the proposed IRSNet structure is superior
compared to the other ten network structures. Additionally, the proposed method has
higher environment robustness than the improved MFP methods in three types of mismatch,
which is further supported by the visualization method. The SWellEX-96 experimental
results validate the localization efficiency and accuracy of the proposed method.
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