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Abstract: In the domains of geographic information systems and remote sensing image analysis,
change detection is vital for examining surface variations in high-resolution remote sensing pictures.
However, the intricate texture characteristics and rich details found in high-resolution remote sensing
photos are difficult for conventional change detection systems to deal with. Target misdetection,
missed detections, and edge blurring are further problems with current deep learning-based methods.
This research proposes a high-resolution city change detection network based on difference and
attention mechanisms under multi-scale feature fusion (MDANet) to address these issues and improve
the accuracy of change detection. First, to extract features from dual-temporal remote sensing pictures,
we use the Siamese architecture as the encoder network. The Difference Feature Module (DFM) is
employed to learn the difference information between the dual-temporal remote sensing images.
Second, the extracted difference features are optimized with the Attention Refinement Module (ARM).
The Cross-Scale Fusion Module (CSFM) combines and enhances the optimized attention features,
effectively capturing subtle differences in remote sensing images and learning the finer details of
change targets. Finally, thorough tests on the BTCDD dataset, LEVIR-CD dataset, and CDD dataset
show that the MDANet algorithm performs at a cutting-edge level.

Keywords: change detection; attention mechanism; remote sensing images; Siamese structure; MDANet

1. Introduction

With the continuous development of society and the advancement of science and
technology, human activities have had an increasingly significant impact on the natural
environment. Activities such as deforestation, land reclamation, and the excessive exploita-
tion and irrational utilization of resources have brought a series of potential hazards to the
natural environment [1–3]. At the same time, the natural environment itself undergoes
constant changes, with natural disasters like earthquakes, floods, tsunamis, and landslides
posing threats to human life and well-being. Therefore, different Earth-observing satel-
lites are used to provide in-the-moment observations and detailed analyses of surface
conditions through remote sensing imaging technology in order to better monitor and
analyze changes on the Earth’s surface and achieve a harmonious coexistence between
humanity and nature. With its intuitive representation of the distribution of characteristics
and information, remote sensing pictures have emerged as an essential tool for examining
Earth’s resources and environmental changes. Change detection in remote sensing pictures
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is a crucial application are; it evaluates dual-temporal or multi-temporal photos of the same
geographic area to spot changes on the Earth’s surface [4,5]. Its primary objective is to
detect areas of interest that have undergone changes while excluding unrelated changes
caused by factors such as lighting and shadows [6]. With the rapid advancement of remote
sensing technology, change detection plays a significant role in various fields, including
economic development [7,8], environmental monitoring [9,10], and national defense [11].
The research in change detection aims to effectively capture the evolution of the Earth’s
surface, helping us better understand and respond to the ever-evolving environmental and
societal needs.

Scholars from both home and abroad have undertaken in-depth study in the area
of change detection and proposed a range of change detection techniques over the years.
These methods can be summarized and categorized from different dimensions. First, they
may be separated into supervised change detection and unsupervised change detection
depending on whether they require human intervention [12]. Traditional unsupervised
change detection methods include multivariate alteration detection (MAD) [13] and itera-
tively reweighted multivariate alteration detection (IR-MAD) [14]. The essence of MAD is
a typical correlation analysis in multivariate statistical analysis, but this algorithm cannot
handle multi-element remote sensing images better. Therefore, the IR-MAD algorithm is
proposed based on MAD. The core idea of the IR-MAD algorithm is to assign new weights
to the pixels in the two images in an iterative manner. Unchanged pixels have larger
weights, and the weight value of a pixel is the main basis for determining whether the
pixel has changed. The iteration stops when the weight of each pixel gradually stabilizes
until it becomes unchanged. The final weight of each pixel is compared to a threshold to
determine whether it belongs to a changed or unchanged pixel. Finally, the unchanged
pixels are extracted as feature pixels. Different from unsupervised learning, supervised
learning learns which areas have changed through labeled training sets. Commonly used
methods include random forest [15], support vector machine [16], etc. Volpi et al. [17]
extracted texture features through a gray-level co-occurrence matrix, and used support
vector machine as a classification algorithm to obtain the change area and change type.
Wang et al. [18] used K nearest neighbor, random forest and support vector machine for
model integration, and achieved better detection results than the change detection method
that only uses a single machine learning model. Secondly, they can be categorized based
on the fundamental processing unit into pixel-level, object-level, and scene-level methods.
The pixel-based change detection method uses pixels as the basic research unit and ob-
tains change maps by comparing pixels in multi-temporal remote sensing images one by
one. Gong et al. [19] proposed a neighborhood-based ratio method to generate difference
maps. Although this method is superior to traditional difference map generation methods,
the change detection results are seriously affected by noise. Object-based change detection
methods first segment images into small homogeneous objects, which then serve as subse-
quent classification and building blocks of larger entities for the study of spatial, textural,
contextual, geometric, and spectral features. Liu et al. [20] fused spectral features and shape
features to improve the discriminability between different ground objects in ultra-high-
resolution images to achieve the change detection of buildings. Desclée et al. [21] adopted
an object-based and statistical approach to depict multi-date objects through regional merg-
ing technology, and successfully identified forest cover changes. Based on scene change
detection methods, the image is processed as a whole, rather than at the pixel or object
level. It usually utilizes the global features or contextual information of the image to detect
changes, such as image histogram, global statistical features, spatial structure, etc. Liu et al.
[22] proposed a symmetric convolutional coupling network to convert the local features of
heterogeneous images into the same feature space for comparison, and used the probability
map matrix to optimize and train the neural network. However, the network has fewer
convolutional layers and has poor ability to learn the global features of the image. Finally,
depending on whether they make use of neural network models, change detection tech-
niques may be divided into classical techniques and deep learning techniques. The direct
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comparison method, which uses methods like differencing [23], ratioing [24], and change
vector analysis (CVA) [25], is one of the most used methodologies in conventional remote
sensing image change detection methods. Change vector analysis combines image pixel
values at two points in time into vector form and detects changes by calculating the dif-
ference between these vectors. Chen and Chen [26] calculated the change intensities of
texture features and spectral features through CVA, and then used adaptive weighting to
fuse the change intensities; Luppino et al. [27] proposed using a cycle-consistent generative
adversarial network to transcode images from different sensors into the same domain in
an unsupervised manner, and further implemented change detection through CVA. These
methods are characterized by their simplicity, typically involving pixel-wise algebraic
computations performed after the image preprocessing steps, followed by the use of ap-
propriate thresholds to distinguish between changed and unchanged regions. This may
result in insensitivity to changes in different scenarios (such as natural environments, urban
environments, and industrial environments), making it difficult to adapt to the change
detection requirements of various environments.

With the swift advancement of satellite remote sensing technology, remote sensing
images’ quality and scope continue to advance, encompassing more extensive data and
potential applications [28]. Modern remote sensing applications place a high demand on
change detection techniques, making it difficult for existing approaches to keep up, creating
new problems for change detection researchers. In order to meet the changing demands
in the field of remote sensing, new techniques and technologies must not only increase
detection accuracy but also eliminate interference from outside sources. Change detection
in remote sensing photos has benefited from deep learning’s substantial technological assis-
tance [29]. Automatic image segmentation is made possible by deep learning-based change
detection approaches that automatically extract deep features from dual-temporal and
multi-temporal remote sensing pictures. This greatly reduces the requirement for human
feature engineering. These methods also exhibit greater robustness in handling large-scale
change detection tasks [30]. Ding et al. [31] proposed a landslide detection method that
combines convolutional neural networks (CNNs) with texture change detection. The pos-
sible landslide locations are identified using CNN, and the features are then subjected to
texture analysis to identify changes related to landslides. However, the adaptability of this
method to different types of terrain and texture changes needs further study. Hou et al. [32]
proposed a method that integrates low-rank changes and deep feature changes detection,
using fine-tuned VGGNet [33] to extract object-level features. This approach enhances change
detection performance by fusing multi-level features. However, low-rank decomposition
may not effectively capture complex changes in images, particularly leading to missed
detections in scenarios with numerous subtle changes. Wang et al. [34] proposed an end-to-
end dual-channel CNN framework suitable for change detection in hyperspectral images.
They introduced a hybrid affinity matrix to exploit multi-channel gradient features and
aggregated multisource information to enhance detection accuracy. However, there may
be a risk of information loss during the extraction of the hybrid affinity matrix and fusion
of multisource information. Zhang and Lu [35] proposed a spectral–spatial joint learning
network, initially using a Siamese CNN to extract joint representations of spectral and
spatial information, followed by feature fusion to enhance the discriminative ability of
change detection. Chen and Shi [36] proposed a spatiotemporal attention neural network
based on Siamese architecture, which utilizes spatiotemporal attention modules to compute
pixel attention weights for different times and locations, generating more discriminative
features. The model emphasizes spatial feature extraction, showing significant effectiveness
in scenes sensitive to surface changes, particularly performing well in datasets with rela-
tively singular change targets, such as the LEVIR-CD dataset. However, it exhibits slight
limitations when handling datasets containing various land covers and seasonal vegetation
changes. Chen et al. [37] proposed a dual-attention fully convolutional Siamese network to
address the issue of insufficient resistance to pseudo-changes in existing methods. Through
a dual-attention mechanism, this approach can capture long-range dependencies, obtain-
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ing more discriminative feature representations and thus improving model recognition
performance. The method excels in handling pseudo-changes, such as in the CDD dataset,
but exhibits slight limitations in handling small targets and edge details. Chen et al. [38]
proposed a novel change detection model called BIT based on Transformer. This innovative
approach utilizes Transformer modules to enhance the model’s capability in extracting
spatiotemporal contextual information, thus aiding the model in more effectively identify-
ing regions of interest for change. Chen et al. [39] proposed a feature-constrained change
detection network that achieves feature extraction and fusion through dual-temporal fea-
tures. Additionally, a non-local feature pyramid module is designed at the core of the
backbone network, along with a feature fusion module based on dense connections, en-
abling the extraction and fusion of multi-scale features. Shen et al. [40] proposed a semantic
feature-constrained change detection network, which achieves simultaneous operations of
feature extraction, semantic segmentation, and change detection. Liao et al. [41] proposed a
contrastive learning approach, which enhances the discriminative features of buildings and
non-buildings and injects building semantics into the change detection channel. Moreover,
to address the issue of inconsistency between historical building polygons and the latest
images, deformable convolutional neural networks are employed to learn offsets. The de-
tection of changes in high-resolution remote sensing images is crucial for exploring surface
changes and holds significant importance in the fields of geographic information systems
and remote sensing image analysis. However, traditional change detection methods often
struggle to handle the rich details and complex texture features present in high-resolution
remote sensing images. Additionally, deep learning-based algorithms also encounter chal-
lenges such as false detections, missed detections, and blurred edges when faced with these
complexities. Therefore, there is a need to propose a new change detection method that can
effectively address the complexity of high-resolution remote sensing images and improve
the accuracy of change detection.

2. Related Work

The fully convolutional neural network (FCN) was initially introduced by Long et al. [42]
for image segmentation tasks [43]. By replacing fully connected layers with upsampling
layers, it can restore downsampled features to the original size of the input image, achieving
end-to-end classification. Based on the manner of processing dual-temporal images, it is
divided into single-input networks and Siamese networks. The semantic segmentation
networks used for tasks like target extraction and picture classification are analogous
to the single-input network structure. It only accepts input from multi-channel photos
of a single scenario. In order to satisfy the network’s input criteria, the dual-temporal
pictures must be combined into a multi-channel image before being fed into the network.
Alcantarilla et al. [44] concatenated two dual-temporal images with three channels each
into a single image with six channels. Subsequently, this six-channel image is fed into
the FCN to perform change detection tasks. Peng et al. [45] combined dual-temporal
remote sensing images into one input and then fed them into the UNet++ network for
change detection. The dual-temporal picture channels are immediately combined into
the network using these models. Although they function with the majority of semantic
segmentation networks, they are unable to give deep features for reconstructing specific
pictures, which results in channel clutter and poor compactness in the images during the
feature extraction step. Siamese networks are now widely used for change detection jobs
as a result. The properties of change detection in dual-temporal remote sensing pictures
are taken into consideration by Siamese networks. They use an architecture in which a
connected structure is formed by two identical neural subnetworks. Siamese networks send
the dual-temporal pictures individually into two identical and weight-sharing independent
neural networks rather than channel merging them before feeding them into the network.
These subnetworks extract the same characteristics via weight sharing [46]. Daudt et al. [46]
proposed the use of Siamese networks for change detection and compared it with the single-
input network method, demonstrating the effectiveness of Siamese networks. Building
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upon this, Guo et al. [47] utilized threshold contrastive loss to modify the fully convolutional
Siamese network, reducing the distance between unchanged feature pairs and expanding
the distance between changed feature pairs, thereby enhancing performance.

Thanks to developments in Earth observation technology, we can now easily gather
a sizable number of high-resolution remote sensing photos, which sets new demands on
change detection in remote sensing images. Despite the emergence of numerous change
detection algorithms over the past few decades, and the surge in big data and artificial
intelligence after 2010 which propelled a new wave of interest in change detection [48,49],
driving rapid advancements in the field, existing methods still face challenges given the
complexity of change detection tasks in remote sensing imagery. Firstly, in the imaging
methods of multi-temporal remote sensing images, factors such as sensor resolution, optical
system performance, and image acquisition parameters may have an impact, while imaging
limitations may involve environmental conditions, shooting angles, and characteristics of
the target surface. These factors can affect the clarity of the final predicted image and the
accuracy of its edges. With the continuous improvement of remote sensing image resolution,
these issues become more severe, posing challenges to previous change detection methods.
Second, deep neural networks are frequently used to implicitly extract picture difference
maps in change detection approaches based on semantic segmentation that generally
overlay two temporal remote sensing images in the channel dimension. The distinguishing
traits might not be adequately captured by this method. Finally, existing methods often
focus on integrating multi-scale information or semantic features at the end of the network,
while the utilization of rich feature information in the intermediate layers is less emphasized.
However, the intermediate layer features may play an important role in supervising model
training. Fully exploiting the intermediate layer features may help reduce issues such as
false detections, missed detections, and blurred edges during the prediction process. In
response to these challenges, we propose a high-resolution remote sensing image change
detection network based on multi-scale feature fusion based on difference and attention
mechanisms (MDANet). Our approach consists of the following key components: In
order to extract distinct land characteristics from two temporal photos, we first employ the
Siamese network as the backbone network. Unlike the brute-force fusion of multi-temporal
images using semantic segmentation-based methods, this approach selectively extracts
remote sensing features from different time phases. Secondly, we introduce a Difference
Feature Module (DFM) between the Siamese networks to extract the difference information
between dual-temporal remote sensing features. We propose a novel Attention Refinement
Module (ARM) between the Siamese networks. The module possesses the capability to
adaptively focus on changing regions, thereby mitigating the influence of factors such as
lighting variations, seasonal changes, and misregistration errors. Additionally, a Cross-
Scale Fusion Module (CSFM) is introduced to maximize the use of differences refined
through attention at various hierarchical levels. In order to recover as much of the edge
information of change areas as possible, it also takes into account the category of the pixel
and concentrates on the semantic integrity of the picture. To sum up, the main contributions
we made are as follows:

1. We suggest a brand-new change detection network, named the multi-scale fea-
ture fusion-based high-resolution remote sensing image change detection network
(MDANet) based on difference and attention mechanisms. The Siamese network
is used to extract features from dual-temporal remote sensing pictures individually
during the feature decoding phase. Our suggested auxiliary modules are then used
to extract change information from these images. In the feature encoding phase, we
utilize a residual structure augmented with stripe convolution to restore the change
regions of the original image. Stripe convolution emphasizes edge detail features
during the restoration process, significantly enhancing the detection performance.

2. Additionally, we have innovatively designed three auxiliary modules, namely the Dif-
ference Feature Module (DFM), Attention Refinement Module (ARM), and Cross-Scale
Fusion Module (CSFM). DFM conducts difference operations on features extracted
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by the Siamese network to highlight change characteristics. Along with eliminating
non-change features and adaptively collecting change information, ARM further
refines the extracted difference features in both the spatial and the channel dimen-
sions. CSFM effectively integrates change features from different scales, enhancing
the model’s perception and utilization of features from various scales, reducing the
model’s dependency on specific information, and improving its generalization ability.

The rest of the paper is as follows: Firstly, a comprehensive exposition of the method-
ology is provided, detailing the approach we proposed. Subsequently, the datasets used
are introduced, offering readers information on their sources and backgrounds. Then,
specific details of the experiments are presented, including experimental setups, parameter
selections, and methods of performance evaluation. Finally, the work presented in this
paper is discussed and summarized.

3. Materials and Methods
3.1. Proposed Approach

This paper introduces a high-resolution city change detection network based on
difference and attention mechanisms under multi-scale feature fusion (MDANet). Its aim
is to achieve the prediction of change maps with structural integrity and fine boundaries.
We will begin by outlining the main network architecture and then provide a detailed
explanation of the specific implementation of each module.

3.1.1. Network Architecture

The MDANet encoder–decoder structure is built in this article. The backbone network
and three auxiliary modules make up the decoder. Similar to other remote sensing im-
age change detection networks, we have chosen ResNet34 [50] as our encoding network.
To extract spatial and texture information from dual-temporal remote sensing pictures, we
employ Siamese structures with weight sharing. The auxiliary modules include the Differ-
ence Feature Module (DFM), Attention Refinement Module (ARM), and Cross-Scale Fusion
Module (CSFM). The decoder network is comprised of two parallel semantic branches.
At each layer, the feature maps are processed in parallel by two consecutive convolution
modules and two stripe convolution modules. The multi-dimensional semantic features
and edge detail characteristics of the dual-temporal remote sensing pictures are then re-
covered by adding fusing to these processed feature maps. MDANet takes dual-temporal
remote sensing images as input. These images are initially fed into the encoder network,
where the backbone network extracts the basic features of the images. Subsequently, these
features undergo further processing through DFM, ARM, and CSFM to enhance their
representational capability. After processing by the encoder network, the feature maps
are transmitted to the decoder network. In the decoder network, the feature maps pass
through parallel semantic branches, undergo a series of convolutional operations, and are
fused to produce the change detection results. During training, we employ supervised
learning, updating the model parameters by comparing the differences between the model
output and the ground truth labels to gradually optimize the model. Figure 1 illustrates
the model’s framework, where E(i,j) represents the encoder network, i ∈ (1, 2) denotes the
two branches of the decoder, j ∈ (1, 2, 3, 4, 5) represents each encoder, and Dj represents
the decoder network.

Encoder network: We alter the ResNet34 network during the feature encoding phase
to make it more suited for our change detection objective. We use a dual-path approach for
change feature extraction, with weight sharing between the two paths. Additionally, we
eliminate the last two completely linked layers of ResNet34 as well as the average pooling
layer. We utilize DFM to extract difference features at different levels between each encoder
of ResNet34. In order to improve feature granularity and enhance the change features of
dual-temporal remote sensing pictures, we utilize ARM to optimize the output features of
each DFM. Because of this, the network is able to shift its channel and spatial emphasis.
Considering that a simple and coarse fusion of features from different scales can impact
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detection accuracy, following ARM, we use CFSM to capture context dependencies and
integrate richer information. This makes it possible to concurrently encode high-level
semantic information and low-level features, creating a more potent representation.
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Figure 1. The overall framework of MDANet. Incorporating ResNet34 as the primary backbone
network for decoding, the network has an encoder–decoder architecture.

Decoder network: The decoder network has five levels, much like the encoder network
does. To guarantee that the output size of encoding blocks and the input size of decoding
blocks at the same layer are the same, a two-fold downsampling frequency is used between
encoder blocks, and a two-fold upsampling frequency is used between decoder blocks.
Each decoder block has two parallel branches. One branch employs two 3 × 3 convolution
layers to restore the image, while the other branch uses 3 × 1 and 1 × 3 stripe convolutions
to extract edge detail information of the change regions. Square convolution windows
extract too much irrelevant information, which can interfere with the model’s predictive
performance. Stripe convolution, as proposed by Hou [51], can reduce this interference
from irrelevant factors. Stripe convolution is used to restore multi-scale spatial information
in change areas, which enhances the detection of small change targets and the recovery of
change boundaries.

3.1.2. Difference Feature Module (DFM)

The Difference Feature Module (DFM) is a new module that we have proposed in
our research in the field of change detection. Its structural diagram is shown in Figure 2.
In traditional change detection methods, subtle differences in images are often overlooked,
leading to issues like missed detections and false alarms. Convolutional neural networks
extract high-level features from dual-temporal remote sensing images, such as color, texture,
and shape, which effectively characterize each region. Subsequently, through the Difference
Feature Module, we compare the features from different time periods to measure the
differences between them, thus determining which areas have changed. The Difference
Feature Module is capable of effectively capturing minor changes, making the network
more sensitive. This helps to lessen problems like edge blurring, false positives, and false
negatives while also increasing the accuracy of change detection.
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Figure 2. Difference Feature Module.

Assuming that f1 and f2 are two input features of the Difference Feature Module,
firstly, we perform addition and absolute difference operations on f1 and f2 separately to
obtain similar features and different features. Then, we concatenate the similar features and
different features along the channel dimension and input them into a convolution operation
on 3 × 3. After that, we apply average pooling to obtain the difference weight map fw.
Next, we feed fw into a convolution operation on 1 × 1 and perform weighted fusion with
f1 and f2 separately. Finally, the results are summed and input into a convolution operation
on 3 × 3 to obtain the difference feature map fd of the dual-temporal remote sensing image.
The proposed Difference Feature Module (DFM) makes full use of the semantic and spatial
information extracted by the main network at each layer, effectively distinguishing be-
tween changing and non-changing information, thus avoiding the issue of blurry detection
boundaries and enhancing the efficiency of discriminative features. The following is a
description of the computation formulae used in the method mentioned above:

fw = f 3×3[( f1 + f2); abs( f1 − f2)] (1)

fd = f 3×3[ f1 ⊗ f 1×1(Avgpool( fw)) + f2 ⊗ f 1×1(Avgpool( fw))] (2)

In this context, f n×n(·) represents a convolutional layer with a kernel size of n, fol-
lowed by batch normalization and the ReLU activation function [52]. abs(·) indicates
performing the absolute difference operation. [; ] represents a concatenation operation
along the channel dimension. ⊗ denotes element-wise multiplication. Avgpool(·) signifies
average pooling.

3.1.3. Attention Refinement Module (ARM)

Due to the fact that dual-temporal remote sensing photos are taken at several times,
they show variations in the seasons, illumination, and solar angles, which have a substantial
impact on detection accuracy. Without effective focus on the changing regions, it becomes
challenging for the network to distinguish each pixel and assign accurate labels. In this
section, we propose a new Attention Refinement Module (ARM) as illustrated in Figure 3.
This module aligns the spatial and channel dimensions for both changing and non-changing
pixels, allowing the network to assign higher weights to changing regions and lower
weights to non-changing areas, suppressing non-changing features and background regions.
The Attention Refinement Module (ARM) accelerates and improves the training process by
improving the network’s capacity to acquire specifics and local information in the features.
It also reduces issues like misclassification, omission, and edge blurring in changing regions.
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Figure 3. Attention Refinement Module.

The Attention Refinement Module (ARM) takes the output fd from the Differential
Feature Module (DFM) as input, with dimensions C × H × W representing the channel
dimension, height, and width of the feature maps, respectively. In order to create feature
maps with dimensions C × 1 × 1, fd is first processed by global average pooling and global
max pooling, lowering the spatial dimension and improving the channel dimension data.
Then, they go through two layers of 1 × 1 convolution and are added together to form a
fused feature. The channel-wise weight coefficient matrix W is obtained using the sigmoid
activation function. Next, we use convolution with 1 × 1 to fuse the input features fd,
compressing them into the spatial dimension, resulting in feature maps of size 1 × H × W.
These maps are further processed by two layers of 3 × 3 convolution to extract spatial
feature information thoroughly. The spatial-wise weight coefficient matrix P is obtained
using the sigmoid activation function. To prevent the loss of critical features during the
network learning process, we introduce residual connections. We weight the fusion of the
input feature fd using the channel-wise weight coefficient matrix W. Afterward, the result
goes through a single layer of convolution 1 × 1 and is then weighted again by the spatial-
wise weight coefficient matrix P. Finally, it is added to the input feature fd, resulting in the
final output of the ARM, denoted as fout. The mathematical computations for the described
process are expressed as follows:

W = σ( f 1×1( f 1×1(GAP( fd))) + f 1×1( f 1×1(GMP( fd)))) (3)

P = σ( f 3×3( f 3×3( f 1×1( fd)))) (4)

fout = f 1×1( fd ⊗ W)⊗ P + fd (5)

In the above formula, σ(·) represents the sigmoid activation function, GAP(·) repre-
sents global average pooling, and GMP(·) represents global max pooling.

3.1.4. Cross-Scale Fusion Module (CSFM)

Features extracted through CNN shallow networks have higher resolution and are
more visually rich compared to deep-layer features. Deep networks extract lower-resolution
features that are more abstract and contain richer semantic information compared to shallow
networks. However, as the network depth increases, information about small objects can
be easily lost. This is because the inherent receptive fields of convolutional operations
cannot effectively integrate contextual information. Although pooling operations partially
improve this, the features lose resolution and some semantic information is lost as well.
Shallow features in the context of high-resolution remote sensing image change detection
typically include basic semantic information, such as the size and shape of the changed
target areas, while deep features include more sophisticated semantic information, such
as the distribution and spacing between various changed targets. Hence, fusing shallow
and deep semantic features is crucial for change detection tasks. We propose a Cross-Scale
Fusion Module (CSFM) as shown in Figure 4, which fuses features from different network
layers. This enables the network to possess both shallow information about shapes and
sizes, as well as deep semantic information. This increases the robustness of the model and
strengthens deep learning networks’ capacity for generalization.
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Figure 4. Cross-Scale Fusion Module.

The input to the Cross-Scale Fusion Module (CSFM) is represented as fi, and it consists
of the change information refined through ARM, where i ∈ (1, 2, 3, 4). As the four input
features of this module have different sizes and channel numbers, we upsample them
to ensure they have the same size and channel numbers, resulting in the feature map f

′
i .

However, because the relationships between pixels are diluted when the features from
the lowest layer are directly propagated to the upper layer, and long-distance pixels lack
correlation, we fuse the features from adjacent three layers to obtain f

′′
1 and f

′′
2 . Then, we

concatenate these two features in the channel dimension. We offer a channel attention
technique to further the features’ refinement and acquire fc in order to eliminate redundant
information from the learned features. We employ convolution on 1× 1 for feature learning,
followed by upsampling to restore the feature size to match the dimensions of the input
features. The output fci is then produced by using another layer of 3 × 3 convolution to
extract differential features and restore the channel numbers:

f
′′
1 = f1 + Up×2( f2) + Up×4( f3) (6)

f
′′
2 = Up×2( f2) + Up×4( f3) + Up×8( f4) (7)

fc = [ f
′′
1 ; f

′′
2 ]⊗ σ( f 1×1( f 1×1(GAP([ f

′′
1 ; f

′′
2 ]))) (8)

fci = f 3×3(D×j( f 1×1( fc))); i ∈ (1, 2, 3, 4); j ∈ (0, 2, 4, 8) (9)

In the equation, Up×n(·) represents upsampling, D×n(·) represents downsampling,
and n represents the scaling factor or ratio.

3.2. Datasets

We conducted a performance study on the three datasets BTCDD [53], LEVIR-CD [36],
and CDD [54] to confirm the efficacy of our MDANet.

3.2.1. BTCDD

The BTCDD dataset is created from remote sensing images collected from Google
Earth, spanning from 2010 to 2019. It includes a range of change objectives, including,
among others, farms, highways, and buildings. The dataset consists of 3420 pairs of
512 × 512 pixel co-temporal remote sensing picture pairs in total. The dataset is divided into
training, validation, and testing sets, containing 2280, 570, and 570 image pairs, respectively.
In Figure 5, some samples from the dataset and their corresponding labels are displayed,
illustrating that the dataset encompasses a wide range of common application scenarios.
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Figure 5. Graph representing the BTCDD dataset. Co-temporal remote sensing pictures are shown in
the first and second rows, and their associated labels are shown in the third row.

3.2.2. LEVIR-CD

The Beihang University LEVR Laboratory has made available the LEVIR-CD dataset,
which is a sizable remote sensing building change detection dataset. This collection consists
of 637 pairs of 1024 × 1024 pixel ultra-high resolution photos. Domain experts in remote
sensing image interpretation annotated this dataset, categorizing it into two classes: change
and unchanged. Figure 6 illustrates sample images from the LEVIR-CD dataset. The images
in the dataset are resized to 256 × 256 pixels, and there are a total of 10,192 image pairs.
The training set includes 7120 image pairs, the validation set includes 1024 image pairs,
and the test set includes 2048 image pairs.

Img1

Img2

Label

a b c d e

Img1

Img2

Label

a b c d e

Figure 6. Graph representing the LEVIR-CD dataset. Co-temporal remote sensing pictures are shown
in the first and second rows, and their associated labels are shown in the third row.
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3.2.3. CDD

The 11 pairs of remote sensing photos with seasonal changes that make up CDD are
a public dual-temporal remote sensing image change detection data collection. Seven
of the pairings have dimensions of 4725 × 2700, while the other four have dimensions
of 1900 × 1000. The collection contains seasonal variations in the vegetation along with
features, buildings, and forest regions of various sizes. Concurrently, the dataset is divided
into 256 × 256 picture blocks, and a fresh change detection dataset comprising 16,000 dual-
phase image pairs is created. There are 10,000 pairs in the training set, and 3000 pairs in
each of the test and verification sets. A schematic design of a few examples from the CDD
dataset may be seen in Figure 7.

Img1

Img2

Label

a b c d e

Img1

Img2

Label

a b c d e

Figure 7. Graph representing the CCD dataset. Co-temporal remote sensing pictures are shown in
the first and second rows, and their associated labels are shown in the third row.

3.3. Implementation Details
3.3.1. Evaluation Metrics

This study presents a number of objective quantitative criteria for the objective eval-
uation of the performance of various change detection techniques. By comparing the
predictions made by various algorithms, these measures analytically evaluate algorithm
performance differences. In this study, we employ precision (PR), recall (RC), intersection
over union (IoU), and F1 score (F1) to evaluate various models. F1 and IoU are used as the
primary evaluation metrics. F1 is the weighted harmonic mean of precision (PR) and recall
(RC), providing a comprehensive assessment of both metrics. IoU measures the ratio of the
intersection of predicted results for a specific class and the ground truth to their union:

PR =
TP

TP + FP
(10)

RC =
TP

TP + FN
(11)

IoU =
TP

TP + FP + FN
(12)

F1 =
2 × PR × RC

PR + RC
(13)
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Among these, TP denotes the proportion of positive samples that were properly
predicted, FP the proportion of positive samples that were wrongly predicted, and FN the
proportion of negative samples that were mistakenly predicted.

3.3.2. Experimental Details

Based on the Pytorch framework, the GeForce RTX 3080 is used for training and testing
in all of the experiments in this paper. The storage size of the GPU is 10 GB. We employ the
Ploy technique to dynamically modify the learning rate because learning rate is essential to
the entire training procedure. The formula for its mathematical computation is as follows:

lr = lr∗ × (1 − epoch
n_epoch

)p (14)

Among them, lr represents the current learning rate, lr∗ represents the initial learning
rate, epoch represents the current number of iterations, n_epoch represents the total number
of iterations, and p represents the constant that controls the decay rate. In this article, we
set the training batch size to 8, lr∗ to 0.0015, n_epoch to 200, and p to 0.9. The loss function
is BCEWithLogitsLoss, and Adam is the optimization method.

4. Results

On two datasets, we perform generalization, comparison, and ablation experiments in
this section.

4.1. Network Structure Selection

ResNet is selected as our backbone network because of its deep network structure,
which enables the network to learn more complicated features and representations. This
is very useful for tackling picture change detection issues. Deep networks can capture
more abstract and high-level features, contributing to improved algorithm performance.
Additionally, ResNet introduces residual connections that enable smoother information
flow throughout the network. This helps mitigate the problem of vanishing gradients,
enhances training stability, and accelerates convergence. In change detection, this is crucial
for accurately capturing change information. On the BTCDD dataset, we evaluate the per-
formance of ResNet18, ResNet34, and ResNet50. ResNet34 displays the best performance
as shown in Table 1. As a result, ResNet34 serves as the backbone network.

Table 1. Comparison results of ResNet at different depths (bold indicates the best).

Method PR (%) RC (%) IoU (%) F1 (%)

ResNet18 88.63 77.15 70.19 82.46
ResNet34 89.57 79.52 72.79 84.25
ResNet50 87.95 78.11 71.07 82.70
ResNet101 87.66 78.98 71.09 83.12

4.2. Ablation Experiments

We incrementally connect the DFM, ARM, and CSFM modules to the backbone net-
work and run ablation tests on the BTCDD dataset to confirm the efficacy of the three
modules we suggest. All experiments adopt the same strategy. The experimental results
are as follows as shown in Table 2.

(1) Ablation experiments for DFM: DFM addresses the issues of omission or misjudg-
ment caused by direct feature subtraction in traditional change detection. This module
effectively captures subtle changes, reducing interference from lighting, seasonal, and angle
variations, thus making the network more sensitive and significantly enhancing change
detection accuracy. As shown in Table 2, the experimental results indicate that by adding
DFM to the backbone network, IoU and F1 scores improve by 1.6% and 1.09%, respectively.
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(2) Ablation experiments for ARM: ARM enables the network to focus more intensively
on processing change regions by increasing the weight of change areas while reducing the
weight of redundant information. It devotes more time to change characteristics, improving
how change information is perceived and handled. The experimental results in Table 2
show that by adding ARM to the backbone network, IoU and F1 scores improve by 1.57%
and 1.07%, respectively.

(3) Ablation experiments for CSFM: Basic semantic information, like the size and shape
of shallow change areas, and more complex semantic information, such the distribution
and spacing of various change targets in deep layers, are concurrently encoded by CSFM.
This reduces the model’s dependency on specific information, strengthens its ability to
extrapolate, and enhances how it perceives and uses traits from various scales. The results
in Table 2 indicate that by adding CSFM to the backbone network, IoU and F1 scores
increase by 0.61% and 0.41%, respectively.

The results of the ablation tests performed on our proposed DFM, ARM, and CSFM
modules demonstrate that, for change detection tasks, gradually integrating these modules
lets the network effectively extract change characteristics from remote sensing images.
Figure 8 shows the prediction effect of adding DFM, ARM and CSFM modules to the
three datasets in sequence. It is obvious that these three modules gradually improve the
performance of the model in extracting edge detail information and improve the detection
ability of small targets.

Img1 Img2 label b c d eImg1 Img2 label b c d e

③

②

①

Img1 Img2 label b c d e

③

②

①

Figure 8. Visualization renderings of ablation experiments. We conduct experiments on three datasets:
BTCDD, CDD and LEVIR-CD. b is the prediction effect of Backbone; c is the prediction effect of
Backbone + DFM; d is the prediction effect of Backbone + DFM + ARM; e is the prediction effect of
Backbone + DFM + ARM + CSFM.
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Table 2. Ablation comparison experimental results of MDANet (bold indicates the best).

Method PR (%) RC (%) IoU (%) F1 (%)

Backbone 86.41 77.41 69.01 81.68
Backbone+DFM 88.76 77.54 70.61 82.77
Backbone+DFM+ARM 89.21 79.08 72.18 83.84
Backbone+DFM+ARM+CSFM 89.57 79.52 72.79 84.25

4.3. Comparative Experiments of Different Algorithms on BTCDD

In this part, we compare our proposed strategy against a number of change detection
methods to show its superiority. The experimental results are shown in Table 3. To assure
the experiment’s objectivity and impartiality, we apply the same methodology to all of
the models. The findings in the table show that, in addition to the approach we suggest,
ChangeFormer has the best experimental outcomes, with IoU and F1 scores reaching
71.29% and 83.24% respectively, and our algorithm is the best in all four indicators. The IoU
and F1 scores reach 72.79% and 84.25%, indicating that our MDANet method has certain
advantages compared with other methods.

Table 3. Comparative test on BTCDD (bold indicates the best).

Method PR (%) RC (%) IoU (%) F1 (%) FLOPs (G) Time (ms)

FC-EF [46] 77.46 43.75 38.81 55.91 5.43 7.36
FC-Siam-Diff [46] 77.63 46.26 40.82 57.97 8.97 5.06
FC-Siam-Conc [46] 82.78 43.28 42.21 59.37 9.48 5.32
TCDNet [55] 88.64 74.37 67.91 80.89 7.96 8.51
SNUNet [56] 84.68 78.82 68.98 81.64 96.67 8.73
STANet [36] 86.55 77.36 69.06 81.69 53.03 19.45
DASNet [37] 87.59 77.22 69.61 82.08 103.54 17.62
ChangNet [57] 88.27 76.81 69.69 82.15 40.36 15.98
TFI-GR [58] 88.98 76.38 69.78 82.19 17.78 12.53
BIT [38] 87.23 78.66 70.52 82.73 98.61 8.96
MFGAN [59] 88.65 77.97 70.89 82.97 49.74 8.95
ChangeFormer [60] 87.81 79.13 71.29 83.24 78.47 9.62
MDANet (our) 89.57 79.52 72.79 84.25 7.42 15.21

The aforesaid method’s prediction graph for the BTCDD dataset is shown in Figure 9.
Three sets of dual-temporal remote sensing images from distinct locations are compared
in order to further support the practicality of our proposed approach. In the figure, ’a’
represents the image label, and ’b–l’ represent the prediction map of the above method.
As can be observed in the figure, the prediction maps of other algorithms have serious
problems with false detection, missing detection, and the blurring of changing objects.
In contrast, our method effectively avoids these problems and improves edge details. It
processes tiny target shifting regions extremely well, and the prediction result map is most
similar to the picture label, which attests to the potency of our suggested approach.
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Figure 9. Prediction effects diagram of different algorithms on BTCDD. We conduct experiments
using three pairs of dual-temporal remote sensing images. Img1 and Img2 represent sets of sense
images in different periods, (a–l) respectively represent label, FC-EF, FC-Siam-Diff, FC-Siam-Conc,
TCDNet, DASNet, ChangNet, TFI-GR, BIT, MFGAN, ChangaFormer, MIDANet (Ours).

4.4. Generalization Experiments of Different Algorithms on LEVIR-CD

We conduct generalization tests on the LEVIR-CD dataset to illustrate the general-
ization performance of our suggested technique, and the results are shown in Table 4.
Among these methods, aside from our proposed method, ChangeFormer achieves the best
results with IoU and F1 scores of 81.24% and 89.65%, respectively. However, our MDANet
method achieves IoU and F1 scores of 82.94% and 90.67% on this dataset, surpassing
ChangeFormer by 1.7% and 1.02%, highlighting the strong robustness and generalization
capabilities of our approach.

Table 4. Generalization experiments in LEVIR-CD. (The best results are indicated in bold font).

Method PR (%) RC (%) IoU (%) F1 (%)

FC-EF 84.12 83.82 72.37 83.97
FC-Siam-Diff 87.69 81.74 73.33 84.61
FC-Siam-Conc 88.27 84.06 75.61 86.11
TCDNet 89.99 85.27 77.88 87.57
SNUNet 90.67 85.52 78.61 88.02
STANet 90.82 85.97 78.95 88.23
DASNet 89.93 82.92 78.38 87.88
ChangNet 87.81 89.12 79.31 88.46
TFI-GR 89.59 89.15 80.78 89.37
BIT 90.94 87.29 80.31 89.08
MFGAN 88.98 89.01 80.17 88.99
ChangeFormer 89.57 89.73 81.24 89.65
MDANet (our) 90.99 90.35 82.94 90.67
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The prediction outcomes of the aforementioned change detection techniques on the
LEVIR-CD dataset are shown in Figure 10. To further confirm the effectiveness of our
suggested method’s generalization, we compare it with these approaches using three
pairs of co-temporal remote sensing picture pairings from various places. In the figure,
‘a’ represents the image label, while ‘b–l’ represent the prediction images of the above-
mentioned methods. The images show that our suggested MDANet technique offers
more precise predictions for tiny targets and edge details. The predicted change regions
are also clearer, even for very close change areas, demonstrating the ability to distinctly
identify adjacent change regions with clear boundaries. This illustrates the superiority of
our MDANet approach.
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Figure 10. Prediction effect diagram of different algorithms on LEVIR-CD. We conduct experiments
using three pairs of dual-temporal remote sensing images. Img1 and Img2 represent sets of sense
images in different periods, (a–l) respectively represent label, FC-EF, FC-Siam-Diff, FC-Siam-Conc,
TCDNet, DASNet, ChangNet, TFI-GR, BIT, MFGAN, ChangaFormer, MIDANet (Ours).

4.5. Generalization Experiments of Different Algorithms on CDD

Using the CDD dataset, we further confirm the MDANet generalization performance.
The experimental outcomes are displayed in Table 5. The table shows that overall, our
suggested approach produces the greatest outcomes, with IoU and F1 scores of 81.18%
and 89.61%, respectively. Additionally, besides our method, ChangeFormer achieves IoU
and F1 scores of 80.25% and 89.04% on this dataset, respectively. Our MDANet method
achieves IoU and F1 scores 0.93% and 0.57% higher than ChangeFormer on this dataset,
demonstrating the superior generalization performance of our proposed approach.
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Table 5. Generalization experiments in CDD. (The best results are indicated in bold font).

Method PR (%) RC (%) IoU (%) F1 (%)

FC-EF 79.79 61.28 53.05 69.32
FC-Siam-Diff 74.83 70.64 57.08 72.67
FC-Siam-Conc 79.49 65.05 55.70 71.55
TCDNet 84.39 89.79 77.01 87.01
SNUNet 84.85 89.82 77.41 87.26
STANet 83.32 91.35 78.08 87.69
DASNet 83.49 91.12 77.21 87.14
ChangNet 83.34 89.31 75.78 86.22
TFI-GR 83.78 93.84 79.42 88.53
BIT 83.52 93.95 79.26 88.43
MFGAN 83.36 92.26 77.91 87.58
ChangeFormer 84.69 93.86 80.25 89.04
MDANet(our) 85.59 94.03 81.18 89.61

The aforesaid change detection method’s prediction effect on the CDD dataset is de-
picted in Figure 11. To further confirm the generalization performance of our suggested
strategy, we compare it on three pairs of dual-temporal remote sensing photos from var-
ious locations. The prediction map of the aforementioned approach is shown by b −−l
in the picture, while a stands for the image label. The graphic illustrates how our ap-
proach performs the best, as it takes advantage of the attention mechanism to improve the
correlation between channels and pixels, which improves the method’s ability to extract
altered regions and distinguish boundaries. Additionally, it lowers missed detections.
The best detection results are obtained, demonstrating our suggested method’s superior
generalization capability.

Img1 Img2 a b c d eImg1 Img2 a b c d e
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Figure 11. Prediction effect diagram of different algorithms on CDD. We conduct experiments using
three pairs of dual-temporal remote sensing images. Img1 and Img2 represent sets of sense images in
different periods, (a–l) respectively represent label, FC-EF, FC-Siam-Diff, FC-Siam-Conc, TCDNet,
DASNet, ChangNet, TFI-GR, BIT, MFGAN, ChangaFormer, MIDANet (Ours).
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5. Discussion

In comparative experiments and generalization experiments, our proposed method
is better than other methods in terms of evaluation indicators and prediction renderings,
and it can be seen from the prediction renderings that our method can effectively detect
dual-phase geographically changing areas in remote sensing images. From the ablation
experiments in Figure 8, it can be observed that with the sequential integration of DFM,
ARM, and CSFM modules into the backbone network, the predicted result gradually
exhibits a trend of increased accuracy and clarity. Firstly, after the incorporation of the
DFM, the change regions in the predicted result exhibit more distinct features, enabling the
model to better capture the differential information between images, thereby effectively
enhancing the accuracy of change detection, as shown in Figure 8c. Secondly, with the
addition of ARM, the edges of the change regions in the predicted result become clearer,
and the identification of small targets and subtle changes is improved, further enhancing the
model’s learning capability of image details and local information. Figure 12 demonstrates
the heat map effect of ARM, where (a) and (b) represent the heat maps produced when
ARM is removed and added to the network, respectively. From column (a), it can be seen
that the effect on edge details and small targets is poor when the network removes the
ARM module, and there is a tendency to detect two adjacent change regions as one when
they are very close. However, with the inclusion of ARM in the network, the detection
performance is significantly improved, particularly for edge details and small targets.
The attention mechanism of ARM has significant value in change detection tasks, as
it dynamically adjusts the network’s focus on features, thereby enhancing the model’s
perception of important information. Compared to Transformer, it can directly operate
on feature maps without introducing additional attention matrix calculations as shown in
Figure 8d. Lastly, the introduction of CSFM further improves the edge details of change
regions in the predicted result, making the boundaries of change regions clearer and more
precise. By fully utilizing the feature information between different levels, the model
can better restore the edge details of change regions, thereby improving the accuracy
and robustness of change detection as shown in Figure 8e. Experimental results on three
datasets, BTCDD, LEVIR-CD and CDD, prove the effectiveness and superiority of our
method. In the BTCDD dataset, our MDANet method achieves 82.94% and 90.67% IoU and
F1 scores on this dataset. The prediction rendering is also the closest to the label, while other
methods such as FC-Siam-Diff have serious changes in targets. In contrast, our method
effectively mitigates problems such as false detection, missed detection, and blurring.
The generalization experiment on the LEVIR-CD dataset also proves the generalizability
of our method. On this dataset, the evaluation index IoU and F1 scores reach 82.94% and
90.67%. It can be seen from the prediction renderings that the overall prediction effects
of different models are better, but in terms of the prediction of edge details and small
targets, our method is more accurate and can successfully segment adjacent changing areas
with clear boundaries. For example, MFGAN cannot predict two very close change areas,
and there is a false detection phenomenon. The generalization performance of our MDANet
is further verified on the CDD dataset. The IoU and F1 scores reach 81.18% and 89.61%,
respectively, and it can be clearly seen from the prediction effect image that our method
has the best effect because we use the attention mechanism. Strengthening the correlation
between channels and pixels makes our method better at extracting changed areas and
clearer boundary identification, while methods such as TFI-GR and BIT have obvious
missed detections. Furthermore, our model demonstrates good efficiency in handling
complex tasks, capable of rapidly and accurately detecting changes in the Earth’s surface,
while also performing well under resource-constrained conditions. The relatively small
size of the model enables it to be more flexible and convenient to deploy and use.
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Figure 12. Comparison of ARM Heatmaps. The first and second columns each show a pair of
co-temporal remote sensing pictures, while the third column displays the labels for each image pair.
Heatmap (a) represents the heatmap generated when the network excludes the ARM, and heatmap
(b) represents the heatmap generated when the network includes the ARM. The warm-colored regions
represent the areas where the network focuses its attention, while the cold-colored regions indicate
the areas suppressed by the network.

6. Conclusions

In this paper, we propose a high-resolution city change detection network based on
difference and attention mechanisms under multi-scale feature fusion (MDANet). We have
constructed this network using an encoder–decoder architecture. Additionally, we have
proposed three auxiliary modules: DFM, ARM, and CSFM. DFM measures the differences
between features from different temporal instances by comparing them, determining which
regions have undergone changes. ARM allocates larger weights to change regions and
smaller weights to non-change regions, suppressing non-change features and background
areas. This allows the network to comprehensively learn details and local information from
the features. By combining characteristics from several levels, CSFM enables the network
to take into account both superficial information, such shape and size, and deep semantic
information. This improves the deep learning network’s capacity to generalize the model
and robustness. By incrementally integrating our proposed modules into the backbone
network, we observe a significant improvement in both IoU and F1 scores, indicating the
effectiveness of our modules. Results from experiments show that MDANet performs
better than other algorithms on the BTCDD, LEVIR-CD and CDD datasets. In the context of
urban environment classification, our algorithm has demonstrated excellent performance,
effectively identifying and classifying various features and targets within urban areas,
including buildings, roads, green spaces, and detecting changes in these features. We
believe that with further research and validation, our algorithm may also be applicable to
other environmental classification tasks, such as rural areas, forest regions, and beyond.
At the same time, in future change detection research, we will pay more attention to the
fusion of multi-source data, including satellites, drones, sensors, etc, to improve accuracy
and reliability. Moreover, most current change detection methods focus on the research of
binary change detection. Although such methods can automatically monitor and analyze
the changed areas in multi-temporal remote sensing images, they cannot describe the
specific change types of ground objects. Therefore, in the future, how to interpret the
specific types of ground objects before and after changes from remote sensing images will
need to be further explored. Generally speaking, future research in the field of change
detection will focus on improving algorithm accuracy, applying multi-source data fusion
and deep learning technology, improving real-time performance, and refined monitoring
to meet the needs of different fields.
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