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Abstract: In this article, we propose a joint waveform based on universal filtered multicarrier (UFMC)
chirp for radar jamming and communication joint systems. Modulation of radar jamming chirp
signals and communication signals on different subcarrier groups in the UFMC sub-band is used
to achieve the waveform design. The jamming signal in the waveform contains a frequency shift
coefficient that depends on the delay time, which can effectively improve the anti-frequency hopping
ability and enhance the overall jamming efficiency. Simultaneously jamming signals can provide
assistance in channel estimation and equalization of communication, improving the information
transmission quality of communication subsystems. We concluded through reasonable trade-off anal-
ysis that the combined weight of radar jamming and communication is closely related to the overall
performance of the waveform. The simulation results show that the proposed UFMC chirp synthe-
sized waveform has good jamming and communication performance. Software defined radio (SDR)
simulation experiments demonstrated the effectiveness of this method in practical environments.

Keywords: joint radar jamming and communication; integration; waveform design; universal
filtered multicarrier

1. Introduction

With the rapid development of information theory and electronic technology, the
deployment and utilization of various electronic devices are showing exponential growth,
and spectrum resources are becoming increasingly scarce. Radar and wireless communi-
cations, as important electronic systems, have been developing independently and each
occupies a significant portion of spectrum resources. With the continuous improvement
in information technology and the huge demand for high-quality services from infinite
devices, the scope of their work is constantly penetrating into each other’s traditional
spectrum range, leading to an increasingly tense contradiction in spectrum resources [1].
Due to their many similarities in signal processing algorithms, device usage, and system
architecture, they are likely to share spectrum, which has sparked a strong interest in the
coexistence, collaboration, and collaborative design of these two systems [2].

The design concept of the Joint Radar and Communication System (JRCS) is to in-
tegrate these two functions into one system, and the initial concept can be traced back
to the 1960s [3]. The design of JRCS can be divided into two categories [4]. The first
type is the physical integration of two functions into a system, which uses two dedicated
hardware components and/or two different waveforms, stacked and/or separated in the
time domain, frequency domain, or spatial domain [5–7]. For example, JRCS based on the
sampling technique is proposed in reference [8], which transmits two signals on different
frequency bands to avoid mutual interference. Reference [9] embeds different communica-
tion information into radar pulses to achieve JRCS, which can provide different symbol
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error rate (SER) performance, but its communication rate is very low, only on the order of
Kbps. Reference [10] designed JCRS that can perform radar and communication simulta-
neously by allocating subcarriers of orthogonal frequency division multiplexing (OFDM)
waveforms. However, the uncertainty of radar and communication channels can affect
the performance of this method and increase the computational complexity of the system.
The integration of such JRCS methods is relatively loose, and the benefits obtained may
be limited; furthermore, each system will cause additional mutual interference, requiring
signal processing work to mitigate these interferences [11,12]. The second type achieves
more robust integration by sharing most hardware components and using the same wave-
form. Single spectrum shared transmission signals are used for both radar detection and
data communication, known as dual function radar communication (DFRC). DFRC aims
to optimize communication and radar performance, and most research has focused on
designing such dual function waveforms [13]. Reference [14] provides a good review of the
historical development and latest technologies of DFRC. Although DFRC can significantly
improve spectral efficiency, its challenge lies in balancing the performance indicators of
radar and communication systems, thereby improving radar resolution, communication,
and bit error rate (BER) performance. For example, reference [15] proposed an algorithm
for jointly designing transmission waveforms and reception filters, which maximizes the
detection performance of DFRC systems and enables multi-user communication. However,
as the number of communication users increases, the radar detection performance will
decrease, and a basic balance is needed to ensure the joint performance of the system. In
order to improve the detection/imaging performance of radar sensors and improve perfor-
mance in multi-user communication, multiple input multiple output (MIMO) technology
has been widely applied in DFRC systems [16,17]. However, most of the dual function
waveforms generated by this method are based on pre-coding methods [18–20] or OFDM
format [21–23]. This means that the generated bifunctional waveform may not necessarily
provide the expected deterministic waveform characteristics, such as low peak to average
power ratio (PAPR) or expected radar blur function [24].

In this multifunctional combination, in order to reduce the detection quality of nonco-
operative radars and protect the regions of interest (ROIs) from observation and detection,
various electronic countermeasures are usually used, including stand-off supported jam-
ming (SSJ) and self-defense jamming (SDJ). The research on electronic countermeasures
(ECMs) and radar jamming methods has also attracted attention from the radar indus-
try [25]. The methods and techniques for jamming radar can be broadly categorized
into active jamming and passive jamming [26,27]. With the development of digital ra-
dio frequency memory (DRFM), the active jamming techniques have been increasingly
researched [28]. In this regard, this article only discusses active jamming. Functionally,
radar jamming can be further classified into suppression jamming [29–31] and deception
jamming [32–34], each involving multiple forms. Suppression jamming involves injecting
signals into the enemy radar to submerge echoes from real targets. This is achieved by
generating wideband and narrowband active noise signals on the radar’s sweep frequency
band, creating a suppression jamming environment. The introduction of artificial noise
disrupts the normal operation of the radar by increasing its input noise level and reducing
the signal-to-noise ratio (SNR). However, the pulse compression processing of radar signals
results in a high processing gain for target echoes, making suppression jamming unsuit-
able for many scenarios due to the high jamming power output required [35]. Deception
jamming, on the other hand, retransmits or modulates the intercepted radar signals to
form false target signals with high processing gain, thereby masking the real target and
protecting ROIs. Additionally deceptive jamming can generate low jamming signal ratios
(JSRs) and realistic targets [36].

Similarly, the integrated design of joint radar jamming and communication is also
necessary for two main reasons. Firstly, radar jamming signals have the characteristics of
a wide beam, large bandwidth, and high energy. These characteristics make it difficult to
successfully complete communication during radar jamming operation. Secondly, radar
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jammers that form a network need to interact with each other to better complete radar jam-
ming tasks. If traditional technological means are used, radar jamming and communication
need to be completed at different times and/or frequencies, which is equivalent to requiring
additional time–frequency resources. The integrated design of joint radar jamming and
communication can use the same time and spectrum to complete communication tasks
while jamming, effectively avoiding additional consumption caused by issues such as the
above. However, there has been very little research on the integration design of radar
jamming and communication so far. Therefore, researching the integrated system of radar
jamming and communication is not only crucial in the field of ECM, but also extends
the scope of effective spectrum resource utilization and provides a basis to carry out new
research areas.

The reference [37] first studied the combination method of radar jamming and com-
munication. This approach employs false target jamming to elevate the detection thresh-
old while maintaining an unchanged false alarm probability. By modulating the map-
ping of communication data, linear frequency modulation (LFM) signals with different
Doppler slopes and frequency slopes can effectively carry multiple bits of data, thus
interfering with radar signals while ensuring the completion of communication com-
mands. However, its communication rate is very low and it is not suitable for large-scale
communication scenarios.

As communication technology continues to evolve, the limitations of traditional multicar-
rier modulation techniques are becoming increasingly evident. OFDM has found widespread
application in fourth-generation (4G) wireless communication systems, renowned for its
efficient utilization of frequency resources and high-speed data rate processing capabilities.
However, its high PAPR, interference among subcarriers, and inefficient use of frequency
resources render it unsuitable for 5G and even 6G wireless communication [38]. UFMC
has the potential to provide better performance compared to other waveform technolo-
gies, especially in multi-user scenarios and in the presence of channel impairments [39].
By reducing inter-carrier interference (ICI) and relaxing inter-carrier synchronization re-
quirements, UFMC ensures enhanced performance in synthetic aperture radar (SAR) and
integrated communication channels. Moreover, its avoidance of CP minimizes inter-symbol
interference (ISI) and ICI, promoting spectrum efficiency and preventing errors in imaging
targets. Its low delay spread also positions it more favorably than filter bank multicarrier
(FBMC) in high-repetition-rate radar modes.

In the study of reference [40], an integrated waveform combining FBMC with radar
jamming was proposed using FBMC chirp as the design waveform to minimize out-of-band
signal leakage. However, the use of prototype filters in FBMC results in an increased signal
duration. FBMC also faces challenges in scenarios involving burst communication and
short-duration emergency communications, and it is poorly suited for MIMO systems.
In addition, it falls short of simultaneously managing communication and jamming with
targets. Therefore, FBMC is not the best multicarrier modulation method to combine with
radar jamming. Reference [41] analyzed the performance of UFMC in JRCS and found that
JRCS based on UFMC can improve overall performance in terms of spectrum efficiency and
complexity. However, their advantages in radar jamming and communication integration
design have not been fully explored.

2. Contributions of Our Work

In this work, we explore and demonstrate the potential of UFMC in combining radar
jamming and communication. To the best of the authors’ knowledge, this is the first series
of studies to combine radar jamming and communication through UFMC. In particular,
this will be the first work to present the joint radar jamming and communication using
UFMC. To that end, we:

1. Generated UFMC chirp waveforms for the joint function of radar jamming
and communication.
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2. Analyzed the advantages of UFMC in radar jamming and communication joint sys-
tems, discussed the constraints of joint waveforms, provided the auxiliary process
of joint waveforms for communication subsystems, and provided a design trade-off
analysis of radar jamming and communication.

3. Conducted simulation experiments; the results indicate that the joint waveform based
on UFMC chirp can effectively enable jamming with radar and exhibit excellent
communication error rate performance.

4. Implemented the proposed method on software defined radio (SDR) devices and
demonstrated its feasibility.

The remaining sections of the paper are organized as follows: Section 3 introduces the
configuration of the application scenarios. Section 4 presents the modulation principles
of UFMC, compares UFMC with FBMC and OFDM, introduces the waveform design of
UFMC chirp, and outlines the processing flow at the transmitting and receiving ends of
the joint signal. Section 5 analyzes the constraints and evaluation metrics for the joint
signal. Section 6 presents the simulation experiments, validating the feasibility of the
proposed method in terms of communication and jamming functionalities. Section 7
presents the feasibility assessment of the proposed joint system using SDR-based hardware
implementation. Finally, the research conclusions are summarized in Section 8.

3. Model Construction and Application Scenarios

In accordance with various application scenarios, devices adhere to varying design
principles. Figure 1 illustrates the typical application scenario of the joint radar jamming
and communication system proposed in this paper.
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Figure 1. Application scenario of joint communication and jamming system.

In Figure 1, the integrated system is deployed on the ground in response to an ap-
proaching unknown unmanned aerial vehicle (UAV), which may be operating in either
tracking search mode or SAR imaging mode. To protect ground targets from reconnais-
sance, the unknown UAV’s signals would have to be jammed, preventing it from detecting
the protected targets. Simultaneously, there are known UAVs taking off and departing,
necessitating the fulfillment of communication requirements. Transmitting jamming signals
and communication signals separately would pose a significant challenge, as the wide beam
and high energy of jamming signals can impact the communication process. To ensure
optimal communication quality, it is crucial to design jamming signals that incorporate
communication data, addressing a critical requirement for the integrated system.

The ground-based integrated system effectively detects radar signals from jammed
objects, followed by the generation of simulated target echo signals strategically designed
to deceive the airborne radar systems of the jammed objects. This action disrupts their
normal functioning, thereby protecting ground targets from detection. Concurrently, com-
munication data is transmitted to the communication target. The communication target
is equipped to assess the real-time behavior of the jammed objects and can execute com-
mands based on the received communication data. Due to the relatively low directional
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requirements of the antenna for communication tasks, the communication target efficiently
receives and processes joint signals emitted from sidelobes, ensuring the fulfillment of
communication functions.

4. Implementation of Joint Plans
4.1. UFMC Modulation Principle

UFMC is a communication transmission scheme developed based on the principle of
frequency division multiplexing. In UFMC, each symbol divides the signal bandwidth into
multiple sub-bands, and each sub-band carries a corresponding number of subcarriers to
facilitate communication. The structure of a single UFMC symbol is illustrated in Figure 2.
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Figure 2. The structure of the UFMC symbol.

In Figure 2, the yellow box represents the subcarriers of a single UFMC symbol, while
the red dashed box illustrates the sub-band structure of a single UFMC symbol. A UFMC
symbol is composed of a total of K subcarriers, which are divided into NRb sub-bands. Each
sub-band contains c subcarriers, where: K = c · NRb. In the process of generating UFMC
symbols, the input data are first divided into multiple low-rate sub-streams Xi

p, such that i
refers to the number of UFMC symbol bits, and p ∈ {1, 2, · · · , NRb} represents the number
of sub-bands. The data of each sub-band undergo inverse discrete Fourier transform (IDFT)
operations, transforming them into a time-domain digital resource block. Subsequently, a
time-domain smoothing pulse shaping filter is applied to each resource block to reduce
out-of-band leakage in the frequency domain. This method minimizes the out-of-band
interference between adjacent sub-bands in neighboring resource blocks. Finally, these
resource blocks are overlaid in the time domain to generate the baseband signal, which is
then transmitted into the radio frequency (RF) domain. The signal in the time domain for
transmission can be represented as:

xi = FHVHXi, (1)

such that:

Xi =

[(
Xi

1

)T
,
(

Xi
2

)T
, · · · ,

(
Xi

NRb

)T
]T

, (2)

Xi
p =

[
Xi

p(0), Xi
p(1), · · · , Xi

p(c− 1)
]T

, (3)

VH = diag
{

V1, V2, · · · , VNRb

}
, (4)

FH =
[
F1, F2, · · · , FNRb

]
. (5)

where Xi represents the modulation and weighting value of the subcarrier for the ith
symbol, Xi

p(k) corresponds to the communication information carried by the kth subcarrier
in the pth sub-band, k ∈ {0, 1, · · · , c− 1}, VH represents the inverse fast Fourier transform
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(IFFT) matrix, Vp is the IFFT matrix for the pth sub-band block, and FH is the finite impulse
response (FIR) filter matrix. Fp is the filter matrix for the pth sub-band block and is a

Toeplitz matrix with its first column as
[
bp(0), bp(1), · · · , bp(LFIR − 1), 0, · · · , 0

]T , such
that LFIR is the length of the FIR filter, and the coefficient bp(j) represents the FIR filter
coefficients for the pth resource block, j ∈ {0, 1, · · · , LFIR − 1}. Each filter coefficient is

selected to be ∑LFIR−1
j=0

∣∣bp(j)
∣∣2 = 1 for every filter.

To evaluate the advantages of UFMC signals compared to OFDM and FBMC signals, a
temporal structure analysis was conducted for these three modulation schemes. Modulation
in both OFDM and UFMC signals utilizes QAM, while FBMC signals, to maintain a uniform
symbol data rate, employ offset quadrature amplitude modulation (OQAM) modulation.
The temporal characteristics of these three modulation schemes are illustrated in Figure 3.
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In Figure 3, given the length of the transmitted data (TD), to avoid ISI, a CP is added
at the beginning of each OFDM symbol, thus forming a complete OFDM symbol. The total
length of a single OFDM symbol is T1

OFDM = TCP + TD, such that TCP is the CP length. In
the case of FBMC, which employs OQAM modulation, the complex signal is partitioned into
two components, and a transmission delay of half a symbol period is introduced between
the first two to achieve full-speed signal transmission. Unlike OFDM, FBMC operates
without the necessity of a CP for ISI mitigation. Assuming the prototype filter overlap
factor for FBMC is K, the length of a single FBMC symbol is T1

FBMC = K · TD + TD/2.
Within the UFMC framework, sub-band filters create rising and falling regions at the

start and end of a single UFMC symbol. The regions provide a ‘soft’ ISI protection for
UFMC symbols, eliminating the need for a CP. However, the use of filters introduces an
additional time-domain extension for UFMC. Assuming the time-domain extension length
of the filter is TF, the length of a single UFMC symbol is T1

UFMC = TL + TD. Note that TF
is related to the length of the FIR filter used in UFMC and that the FIR filter length can
be adjusted to change TF. If TF is adjusted to match TCP, the length of a single UFMC
symbol becomes equal to the length of an OFDM symbol, i.e., T1

UFMC = T1
OFDM. Despite
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this equivalence, the out-of-band leakage of the UFMC spectrum is considerably smaller
than that of OFDM, underscoring its superior spectral efficiency.

In general, the overlap factor K used in FBMC is typically set to 4, resulting in a single
FBMC symbol length equal to T1

FBMC = 4.5× TD. In the context of the 802.11 protocol,
where the TCP length is TD/32 ≤ TCP ≤ TD/2, the length of a single UFMC and OFDM
symbol is much smaller than the length of a single FBMC symbol. Additionally, due to
the longer time sequence required to generate a single FBMC symbol, UFMC is more
advantageous than FBMC for short-burst communication.

4.2. Joint Signal Design

The FBMC chirp [40] and OFDM chirp [42] waveforms have been proposed in pre-
vious studies, employing the fundamental principle of modulating chirp signals onto
distinct subcarrier groups. Due to the inherent orthogonality of subcarriers in OFDM and
FBMC signals, signals on different subcarrier groups naturally satisfy orthogonality. This
characteristic facilitates signal separation both at the transmitter and receiver ends.

In order to achieve jamming functionality, UFMC signals are modulated with chirp
signals, resulting in UFMC chirp. Note that the structure of UFMC chirp signals differs
from that of pure OFDM chirp and FBMC chirp signals due to the inclusion of sub-band
structures, along with the subcarriers in UFMC signals. This distinctive characteristic
allows UFMC chirp signals to be flexibly applied to any sub-band, thus serving the dual
purpose of multiple-target radar jamming and communication.

Figure 4 illustrates the frequency-domain structure of the UFMC chirp signal, where
the integrated signal symbols are shaped by two signals within each sub-band block.
Multiplexing of the signal frequency bands is achieved by dividing the available sub-band
blocks into multiple sub-bands, modulating the information to be sent to each subcarrier
within each sub-band, and subsequently transmitting these signals simultaneously. Note
that two orthogonal UFMC chirp waveforms are generated by zero interleaving and shifting
of a single chirp spectrum as the input sequence.
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Figure 4. Integrated signal symbols for subcarrier modulation.

The proposed integrated signal technology in this study leverages the orthogonality
of discrete frequency components, specifically subcarriers. Assuming the input sequence
spectrum consists of NRb sub-band blocks, each sub-band block contains c discrete spectral
components spaced apart by 2∆ f . Initially, the input sequence is zero interleaved with c
zeros, as depicted by Xjam in Figure 4. Next, the interleaved input sequence is shifted by ∆ f
to obtain the second data sequence Xcom. These data sequences are then transformed into
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the time domain through the IDFT operation with 2c points. Note that both sets comprise
2c subcarriers, with each set only utilizing c subcarriers to convey input data.

If the spectrum of a chirp signal is employed for UFMC modulation, then the time-
domain generation matrix of the UFMC chirp signal can be expressed as:

S =


s(0, 0) s(0, 1) · · · s(0, M− 1)
s(1, 0) s(1, 1) · · · s(1, M− 1)
s(2, 0) s(2, 1) · · · s(2, M− 1)

...
...

. . .
...

s(M− 1, 0) s(M− 1, 1) · · · s(M− 1, M− 1)

 (6)

where M is the number of product signals, s(m, n) = ejπkrt2
ej2π n·m

M , t ∈
(
0, Tp

)
, m is the

row index of the matrix, n is the column index of the matrix, Tp is the pulse width of the
chirp signal, and kr is the frequency modulation slope of the chirp signal, expressed by the
ratio of the signal bandwidth B to Tp, (i.e., kr = B/Tp). As shown by Equation (6), when
generating M orthogonal signals, the pulse width will also increase by a factor of M.

In this paper, taking two orthogonal integrated radar jamming and communication
signals as an example, the signal matrix is given by:

S1 =

[
sc sc
sJ sJ · ejπ

]
(7)

where sc(t) = VH
[
(s1)

T , (s2)
T , · · · ,

(
sNRb

)T
]T

is the communication signal to be modu-

lated, sp is the modulation weight of the pth sub-band, sp =
[
sp[0], sp[1], · · · , sp[c− 1]

]T ,
and sp[k] is the pseudo-random sequence encoding the information carried by the kth

subcarrier in the pth sub-band. sJ(t) = VH
[
(J1)

T , (J2)
T , · · · ,

(
JNRb

)T
]

is the designed

jamming signal, such that Jp is the frequency-domain representation of the jamming signal
in the pth sub-band.

The radar signal intercepted by the integrated device being jammed is given by
the expression:

J(t) = ejπkrt2
,−

Tp

2
≤ t ≤

Tp

2
(8)

The integrated device induces jamming effects on the intercepted radar signal through
frequency shifting and retransmission, resulting in the transmitted jamming signal
J1(t) = ejπ(krt2+2ξt), such that ξ represents the frequency shift amount. Consequently,
the result of fixed frequency-shift jamming J1(t) after undergoing time-domain matched
filtering can be expressed as:

sout(t) = J1(t)⊗ J∗(−t)

=
∞∫
−∞

J1(τ) · J∗(t− τ)dτ

= rect
(

1− |t|Tp

)
sin c

[
πkrTp

(
t + ξ

kr

)(
1− |t|Tp

)]
· ejπξt

(9)

where ⊗ represents convolution, ∗ denotes the conjugate operation, and rect(·) is a rect-
angular window function. Based on Equation (9), the maximum peak in the output after
signal-matched filtering occurs at −ξ/kr, and this peak is generated by the offset ξ/kr
from the true signal peak moment. When there is a change in the frequency modulation
slope (kr) between radar pulses, false targets exhibit range jumps, preventing them from
accumulating at the same distance.

If the intercepted radar signal is delayed by time τ and then truncated, the result can
be expressed as:

J(t− nτ) = ejπkrt2 · e−j2nπkrτt · ejπkr(nτ)2
(10)
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where n is a positive integer, n ≥ 2. From Equation (10), the second term (e−j2nπkrτt) can
form the frequency shift term of the jamming signal by letting −nkrτ = ξ. Moreover, as
long as the values of n and τ are fixed, the ratio of ξ to kr remains constant, i.e., ξ/kr = −nτ.
This allows ξ to vary with the change in kr, enabling false targets to accumulate at the
same distance.

At this point, as long as the term ejπkr(nτ)2
is eliminated, the remaining terms, J(t− nτ),

can be used as the jamming signal for transmission. Note that Equation (10) can be
transformed as follows:

J(t− nτ) · (J∗(t− τ))n2

= ejπkrt2 · e−j2nπkrτt · ejπkr(nτ)2
·
(

e−jπkrt2 · ej2πkrτt · e−jπkrτ2
)n2

= e−jπkrt2(n2−1) · ej2πn(n−1)τkrt

= (J∗(t))n2−1 · ej2πn(n−1)τkrt

(11)

Multiplying both sides of Equation (11) by (J(t))n2
yields the original time-domain

expression of the jamming signal:

s′J(t) = J(t− nτ) · (J∗(t− τ))n2
· (J(t))n2

= J(t) · ej2πn(n−1)τkrt (12)

where −Tp/2 + nτ ≤ t ≤ Tp/2. When comparing the conventional frequency-shifted
retransmitted jamming signal J(t) with the expression of sJ(t) in Equation (12), the fre-
quency shift amount of the generated jamming signal is ξ J = n(n− 1)τkr. The ratio of this
frequency shift to the frequency modulation slope kr depends on the values of n and τ. The
frequency-domain expression of s′J(t) can be written as:

J[w] = F
{

s′J(t)
}
= F

[
J(t)ej2πn(n−1)τkrt

]
(13)

where w = 0, 1, 2, . . . , c · NRb − 1, F{·} represents the Fourier transform operator. Therefore,
Jp can be expressed as:

Jp =
[

Jp[0], Jp[1], · · · , Jp[c− 1]
]T (14)

such that Jp[k] = J[(p− 1) · c + k].
Based on the above analysis, the time-domain expressions for the communication

signal and jamming signal derived from the signal generation matrix are as follows:

scom1(t) = FHsc(t) + FHsc

(
t− T

2

)
(15)

sjam1(t) = FHsJ(t)− FHsJ

(
t− T

2

)
(16)

By superimposing scom1(t) and sjam1(t) in the time domain, the UFMC chirp integrated
signal can be obtained using the expression:

s(t) = scom1(t) + sjam1(t) (17)

4.3. Joint Signal Processing Flow

The waveform design and processing method for radar jamming and communication
integration based on UFMC chirp is depicted in Figure 5.
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At the transmitter, the communication data are first converted from serial to parallel
and then undergo multicarrier mapping to generate transmitted data. These data, after
QAM modulation, produce frequency-domain communication signals. Simultaneously, the
baseband waveforms of jamming signals are generated based on intercepted radar signals.
The communication signals and jamming signals are superimposed and transformed
into time-domain digital signals through sub-band IDFT. Sub-band filters are employed
to reduce the out-of-band leakage of each sub-band. The time-domain signals of each
sub-band are then superimposed, and before entering the radio frequency domain, their
average value is removed, and the power is normalized to ensure uniform power across
all transmitted signals. Following wireless transmission, in the jamming scenario, these
signals reach the receiving end.

At the communication receiver, the received signal undergoes pulse synchronization
first to determine the arrival time of the signal, ensuring accurate sampling. After amplifi-
cation, it passes through a sub-band filter group to match the received signal and identify
each sub-band. The signal undergoes zero-padding fast Fourier transform (FFT), followed
by down-sampling to obtain the transmitted symbol information. Due to the impact of mul-
tiple paths in the channel, delays in the time domain are converted into phase differences in
the frequency domain, affecting the demodulation results. Therefore, channel equalization
is applied to the frequency signal to mitigate the influence of multipath channels. The
jamming signal and communication signal are orthogonally demodulated and separated.
Since the jamming signal is an LFM signal that does not carry communication data, it can
be utilized for channel estimation, aiding in data recovery and assisting the communication
system in restoring the original communication information.

When considering the impact of multipath channels in communication processing,
assuming the number of multipath channels is L, the integrated signal received at the
communication end is given by:

y(t) = hs(t) + z(t) (18)

where z(t) is the additive Gaussian white noise, h is the Toeplitz channel matrix with
its first column as [h0(t), h1(t), · · · , hL−1(t), 0, · · · , 0]T , and hl(t) is the channel impulse
response on the lth path, expressed as:

hl(t) = alδ(t− τl) (19)
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where al is the attenuation coefficient of the lth path and τl is the delay of the lth path.
The frequency-domain signal obtained by the communication target after receiving

the time-domain signal, going through a matched filter, and undergoing FFT operation,
can be expressed as:

Y = HQX + Z (20)

where:
Y =

[
YT

1 , YT
2 , · · · , YT

NRb

]T
, (21)

Yp =
[
Yp[0], Yp[1], · · · , Yp[2c− 1]

]T , (22)

H = diag
{

H1, H2, · · · , HNRb

}
, (23)

Hp = diag
{

Hp[0], Hp[1], · · · , Hp[2c− 1]
}

, (24)

X =
[
XT

1 , XT
2 , · · · , XT

NRb

]T
, (25)

Xp =
[
Xp[0], Xp[1], · · · , Xp[2c− 1]

]T . (26)

where Yp is the frequency-domain signal on the pth sub-band at the receiver and Yp(k)
is the information carried on the kth subcarrier in the pth sub-band. Following the joint
signal generation principle outlined in Section 4.2, the UFMC chirp spectrum is obtained by
up-sampling the spectrum of UFMC, resulting in the change in the number of subcarriers
in each sub-band from c to 2c. H refers to the frequency response of the multipath channel,
and X is the frequency-domain representation of the transmitted joint signal, determined
by Equation (17). Z is the frequency-domain form of additive Gaussian white noise. The
matrix Q can be expressed as:

Q = VFFHVH (27)

where V is the FFT transformation matrix, the conjugate transpose of V is denoted as VH , F
is the FIR matched filter at the receiving end, and the conjugate transpose of F is denoted as
F. After the communication system is designed, the value of Q can be precisely determined.
Therefore, in Equation (20), when noise influence is not considered, it is only necessary to
obtain the value of H to demodulate the communication information.

Due to the up-sampling process in UFMC chirp, which shortens the original subcarrier
spacing by half, two discrete frequency components are generated at fixed intervals. The
two frequency components at fixed intervals have a strong correlation with the frequency
selectivity of the channel. It can be approximated that these two channels are the same:

Hp[m] ≈ Hp[m + 1] (28)

where m = 2k, k ∈ {0, 1, · · · , c− 1}. As per Equation (17), the frequency-domain informa-
tion structure of the joint signal sent is intertwined with both communication information
and jamming information. Therefore, Equation (26) can be decomposed into odd and
even terms:

Xeven
p =

[
Xp[0], Xp[2], · · · , Xp[2c− 2]

]T (29)

Xodd
p =

[
Xp[1], Xp[3], · · · , Xp[2c− 1]

]T (30)

where Xeven
p is the communication information and Xodd

p is the jamming signal resulting
from frequency-shifted retransmission, with its value given by Equation (14).
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Since the frequency spectrum structure of the LFM signal is fixed, Xodd
p can be con-

sidered as a pilot signal suitable for channel estimation. The received part of Xodd
p can be

expressed as:
Yeven

p = Heven
p Qeven

p Xeven
p + Zeven

p (31)

where Heven
p is the corresponding channel frequency response, Qeven

p is a known term derived
from Q, and Zeven

p is Gaussian white noise. Channel estimation can be obtained through the
least squares (LS) method, resulting in an estimated channel frequency response:

Ĥeven
p ≈ Heven

p (32)

Based on the result from Equation (28), the corresponding channel frequency response
for the transmission of communication information is obtained as:

Ĥodd
p ≈ Ĥeven

p ≈ Heven
p (33)

By reversing Equation (33), the overall multipath channel frequency response for the re-
ceived signal is obtained as Ĥ. The channel can be equalized to recover the communication
information and achieve the communication target.

At the radar receiver, this signal is considered as the reflected radar signal originating
from the target but with superimposed jamming signals. Consequently, standard radar
processing procedures are applied, employing moving target detection (MTD) technology
to assess target motion. From the perspective of jamming, maintaining consistency in
the jamming signal within each pulse repetition period is essential to obtain coherent
processing gain. In addition, during the radar power detection process, the detection
threshold should be controlled to maximize detection power. The constant false alarm rate
(CFAR) detection algorithm, widely adopted in practical radar signal processing, regulates
the threshold to ensure a constant false alarm rate throughout the detection process.

Specifically, CFAR can use the noise, jamming, or ground clutter around the target
echo signal to estimate the power of clutter signals in space. Following variations in clutter
signal power, it filters out noise signals and detects target signals by setting an appropriate
threshold. However, in scenarios where jamming is present in the reference cells, CFAR
tends to overestimate noise power. This results in a higher CFAR detection threshold than
the actual target signal power, creating a masking effect on the target. At the same time, the
elevated CFAR detection threshold diminishes the power of the jamming signal below the
detection threshold, rendering the jamming signal undetectable by the opposing radar.

In situations involving multiple false targets, the power of jamming signals from false
targets significantly surpasses the noise power. When the power of these jamming signals
from false targets remains constant, the CFAR detector on the corresponding side detects
multiple false targets. Consequently, the CFAR detection threshold experiences an increase
under such circumstances.

5. System Constraints

Given the primary objective of designing the joint signal, namely achieving communi-
cation while simultaneously jamming, the design specifications for jamming are subject to
more rigorous requirements, necessitating a more stringent approach. Referencing [40], the
system constraints associated with the proposed joint signal in this study are
thoroughly examined.

5.1. Design of Frequency Modulation Slope kr

According to Equation (8), the finely tuned signal with frequency modulation slope
can be expressed as:

J̃(t) = rect(
t

Tp
)ejπ(kr+∆kr)t2

(34)
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where ∆kr is the frequency modulation slope mismatch value. The frequency-domain
expression of J̃(t) can be derived from the method of stationary phase as:

J̃( f ) ≈ 1√
kr + ∆kr

rect

(
f(

(kr + ∆kr)Tp
)) · e jπ

4 · e−jπ f 2

(kr+∆kr) (35)

The frequency-domain matched filtering of Equation (35) can be expressed as:

J̃out( f ) = J̃( f )H( f ) (36)

where H( f ) is the frequency-domain representation of the matched filtering reference signal:

H( f ) ≈ 1√
kr

rect
(

f
krTP

)
· e−

jπ
4 · ejπ f 2

kr (37)

Substituting Equations (35) and (37) into Equation (36), the frequency-domain output
of the matched filter is given by:

J̃out( f ) ≈ 1√
kr(kr + ∆kr)

rect
(

f
krTp

)
· rect

(
f

(kr + ∆kr)TP

)
· e(jπ f 2· ∆kr

kr(kr+∆kr)
) (38)

According to Equation (38), the positive and negative signs will yield different effects
on J̃out( f ). When ∆kr > 0, conducting the inverse Fourier transform on J̃out( f ) produces
the time-domain expression after matched filtering:

J̃out(t) =
1√
∆kr

rect
(

t(kr + ∆kr)

∆kr · TP

)
· ej π

4 · e−jπkrt2 (kr+∆kr)
∆kr (39)

When ∆kr < 0, Equation (39) becomes:

J̃out(t) =
1√
|∆kr|

rect
(

krt
|∆kr|·TP

)
· ej π

4 · e−jπkrt2 (kr+∆kr)
∆kr (40)

From the above derivation, it can be concluded that the pulse compression output of
frequency modulation slope mismatch jamming is no longer in the form of a sin c function,
but approximates a rectangle with a width of:

χ(∆kr) =
|∆kr|·TP

max{kr + ∆kr, kr}
(41)

In Equation (41), the width of the output rectangle is related to the frequency
modulation mismatch slope. Selecting two mismatched frequency modulation slopes
∆kr1 = −0.0400kr and ∆kr2 = 0.0417kr, corresponding to kr1 = 0.9600kr and kr2 = 1.0417kr,
respectively, the pulse compression results are illustrated in Figure 6. The figure reveals that
a mismatch in the frequency modulation slope leads to a sharp decline in the amplitude of
the pulse compression result, accompanied by a significant widening of the time width.

The analysis of peak output and time delay expansion for the above chirp rates is
shown in Figure 7. In the figure, the black dashed line represents the normalized peak value
and effective time width of the pulse compression output of the chirp rate mismatched
signal when the bandwidth changes with a time width of 50 µs. When the bandwidth is
10 MHz and the time width is 50 µs, the signal is in a matched state. Note that, under these
conditions, the peak value of the pulse compression is highest, and the effective time width
is minimal, forming an effective main lobe peak.
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From a jamming perspective, the selected jamming pattern involves the generation
of multiple false targets, which requires the chirp jamming signal to be in phase with the
radar signal. Therefore, it is crucial to prevent a mismatch in the chirp rate to preserve the
pulse compression gain: √

|kr| · Tr ≥
√

BTr (42)

5.2. Minimum Detectable Signal-to-Noise Ratio and Matched Gain Ratio

To enhance detection performance in a multi-target environment, two widely em-
ployed CFAR detection methods are the average CFAR for cluttered environments and the
ordered statistic CFAR designed for scenarios with multiple targets. In general, average
CFAR performs well in backgrounds with uniform noise and clutter distribution. However,
its performance may diminish significantly when multiple false targets are distributed on
both sides of the target detection unit.

Building on prior detection information and assuming knowledge of the false alarm
probability and detection probability for ordered statistic CFAR, the signal-to-noise ratio
(SNR) of the target echo pulse, after coherent accumulation and matched filtering, is derived
in ordered statistic CFAR detection under the condition of no jamming:

SNR =
PtGtGrλ2σ

(4π)3R4kT0BFL
(43)
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The variables in the equation represent the following parameters: Pt is the radar
transmission power, Gt is the radar transmit antenna gain, Gr is the radar receive antenna
gain, λ is the signal wavelength, σ is the target scattering cross-section, R is the radial
distance between the radar and the target, k is the Boltzmann constant, T0 is the effective
noise temperature, B is the signal bandwidth, F is the receiver noise figure, and L accounts
for losses such as atmospheric losses and losses in the radar feedline.

The SNR for the joint radar jamming and communication integration system, assuming
it is located in the direction of the transmitted jamming signal from the radar, can be
expressed as:

JSNR = α2
i

PjtG2
j λ2σ

(4π)2R2
j kT0BFLj

(44)

where αi represents the loss ratio of the matching filter gain between the secondary
frequency-shift jamming and the target echo, Pjt is the integrated signal transmission
power of the joint system, Gj is the jamming antenna gain of the joint system, and Lj is the
atmospheric loss and losses in the joint system. Based on Equation (12), the ratio of the
jamming signal’s frequency shift n(n− 1)τkr to the frequency slope kr is dependent on n
and τ. Therefore, αi can be expressed as:

αi = 1− n((n− i + 1)!− (n− i)!)τ
Tr

(45)

In the CFAR detection of the jammed radar system, given the false alarm probability
Pf a, minimum detectable probability Pdmin, and radar-related parameters, the minimum
SNR JSNR required for the joint system can be determined. Substituting the obtained JSNR
into Equation (44) yields the corresponding αi for the joint system.

As the jammed radar approaches the protected target, the radial distance R between
the radar and the target decreases. Figure 8 presents the joint system’s minimum required
jamming SNR JSNRmin in this scenario and the minimum matching gain ratio αimin for
different positions. As shown in the figure, as R decreases, the values for JSNRmin and
αimin both increase. This trend arises because as the distance decreases, the jammed radar
receives stronger jamming signals, leading to an increase in SNR. The heightened SNR, in
turn, results in an increase in the target echo-matched filter gain–loss ratio.
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5.3. Design of False Target Delay Interval

To ensure optimal jamming intensity, excessively large delay spacing for false targets
should be avoided. Elevated false target density presents challenges in generating jam-
ming signals, leading to heightened difficulty. Additionally, the impact of superposition
introduces consequential reductions in the power and coherence of individual false target
signals, thereby affecting jamming performance.
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From Equation (45), it can be observed that as the delay increases, the jamming
matching filter gain–loss ratio αi also increases. The delays corresponding to positive and
negative shifts of the target can be expressed as:

τp =
(1− α1)Tr

n2 (46)

τn =
(1− α2)Tr

n(n− 1)
(47)

Upon comparing Equations (46) and (47), it becomes apparent that the matching
loss incurred beyond false targets surpasses the corresponding loss behind false targets.
Denoting the maximum delays for positive and negative shifts of the target as τpmax and
τnmax, the results of employing positive and negative frequency shifts at various positions to
reduce the detection probability of the jammed radar to 0.1, as it progressively approaches
the protected target, are shown in Figure 9.
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Figure 9 shows that as the distance decreases, the maximum delay also decreases;
however, the delay associated with a positive frequency shift remains lower than that with
a negative frequency shift. This discrepancy can be attributed to the greater matching loss
beyond false targets, resulting in a diminished detection capability of the jammed radar,
which is more favorable for protecting the target under detection.

To enhance jamming suppression, the interval of false targets can be set to the length
of the equivalent CFAR reference cell. From a communication standpoint, the delay interval
∆τ is considered as the symbol width, influencing the maximum communication rate. The
expression for communication rate can be written as:

Rb =
1

∆τ · β · nbit (48)

where β represents the pulse coherent accumulation number captured by the intercepted
radar, and nbit denotes the communication data carried by a single UFMC symbol using
QAM modulation. Analysis of Equation (48) suggests that, when β and nbit are constant, a
smaller delay interval ∆τ leads to a higher communication rate.

5.4. Design of the Number of False Targets

The jamming signal from multiple false targets is composed of several components
with different delays. The maximum delay of these false targets should not exceed the PRT
of the intercepted radar signal. Therefore, the number of false targets in the jamming signal
has an upper bound, which is defined by:

JMmax =
PRT
∆τ

(49)
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6. Simulation Experiments and Performance Analysis

To validate the effectiveness of the proposed design, this section details the param-
eters for joint simulation experiments involving the signal and target, along with the
corresponding performance analysis.

6.1. Communication Performance Analysis

First, an analysis of the communication performance of UFMC chirp is conducted.
The primary factor affecting the performance of UFMC is the subdivision of its sub-bands.
To validate the performance results under different sub-band partitioning scenarios, the
simulation parameters for UFMC chirp are provided in Table 1.

Table 1. UFMC simulation parameter settings.

Parameter Value

Modulation mode 4QAM
Sub-band number 32, 64, 256

Number of multipath channels 5

To highlight the advantages of UFMC chirp, a comparative analysis was conducted
among four different modulation schemes: OFDM, FBMC chirp, parameter modulation,
and UFMC chirp, all executed under identical experimental settings. The experimental
results are presented in Figure 10.
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In Figure 10, the blue dashed line represents the bit error rate (BER) results of OFDM
signals in Rayleigh channel conditions, the yellow plus sign line represents the results of
FBMC chirp signals, and the red circle line represents the results of parameter modulation.
The purple hexagon, green pentagram, and light blue rhombus lines represent the results
of UFMC chirp under different sub-band partitioning. Analysis of the figure suggests that
the communication performances of FBMC chirp, parameter modulation, and UFMC chirp
surpass that of OFDM signals. This superiority can be attributed to the filter structures
utilized in joint waveforms FBMC and UFMC, resulting in reduced out-of-band leakage and
stronger subcarrier orthogonality. Consequently, the impact of ICI and ISI in a multipath
environment is effectively mitigated. Moreover, the jamming component of the joint signal
can assist in channel estimation, leading to additional improvements in BER performance.

Simultaneously, an increase in the number of UFMC sub-bands correlates with im-
proved BER performance. The increased sub-bands contribute to less out-of-band leakage,
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facilitating the satisfaction of subcarrier orthogonality and ultimately enhancing BER per-
formance. However, despite employing more UFMC sub-band partitions, the individual
filtering of each subcarrier remains challenging, leading to some ICI and ISI jamming in
UFMC chirp. This limitation prevents UFMC chirp from achieving better BER performance
than FBMC.

In radar signal processing, the FFT operates in the slow time domain, leading to
enhanced SNR after coherent accumulation processing. When SNR exceeds 6 dB, the
parameter modulation approach achieves a BER below 10−4 [37]. Therefore, coherent
accumulation processing is crucial for both FBMC chirp and UFMC chirp to achieve
satisfactory BER performance, requiring a relatively high SNR. This ensures the joint
system’s capability to effectively jam while accurately completing communication tasks.

6.2. Jamming Performance Analysis

To meet the requirements for dense false target jamming, the simulation experiments
employed a fixed number of false targets, set to JM = 600. Each false target is placed
around the true target. For ease of simulation analysis, the parameter n in Equation (12)
is set to the smallest positive integer, i.e., let n = 2. To assess the jamming effect of the
integrated signal on the radar, the detection performance of the jammed radar is simulated
using the parameters specified in Table 2.

Table 2. Simulation radar parameter settings.

Parameter Value

PRT 1.5 ms
Bandwidth 10 MHz

Number of pulses 16
Pulse width 50 us

Carrier frequency 4 GHz
Number of symbols 100

Number of false targets 600
Modulation mode 4QAM

SNR 10 dB

Figure 11a shows the time–frequency analysis results of the UFMC chirp-based relay
jamming signal, encompassing 16 radar pulses and employing a Hamming window, which
can be seen by taking one of the range lines and analyzing it in the time–frequency domain.
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Figure 11. Integrated waveform time–frequency analysis based on UFMC chirp: (a) overall time-
frequency chart results; (b) the result with dense false target spacing; (c) the result of local magnification.

Figure 11b shows the analysis results of a single UFMC chirp jamming pulse in the
time–frequency domain, and Figure 11c is a locally enlarged version of Figure 11b. The
horizontal axis in the figure represents the time sample points, while the vertical axis repre-
sents the frequency sample points. From Figure 11c, it can be observed that the designed
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jamming signal in this article can target frequency, and the frequency of the jamming signal
changes linearly over time and continues throughout the entire jamming cycle.

To further evaluate the radar jamming capability of the integrated system, a predefined
real target and jamming signal are configured according to the specifications in Table 2.
The processing results with and without jamming in the echo signal are illustrated in
Figure 12a,d. Enlarged views of specific regions are provided in Figure 12b,e. In addition,
Figure 12c,f depicts the impact on CFAR detection thresholds with and without multiple
false target jamming.
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(a,d) is the result of target echoes processed by MTD under the two cases; the second column (b,e) is
the magnified MTD results; the third column (c,f) is the comparison of CFAR threshold.

From Figure 12a,b, it can be observed that in the absence of jamming, the target echo,
after MTD processing, enables the accurate detection of the target’s position. Figure 12c
shows the result after CFAR processing, indicating the successful detection of the real target
by the radar system.

When the jamming signal designed in this study is introduced to the echo signal, as
depicted in Figure 12d,e, the real target becomes submerged among a large number of false
targets after MTD processing. Figure 12f represents the CFAR processing result, where the
radar system fails to detect the real target. The jamming signal infiltrates the reference unit
of the radar’s CFAR detection, causing the CFAR detection algorithm to estimate higher
noise power. This results in a CFAR detection threshold exceeding 20 dB above the power
of the target signal. As the increased CFAR detection threshold surpasses the power of the
jamming signal, the radar system is unable to recognize the jamming signal, effectively
achieving the objective of masking the real target.

6.3. The Trade-Off between Radar Jamming and Communication Performance

To highlight the impact of different interleaving factors on the radar jamming and commu-
nication capabilities of the joint signal, a comprehensive analysis was undertaken, involving
systematic variations in the interleaving ratio between the two constituent components.

The process of signal interleaving increases the number of frequency-domain sam-
pling points, resulting in periodic extension in the time domain of the joint signal. The
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ratio of interleaving between communication and jamming frequency points is given by
the expression:

η =
Ncom

Njam
(50)

where Ncom represents the number of communication interleaving, and Njam is the number
of jamming interleaving. Let Ntotal = Ncom + Njam. When the interleaving ratio is η, the
time-domain duration of the joint signal will extend by a factor of Ntotal compared to
the original.

At the communication receiver, when η ≤ 1, the communication system can use
jamming signal frequency points adjacent to communication frequency points for auxiliary
channel equalization. Conversely, if Ncom is less than Njam, it results in a decrease in the
communication rate of the joint signal. When η > 1, where Ncom is greater than Njam,
the communication rate of the joint signal increases, but the jamming signal frequency
points are spaced significantly apart from the communication signal frequency points. In
frequency selective fading channels, the effectiveness of auxiliary channel equalization
gradually deteriorates with the increase in η, resulting in a degradation of communication
performance. The communication BER performance curves under different η are depicted
in Figure 13.
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In Figure 13, the blue hexagonal line, red cross line, yellow circular line, and purple
plus sign line correspond to BER curves under the condition η ≤ 1, while the green
hexagonal line, blue pentagram line, and brown rhombus line depict the BER curves under
the condition η > 1. Upon comparing the results in Figure 13, it can be observed that
when η ≤ 1, the BER performance is comparable across various interleaving scenarios.
However, once η > 1, the BER performance degrades, and as η continues to increase, the
BER performance deteriorates further.

At the jammed radar end, under the condition of constant energy in the joint signal,
the energy entering the radar within the time corresponding to the accumulated pulse count
will decrease to 1/Ntotal . This reduction leads to a decrease in JSNR, causing a degradation
of the jamming performance of the joint signal. Consequently, it fails to effectively obscure
the true position of the target. The radar CFAR processing results obtained for different
values of η are illustrated in Figure 14.

Figure 14a,b depict CFAR results for η = 3 : 1 and η = 7 : 1, respectively, while
Figure 14c illustrates CFAR outcomes for η = 31 : 1. Figure 14d provides a magnified
display of Figure 14c. Analysis of Figure 14 suggests that, with the power of the joint signal
held constant, an incremental increase in η results in a gradual reduction in the jamming
capability of the signal until it can no longer mask the true target. This decline occurs as
the number of jamming signal frequency points exceeds that of communication frequency
points, a consequence of the periodic extension in the time domain, leading to a reduction



Remote Sens. 2024, 16, 1383 21 of 25

in JSNR. Under specific conductions, such as η = 1 : 3, η = 1 : 7, and η = 1 : 31, the CFAR
processing results align consistently with those presented in Figure 14a–c.
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Combining the various simulation results reveals that different interleaving scenarios
exert distinct effects on radar jamming and communication. In communication, when Ncom
is greater than Njam, the improvement in the communication rate is counterbalanced by
a deterioration in BER performance. Conversely, when Ncom is less than Njam, the BER
performance remains unaffected by channel equalization, yet the communication rate
continuously decreases. In jamming, the increase in the number of frequency-domain
points for the joint signal, regardless of whether Ncom is greater than Njam or Ncom is
less than Njam, leads to the dispersion of jamming energy in the time domain, thereby
diminishing the jamming effect. Therefore, the ratio of interleaving between radar jamming
and communication emerges as a performance trade-off. Based on the analyses and
simulations presented, it can be concluded that under the condition of η = 1, denoting
equal interleaving of communication and jamming, the overall performance of the joint
signal is relatively better.

7. Hardware Implementation

The proposed joint radar jamming and communication system was validated on a
SDR (the specific model was USRP X310, as shown in Figure 15) in a controlled laboratory
environment to acquire data and evaluate its radar jamming and communication capabili-
ties. The SDR generates integrated signals for radar jamming and communication tasks.
The prototype is highly flexible since all parameters can be set, and the feasibility of the
proposed waveform design was demonstrated. The specific experimental configuration
and scenario are shown on the left side of Figure 15, consisting of a personal computer (PC)
and a USRP. The internal signal processing flow of SDR is displayed on the right side.
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The parameters were set as follows: signal bandwidth was 50 MHz, pulse repetition
frequency (PRF) was 1 kHz, the number of UFMC sub-bands was 5, the communication
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jamming interweaving ratio η was 1:1, and 4QAM was the selected modulation scheme.
Data were collected on the PC to complete SAR imaging simulation and communication
BER testing. The jamming echo data received by SDR were superimposed on the SAR
imaging echo at the PC, and the results are shown in Figure 16.
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Figure 16. SAR imaging results: (a) without jamming; (b) frequency shift jamming causes the result
to appear before the real target; (c) frequency shift jamming causes the result to appear after the real
target; (d) the result of increasing the number of jamming attempts on the basis of (b); (e) the result of
increasing the number of jamming attempts on the basis of (c).

Figure 16a shows the SAR imaging results without jamming, and it can be seen that
the imaging results are clearly visible at this time. Figure 16b,c, respectively, show the
occurrence of false targets before and after the real target by setting the frequency shift of
jamming signals. Figure 16d,e show the results of increasing the number of jamming signals
to perform multiple false target jamming. Figure 16d is an extended version of Figure 16b,
and Figure 16e is the extended result of Figure 16c. Under the influence of jamming, the
image’s contrast is decreased and the detail information is covered by jamming, leading to
multiple false targets in the range dimension.

Based on the above results, it can be seen that the integrated waveform of UFMC chirp
proposed in this article can effectively jam with radar, and the leading or lagging positions
of false targets are controllable, increasing the effectiveness of jamming. The BER result of
communication is shown in Figure 17.

In Figure 17, the blue diamond line represents the theoretical BER of 4QAM, the red
hexagonal line represents the simulation results on the PC end, and the yellow star line
and purple circle line represent the presence and absence of equalization BER in USRP,
respectively. From the graph, it can be seen that as the SNR increases, all BER values show
a downward trend. The PC simulation results are similar to the theory, but the imperfect
equilibrium makes it impossible to match the theory. By comparing the BER curves of
USRP, it can be seen that the BER performance has been improved after jamming signal
assisted equalization. However, there is still some error between the measured results and
the simulation results, which is due to the hardware damage of SDR itself and the complex
and enclosed laboratory environment. When the SNR is greater than 15 dB, the BER is
lower than 104, which can effectively complete the communication task.
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The SDR experimental test results show that the proposed joint radar jamming and
communication waveform have the ability to simultaneously achieve radar jamming
and communication.

8. Conclusions

UFMC, a formidable contender among 5G waveforms, combines the strengths of
FBMC and OFDM, resulting in a more effective trade-off. Its subcarrier partitioning, similar
to FBMC, relaxes the requirement for subcarrier orthogonality. Moreover, UFMC elimi-
nates the need for CP, leading to better spectral efficiency compared to OFDM. Its shorter
time-domain symbols make it particularly suitable for burst communication scenarios.
Additionally, UFMC exhibits excellent out-of-band suppression capabilities and achieves
extremely high spectral efficiency, facilitating the concentration of jamming energy within
the main lobe. This attribute extends the effective jamming distance, establishing UFMC as
a superior choice for integrated radar jamming and communication systems compared to
FBMC and OFDM.

The UFMC chirp joint waveform proposed in this study consolidates radar jamming
and communication signals onto the same spectrum. In this innovative design, jamming
signals can be modulated onto different sub-bands to increase the number of false targets
generated within a single pulse period. At the same time, the frequency spectrum structure
of the chirp signal is employed as the pilot segment in the communication signal. This
aids in channel equalization, thereby enhancing overall communication performance. The
integration of these features ensures the generation of dense false target jamming while
simultaneously achieving high-speed communication transmission, completing diverse
communication tasks.

The effectiveness of the proposed UFMC chirp method was substantiated through a
series of simulation experiments. In a challenging multipath environment, UFMC chirp
signals can enhance communication performance by increasing the number of sub-bands,
aligning more closely with the characteristics of FBMC signals. Moreover, at the jamming
end, the CFAR threshold can be raised by more than 20 dB, effectively shielding the target
from detection. A detailed analysis of the interleaving ratio between communication
and jamming is also presented, along with the identification of an optimal interleaving
structure. This meticulous evaluation reinforces the efficacy of the integration waveform
system proposed in this paper. In the actual environment simulation experiment of SDR,
the proposed method effectively jams with SAR. The proposed system not only meets the
current design requirements for joint radar jamming and communication systems, but also
offers a practical and viable solution for integrated applications.
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