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Abstract: This study addresses the imperative to comprehend gravity shifts resulting from ground-
water storage (GWS) variations in the Arabian Peninsula. Despite the critical importance of water
resource sustainability and its relationship with gravity, limited research emphasizes the need for
expanded exploration. The investigation explores the impact of GWS extraction on the gravity
field, utilizing Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimila-
tion System (GLDAS) data in addition to validation using the WaterGAP Global Hydrology Model
(WGHM). Spanning April 2002 to June 2023, this study predicts GWS trends over the next decade
using the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. The comprehen-
sive time-series analysis reveals a significant GRACE-derived groundwater storage (GWS) trend of
approximately −4.90 ± 0.32 mm/year during the study period. This trend has a notable impact on
the gravity anomaly (GA) values, as observed through the decomposition analysis. The projected
GWS indicates a depletion rate of 14.51 km3/year over the next decade. The correlation between
GWS and GA is substantial at 0.80, while the GA and rainfall correlation is negligible due to low
precipitation rates. Employing multiple linear regression explains 80.61% of the variance in gravity
anomaly due to GWS, precipitation, and evapotranspiration. This study investigates climate change
factors—precipitation, temperature, and evapotranspiration—providing a holistic understanding of
the forces shaping GWS variations. Precipitation and evapotranspiration exhibit nearly equal values,
limiting GWS replenishment opportunities. This research holds significance in studying extensive
GWS withdrawal in the Arabian Peninsula, particularly concerning crust mass stability.

Keywords: GRACE; gravity anomaly; groundwater; TWS; SARIMA; Arabian Peninsula

1. Introduction

In arid regions such as the Arabian Peninsula, where water scarcity poses a formidable
challenge, groundwater emerges as a vital and often irreplaceable resource that is crucial
for sustaining life, agriculture, and economic development [1,2]. The Arabian Peninsula,
encompassing countries such as Saudi Arabia, Yemen, Oman, the United Arab Emirates,
Bahrain, Kuwait, and Qatar, is characterized by its arid climate and limited freshwater
resources [3]. The significance of groundwater in these arid landscapes cannot be over-
stated, as it serves as a primary source of water for both domestic and agricultural needs [4].
With limited surface water features such as rivers and reservoirs, the Arabian Peninsula
heavily relies on groundwater to meet the escalating demands of a growing population
and expanding agricultural practices [5]. Groundwater plays a pivotal role in sustain-
ing life and supporting various sectors in this predominantly desert region [6,7]. With
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sparse surface water features, these nations heavily rely on underground aquifers to meet
their water needs for agriculture, industry, and domestic consumption [8]. However, the
groundwater situation in the Arabian Peninsula faces challenges such as over-extraction,
declining water levels, and the threat of salinity intrusion. Rapid population growth, ur-
banization, and increased agricultural demands contribute to the strain on these precious
water resources [9–11]. The over-extraction of groundwater and declining water levels
in the Arabian Peninsula have profound effects on the Earth’s gravitational field, which
can be observed through techniques such as satellite-based measurements [12]. Excessive
withdrawal of groundwater alters the mass distribution beneath the Earth’s surface, leading
to a reduction in terrestrial water storage. This decline in water mass contributes to changes
in the gravity field (Figure 1) [13,14].
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Figure 1. The schematic of the hydrological setting in the Arabian Peninsula in addition to GRACE
satellite (Authers calculations).

In the Arabian Peninsula, the dependence on groundwater for renewable water re-
sources is pronounced. Kuwait relies entirely on groundwater, constituting 100% of its
renewable water resources, while Bahrain heavily depends on it, accounting for 96.6%
of its water supply [15]. Water withdrawal in the Arabian Peninsula is predominantly
driven by agriculture, with a significant contribution to the overall water demand [16,17].
Non-conventional water sources play a vital role in addressing water scarcity in the Arabian
Peninsula. Bahrain and Kuwait, in particular, heavily rely on non-conventional sources
for over 90% of their water resources [18,19]. Desalinated water is a key contributor, with
Saudi Arabia, the United Arab Emirates, and Kuwait collectively using 931 million m3/year.
The total annual water withdrawal for Arabian Peninsula countries is 271.5 km3, which is
around 7% of world withdrawals [20]. About 84% of inventoried withdrawals are from agri-
culture, which is higher than the value for global agricultural water withdrawal (70%) [16].
In Saudi Arabia, Oman, and Yemen, agricultural withdrawal accounts for more than 85%
of the total water withdrawal, while in Bahrain, Kuwait, and Qatar, it represents less than
60% [21].

Monitoring groundwater on a large scale through well networks is both challenging
and expensive due to issues such as temporal data inconsistencies, uneven well distribution,
and complex subsurface properties, compounded by restricted data access [22,23]. Seeking
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alternatives since the 1970s, scientists introduced the National Aeronautics and Space Ad-
ministration’s (NASA) twin Gravity Recovery and Climate Experiment (GRACE) mission
in March 2002 [24,25]. GRACE was followed by GRACE-FO in mid-2018 after 15 years
of unprecedented observation by GRACE. GRACE and GRACE-FO employ K-Band mi-
crowave technology to directly measure groundwater changes by estimating variations
in Earth’s gravity field, providing a distinct advantage over traditional monitoring meth-
ods [26–28]. The use of GRACE-derived groundwater storage (GWS) has proven more
effective in representing in situ groundwater levels, as demonstrated by various studies
quantifying groundwater variability through GRACE gravity measurements [26,29–33].
Despite the challenges, the application of satellite-based technologies like NASA’s GRACE
mission has become indispensable for directly measuring global groundwater changes,
with a notable focus on addressing GWS changes in the intricate hydrogeological setting of
the Arabian Peninsula [34–36].

In their investigation within the Abu Dhabi Emirate, UAE, Alghafli, et al. [37] em-
ployed GRACE satellite measurements to scrutinize declining groundwater levels at-
tributed to agricultural expansion and urban development. Their research underscores
GRACE data’s effectiveness in estimating groundwater recharge, emphasizing the need
for regulations to ensure sustainable groundwater development in arid regions, revealing
a notable agreement (R2 = 0.91) between in situ and GRACE-derived recharge estimates.
Mohamed, et al. [35] utilized advanced geophysical and remote sensing techniques, in-
tegrating GRACE data with land surface model outputs and rainfall data, to analyze
spatiotemporal mass fluctuations induced by groundwater changes over the Southern
Arabian Peninsula. Their findings showcase average annual precipitation rates ranging
from 54.6 to 117 mm/year and negative trends in average ∆TWS values, highlighting the
Rub El Khali region’s lower precipitation rates and higher negative groundwater storage
trends compared to the southern and eastern regions.

Addressing the Saq transboundary aquifer system in the arid Arabian Peninsula,
Fallatah, et al. [38] analyzed GRACE data, revealing significant depletion rates in TWS
(−9.05 mm/year) and GWS (−6.52 mm/year), attributed to both climate and increased
groundwater extraction for irrigation. Their integrated approach aims to inform sustainable
management of the Saq aquifer system and address water resource challenges in the region.
Employing the global hydrological model WaterGAP, Döll, et al. [39] quantified groundwa-
ter depletion (GWD) in the Arabian Peninsula and globally using GRACE data. The results
indicate that in Arabian Peninsula countries like Saudi Arabia, at least 30% of abstracted
groundwater is sourced from nonrenewable reserves, contributing to a significant global
GWD increase estimated to have more than doubled from an average of 56 km3/year to
113 km3/year between 1960 and 2000 and 2000 and 2009.

Focusing on Saudi Arabia’s water shortage, Mohamed, et al. [40] integrated GRACE
data with other relevant information, revealing a decline in groundwater storage with an
average depletion rate of −5.33 ± 0.22 mm/year during the study period (April 2002 to July
2016), driven by factors such as heavy groundwater extraction and drought. Their approach
is considered informative and cost-effective for efficiently assessing groundwater resource
variability in large areas. Addressing groundwater quality in Saudi Arabia, Fallatah [41]
utilized GRACE data to quantify groundwater storage depletion (GWS) from April 2002 to
April 2016. Findings reveal a GRACE-derived GWS depletion rate of −2 ± 0.13 km3/year,
with water quality assessments indicating high total dissolved solids (TDS) in domestic
wells from the Arabian Shield, rendering the water unsuitable for drinking. The integrated
approach, combining GRACE data with geological and hydrological information, aims to
inform sustainable water resource management in the arid Arabian Peninsula.

Despite the critical importance of GWS in arid regions like the Arabian Peninsula,
there is a noticeable shortage of comprehensive studies investigating the associated changes
in gravity. In their study, Agarwal, et al. [42] employed GRACE and InSAR data to explore
the relationship between groundwater levels, precipitation, and Earth’s gravity anomaly
(GA). Using linear regression models, they found that groundwater recharge resulted in
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surface uplift, while large groundwater extraction led to land subsidence. The estimated
groundwater loss from GRACE data was approximately 9.003 million cubic meters, and
land movement values ranged from −6 to +6 mm/year. Understanding and quantifying
the alterations in gravity resulting from GWS variations are essential for assessing water
resource sustainability, yet research in this area remains limited, highlighting the need for
further exploration and monitoring in the region. This pioneering study is the first to ex-
plore the impact of GWS extraction on the gravity field in the Arabian Peninsula, shedding
light on the complex interplay between human activities and Earth’s gravitational dynam-
ics. Additionally, the research investigates the influence of climate change factors, such as
rainfall, temperature, and evapotranspiration, providing a comprehensive understanding
of the multifaceted forces shaping GWS variations and their repercussions on the gravity
field. This study pioneers the prediction of GWS trends over the next decade. Using the
SARIMA technique, drawing insights from comprehensive historical data spanning from
April 2002 to June 2023. By leveraging the GRACE and hydrological models’ datasets, this
research aims to provide valuable foresight into the future trajectory of GWS.

2. Materials and Methods
2.1. Study Area

The Arabian Peninsula (AP) is situated in southwest Asia and is bordered to the
west by the Red Sea, the south by the Arabian Sea, and the northeast by the Persian Gulf
(refer to Figure 2a) [43]. The region boasts a diverse landscape encompassing arid deserts,
mountain ranges, and coastal plains. Spanning an area of about 3.103 million km2, it covers
approximately 4.7% of the world’s total land area and accommodates 4.25% of the global
population (refer to Table 1 and Figure 2a,b). We recognize the limitations of GRACE data
in capturing small-scale hydrological processes. While GRACE offers valuable insights at a
large scale, its spatial resolution and sensitivity to localized variations present challenges.
However, the AP area exceeds the GRACE spatial resolution, approximately 160,000 km2.
Despite this vastness, the Arabian Peninsula’s water resources constitute only about 1.1%
of the world’s total renewable water resources [44].
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Arabia in red, Yemen in light blue, the United Arab Emirates in blue, Oman in green, Kuwait in
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Table 1. Information on the area and population of countries within the AP.

Country Area (km2) Population 2023 (Million)

Bahrain 652 1.491
Kuwait 17,818 4.328
Oman 212,460 4.676
Qatar 11,610 2.726

Saudi Arabia 2,149,690 37.189
UAE 83,600 9511

Yemen 555,001 34,800

Total 3,030,831 94.721

In spite of the high population growth and water demand (Figure 2b), renewable water
availability is less than 100 m3 per person-year in places like Kuwait, Bahrain, and Qatar.
The groundwater aquifers cover two-thirds of Saudi Arabia and some of them extend into
Kuwait, Bahrain, Qatar, the United Arab Emirates, Oman, and Yemen [45]. Yemen already
has one of the lowest annual per capita water shares in the world, estimated at 125 cubic
meters [46].

The AP consists of several countries, including Saudi Arabia, the largest both in land
area and population, the United Arab Emirates to the southeast, Yemen in the southwestern
corner, mountainous Oman to the southeast, the island group of Bahrain in the Arabian
Gulf, West Asian country Qatar occupying the Qatar Peninsula on the northeastern coast,
and Kuwait located at the northern edge of the Eastern AP, situated at the tip of the Persian
Gulf and bordering Iraq to the north and Saudi Arabia to the south [47].

This region is distinguished by its distinctive topography, which encompasses deserts
and lofty mountains. It features a dry climate, particularly with soaring temperatures in the
summer. The vast expanse exhibits diverse climate zones, with the northern part classified
as subtropical (north of 20◦N) and the southern part characterized by a tropical (monsoonal)
climate type. According to Figure 3, the AP region has an arid climate with less than 96 mm
per year average rainfall (about 7.99 mm/month) (Figure 3b) and an evaporation rate of
about 81 mm per year (6.74 mm/month) (Figure 3c) because of the average temperature of
about 26.5 ◦C (Figure 3a).
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Figure 3. The climate factors of the Arabian Peninsula throughout the study period from April
2002 to June 2023, showcasing (a) the average monthly temperature using Global Historical Clima-
tology Network version 2 and the Climate Anomaly Monitoring System (GHCN-CAMS), (b) the
average monthly precipitation using from the Global Precipitation Climatology Project (GPCP), and
(c) the average monthly evapotranspiration using Global Land Data Assimilation System (GLDAS)
(authors’ calculation).
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2.2. Data Used
2.2.1. GRACE Data

The GRACE-mission was a collaborative effort between NASA and the German
Aerospace Center (DLR) that took flight in March 2002, concluding its operations in June
2017 [24]. With over 15 years of successful data collection and analysis, NASA and the
German Research Centre for Geosciences (GFZ) decided to initiate the GRACE-FO mission
in May 2018. The primary aim of these missions was to meticulously measure Earth’s
gravity field and enhance our understanding of its water distribution, spanning across land,
ice, and oceans [48]. The primary data acquired from the GRACE/GRACE-FO missions
comes in two forms: spherical harmonic coefficients (SHCs) and mass concentration blocks
(mascon) data. GRACE/GRACE-FO mascons data are presented as an equivalent water
thickness at about monthly intervals (in centimeters), which represent the TWS [49]. The
gridded GRACE data range from 0.25◦ for the University of Texas Center for Space Research
(CSR) to 0.5◦ for Jet Propulsion Laboratory (JPL) data centers [50]. For the purposes of
this study, for GWS, we focused on mascon data from release-06.2, which were obtained
from the two processing centers: CSR and JPL. While for GA, we focused on SHC data
from release-06, which were obtained from the CSR processing center. We made some
corrections to the GRACE and GFO data. Due to the low accuracy of the original value, C20
and C30 coefficients are replaced by its value in satellite laser-ranging SLR [51]. Furthermore,
due to geocentric motion, degree-1 coefficients were corrected using Swenson, et al. [52]
results. Finally, we removed correlated errors using the approach described by Swenson
and Wahr [53].

These datasets, spanning from April 2002 to June 2023, were subject to a bilinear
interpolation process where CSR GRACE Mascon products were upscaled to a resolution
of 0.5 degrees to match that of the JPL GRACE product. In this analysis, the averaged data
were utilized from these datasets, a practice known to enhance accuracy. To address gaps
in the data, such as missing monthly measurements and the 11-month transition period
between GRACE and GRACE-FO, the monsoon linear regression analysis was employed,
providing a comprehensive and continuous dataset for this study [30].

2.2.2. Hydrological Models

The Global Land Data Assimilation System (GLDAS) is assimilating observational
data products acquired from satellite and ground-based sources. This process involves the
use of advanced LSM techniques and data-assimilation methods to create optimal repre-
sentations of land surface conditions and fluxes [54]. As a result, the GLDAS project has
generated an extensive repository of globally modeled and observed surface meteorological
data, parameter maps, and outputs. This study employed the GLDAS-Noah L4-monthly
1.0 × 1.0-degree Product V2.1 [55,56]. This specific dataset serves as a valuable resource to
estimate the GWS variations.

The WaterGAP Hydrological Model (WGHM) data, characterized by a spatial resolu-
tion of 0.5◦ by 0.5◦ (approximately 55 km by 55 km at the equator) and covering a period
from Jan 2003 to December 2019, is a valuable tool for analyzing GWS dynamics [57]. Origi-
nating from the WaterGAP 2 model, which computes human water use and net abstractions
from groundwater (GW) and surface water (SW) in various global sectors, the resulting
abstractions are incorporated into the WGHM [39,57–59]. This global hydrological model
operates with daily time steps, simulating intricate flows among different water storage
compartments such as canopy, snow, soil, GWS, lakes, man-made reservoirs, wetlands,
and rivers.

2.2.3. Meteorological Data

Precipitation (Pr) is a pivotal meteorological element that plays a significant role in
the circulation of water and is closely associated with both flooding and drought events. In
this study of GWS variations, we incorporated Pr data obtained from the Global Precipita-
tion Climatology Project (GPCP) [60,61]. To further enhance our analysis, we integrated
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data from two extensive sources of station observations, namely the Global Historical
Climatology Network version 2 (GHCN) and the Climate Anomaly Monitoring System
(CAMS). This combined dataset was instrumental in estimating the monthly global surface
air temperature dataset, offering insights into temperature variations on a global scale.
Notably, these datasets possess a spatial resolution of 0.5 degrees by 0.5 degrees, ensuring a
comprehensive and detailed perspective for our research.

3. Methodology

In this study, we focus on three directions: GWS estimation, gravity change, and
climate factors affecting GWS change. Figure 4 shows the flowchart of the methodology
used in this study.
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3.1. GWS Estimation

The approach for estimating GWS in the AP employs a comprehensive strategy that
integrates GRACE mascon data with GLDAS Noah model data pertaining to soil moisture.
The GRACE mascon data capture variations in Earth’s gravitational field, facilitating the
evaluation of alterations in water storage. The processed mascon data provide equivalent
water height anomalies (∆EWH), offering insights into fluctuations in TWS [26]. Concur-
rently, the inclusion of GLDAS Noah data, which incorporate information on soil moisture,
enhances the analytical framework. The GWS estimation entails the integration of GRACE
mascon and GLDAS Noah data through a specified formula (Equation (1)).

∆GWS = ∆TWS − (∆SMS + ∆SWS + ∆SWE + ∆CWS) (1)

This equation calculates the change in groundwater storage (∆GWS) by subtracting
changes in soil moisture (∆SM), surface water (∆SWS), snow water equivalent (∆SWE),
and canopy water (∆CWS) from TWS. Importantly, in semi-arid regions like the AP, where
gravimetric fluctuations in surface water storage are negligible, contributions from ∆SWS
are considered insignificant [62]. Furthermore, the warm climate and infrequent snow
occurrences render ∆SWE negligible, while ∆CWS has minimal impact. Consequently,
for GWS estimation, these components are excluded from TWS, derived using average
data from JPL and CSR, ensuring fairness in calculations through the subtraction of the
GLDAS-SM component.

∆GWS = ∆TWS − ∆SMS (2)

3.2. Gravity Anomaly (GA)

According to Newton’s law of universal gravitation, the mass nearby affects the
gravitational acceleration at a specific location. The gravitational acceleration at the Earth’s
surface changes in proportion to changes in an aquifer’s mass brought about by processes
such as recharge or discharge into surface water or wells. Even though this change is slight,
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it can be detected. In addition to groundwater-related variables, Earth tides, changes in
barometric pressure, mass shifts brought on by volcanic activity, and other variables can all
affect gravity measurements [63]. Most of these effects are either negligible or can be taken
into account in groundwater studies.

In geodesy, gravity anomalies are used to define the figure of the Earth, notably the
geoid (the equipotential surface of the Earth’s gravity field that corresponds most closely
to mean sea level). They are used in geodesy in three main areas: (1) to determine the
anomalous potential T, the geoid’s undulation N, and the vertical deflections, globally and
locally [63]; (2) to determine the vertical crustal deformation by studying the variation of
the gravitational field over time [64]; and (3) to adjust various geodetic readings, including
leveling observations [65]. The GA or ∆g is expressed as Heiskanen and Moritz [63]:

∆g(r, φ, λ) =
km
r2 ∑∞

n=2 (n − 1)(
a
r
)

n
∑n

m=0 (C
∗
nm cos(mλ)+Snm sin(mλ))Pnm(cos ψ) (3)

where ∆g is the gravity anomaly measured by mGal, km is the geocentric gravitational
constant of the earth, r is the geocentric radius, φ, and ψ are the geodetic and geocentric
latitudes, λ is the geodetic longitude, a is the ellipsoidal semi-major axis radius, and
Pnm(cosψ) is the fully normalized associated Legendre function. C∗

nm and Snm are the fully
normalized spherical harmonic coefficients.

Figure 5 shows the average gravity anomaly during the period of the study in Arabian
Peninsula in addition to the topography heights. Figure 5a displays the mean gravity
anomaly from April 2002 to June 2023, and Figure 5b shows the topography in the same
location, which provides a comprehensive view of the gravitational variations. In inter-
preting this figure, the heights of the topography in Figure 5b offer crucial context to the
gravitational changes observed in Figure 5a. Gravity anomalies are influenced by the
distribution of mass beneath the Earth’s surface, and the topography in Figure 5b indicates
elevations and depressions in the landscape.
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Figure 5. (a) The gravity anomaly mean from April 2002 to June 2023 (authors’ calculation);
(b) topography heights over the Arabian Peninsula (authors’ calculation). (c) The Bouguer anomalies
derived from the official Earth Gravitational Model (EGM2008) released by the National Geospatial
Intelligence Agency (NGA).
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Areas with higher topography in Figure 5b, such as mountains or elevated terrain,
may exhibit corresponding anomalies in Figure 5a due to the increased mass concentration.
Conversely, regions with lower topography could result in gravitational anomalies reflect-
ing reduced mass beneath the surface. Localized features in the topography, like valleys or
ridges, might correlate with distinctive patterns in the gravity anomaly, showcasing the
gravitational impact of geological structures. Anomalies in Figure 5a might be linked to
variations in subsurface mass, such as underground geological formations or changes in
groundwater storage, which can be inferred by considering the heights and contours of the
topography in Figure 5b.

In Figure 5c, a gravity anomaly represents deviations from the expected gravita-
tional field due to variations in subsurface density. Positive anomalies indicate regions with
higher-than-expected gravity, while negative anomalies suggest lower gravity. The Bouguer
correction accounts for the gravitational effects of surface topography and near-surface
masses (such as mountains or valleys). By subtracting the gravitational attraction of these
masses, we obtain a more accurate representation of deeper subsurface anomalies. In the
Arabian Peninsula, we observe positive Bouguer anomalies in areas like the Hadhramaut
Basin in Yemen and the Rub’ al Khali (Empty Quarter) desert, likely due to denser subsur-
face materials. Negative anomalies are also present, such as parts of the Red Sea and the
Gulf of Aden. These gravity anomalies align with tectonic features like the Red Sea Rift,
the Gulf of Aden Rift, the Arabian Shield, and the Zagros Mountains.

3.3. Seasonal AutoRegressive Integrated Moving Average Model (SARIMA)

In this analysis, the SARIMA model was employed to capture and predict the tem-
poral GWS in the Arabian Peninsula over the course of 255 months, from April 2002 to
June 2023. The SARIMA model, an extension of the ARIMA model, proves to be a robust
framework for time-series forecasting, especially in scenarios marked by discernible sea-
sonal patterns [66]. Denoted as SARIMA (p, d, q) (P, D, Q), the model parameters include
AutoregRessive (AR) order p, differencing order d, moving average order q, seasonal
autoregressive order P, seasonal differencing order D, seasonal moving average order Q,
and the seasonal period s. The SARIMA model begins its application with an exploration
of the time-series data for inherent trends and seasonality. If necessary, differencing opera-
tions are employed to achieve stationarity. The core of the model involves the meticulous
selection of optimal parameter values through the analysis of autocorrelation and partial
autocorrelation functions. Following this, the dataset is partitioned into training and testing
sets to facilitate model fitting and evaluation [67].

The training phase entails fitting the SARIMA model to the training data, employing
statistical techniques to estimate the chosen parameters [68]. Validation of the model’s
performance occurs through the evaluation of key metrics, including correlation coefficients
and mean squared error, using the testing dataset [69]. Once validated, the SARIMA model
is poised for forecasting future values beyond the observed data [70]. Mathematically, the
SARIMA forecasting equation can be expressed as follows:

ŷt = c + φ1yt−1 + φ2yt−2 + . . . + φpyt−p − θ1εt−1 − θ2εt−2 − . . . − θqεt−q
+Φ1yt−s + Φ2yt−2s + . . . + ΦPyt−Ps+ ∈t

(4)

where ŷt represents the forecasted value, c is the constant term, φi and θi are autoregressive
and moving average coefficients, respectively, Φi is seasonal autoregressive coefficients,
yt−i is past observations, εt−i is past forecast errors, s is the seasonal period, and ∈t is the
error term. This comprehensive methodology ensures that the SARIMA model is adeptly
tailored to capture both short-term fluctuations and long-term seasonality, offering a reliable
framework for forecasting within the context of the Arabian Peninsula’s groundwater
storage dynamics.
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3.4. Multi-Linear Regression Analysis

In multiple linear regression (MLR) analysis, the t-statistic plays a crucial role in
evaluating the statistical significance of individual predictor variables within the model [71].
If Y is the dependent variable, β0 is the intercept term, β1, β2, . . . , βk are the coefficients
associated with the predictor variables, X1, X2, . . . , Xk are the predictor variables, and ε is
the error term, the MLR model using the equation:

Y = β0 + β1X1 + β2X2 + . . . + βkXk + ε (5)

The primary objective of the t-test is to assess whether the estimated coefficient β̂i
of a predictor variable is significantly different from zero, implying a non-zero impact
on the dependent variable. In the context of MLR, hypothesis testing is employed for
each predictor variable using the t-statistic [72]. The null hypothesis (H0) posits that the
coefficient of the predictor variable is equal to zero, suggesting no effect. Conversely,
the alternative hypothesis (H1) asserts that the coefficient is not equal to zero, indicating
a significant impact. The calculation of the t-statistic ti involves dividing the estimated
coefficient by its standard error ( SE

(
β̂ i

)
):

ti =
β̂i

SE(β̂i)
(6)

A large absolute t-value, whether positive or negative, suggests that the predictor
variable is likely to be statistically significant. In practical terms, a t-statistic far from zero
indicates that the variable has a substantial impact on the dependent variable [73]. The
degrees of freedom for the t-test in MLR are related to the sample size and the number of
predictor variables. The significance level, often set to 0.05, determines the threshold for
rejecting the null hypothesis. If the p-value associated with the t-statistic falls below this
threshold, the null hypothesis is rejected, signifying statistical significance.

4. Results and Discussion
4.1. The GWS Effects on Gravity Anomaly

In this study, a time-series comparison is conducted between GWS and GA. GWS is
estimated using GRACE mascon data, while GA is estimated using GRACE SHCs data.
Remarkably, both datasets demonstrate similar behavior, characterized by a consistent
decline (Figure 6). Notably, there is a substantial decline observed from April 2002 to June
2023, with the GWS demonstrating a trend of −4.59 ± 0.84 mm/year.
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Figure 7 explores the temporal dynamics of GA and GWS within the AP. We conducted
an extensive time-series analysis that involved decomposing the data into original, seasonal,
and trend. The depiction of the original GA data in Figure 7(b1) unveils a nuanced temporal
evolution. Throughout the investigation period, a gradual decrease in GA values is evident,
signaling shifts in subsurface conditions. The variations in GA may be influenced by
geological structures and hydrological processes, prompting a deeper inquiry into the
specific factors contributing to these changes. Likewise, the original GWS data (Figure 7(a1))
mirror the behavior observed in GA. However, distinctive periods of deviation suggest a
potential relationship between GWS dynamics and variations in GA. The observed drop in
GWS during specific intervals aligns with decreases in GA, suggesting a potential linkage
between these hydrogeological parameters.
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Figure 7. The time-series analysis decomposition of (a) GWS and (b) GA. For GWS, the decompo-
sition comprises three subfigures: (a1) for the original data, (a2) for the seasonal component, and
(a3) for the trend component. Similarly, the decomposition of GA includes three subfigures denoted
as (b1) for the original data, (b2) for the seasonal component, and (b3) for the trend component
(authors’ calculation).

The seasonal component of GA (Figure 7(b1)) reveals cyclic patterns throughout the
year, with peaks and troughs corresponding to distinct seasons. This seasonal influence is
notably aligned with changes in precipitation and temperature, underscoring the sensitivity
of GA to climatic conditions in the AP. Similarly, the GWS data (Figure 7(a2)) display
analogous seasonal patterns, with fluctuations corresponding to different seasons. The
temporal alignment of variations in GA and GWS underscores the interconnectedness of
these parameters, reinforcing the idea that seasonal climatic factors play a pivotal role in
shaping hydrogeological processes.

Examining the trend component, the downward trajectory of GA (Figure 7(b3)) sug-
gests a sustained decrease in values over the study period. This long-term trend may
be associated with regional hydrogeological changes, potentially linked to alterations in
groundwater recharge. It captures short-term irregularities not explained by the seasonal
and trend components. The GWS trend (Figure 7(a3)) closely mirrors the GA trend, further
highlighting the potential correlation between these parameters. The synchronized down-
ward trajectory implies that long-term changes in GA are closely tied to corresponding
variations in groundwater storage. The trend exhibits short-term fluctuations deviating
from the overall trend and seasonal patterns.

The comparative analysis of GA and GWS time-series in the AP unveils a complex rela-
tionship between these hydrogeological parameters. The alignment of seasonal variations,
trends, and short-term anomalies emphasizes the interconnectedness of GA and GWS.

4.2. GWS Seasonal Analysis

Groundwater storage in the AP exhibits a statistically significant decline over the
entire study period. By using two types of GWS estimation, GRACE and WGHM, we
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estimated GWS up to 2019 and compared them. In addition, we estimated the GWS trend
throughout all our periods of study. As shown in Figure 8 and Table 2, comparing the
GWS trends for the time period from January 2003 to December 2019, the trend obtained
from WGHM is approximately −3.30 ± 0.67 mm/year, which represents GWS depletion of
10.0 km3/year, whereas the GRACE-derived trend is approximately −4.41 ± 0.81 mm/year,
which represents GWS depletion of 13.36 km3/year.
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Table 2. The GWS trend over the AP were estimated using GRACE and WGHM (authors’ calculation).

GWS
GWS Trend (mm/Year) GWS Depletion

(km3/Year)
2002–2023

Average Prec.
(mm/Year)
2002–2023

Average ET
(mm/Year)
2002–20232002–2019 2002–2023

GRACE-derived GWS −4.41 ± 0.81 −4.89 ± 0.86 −14.82 ± 2.61 95.88 ± 0.50 80.88 ± 0.61WGHM-derived GWS −3.30 ± 0.67 ___

Both time-series are highly correlated with each other; the correlation coefficient
between both time-series is about 0.88. The GRACE-derived GWS trend over the pe-
riod of study from April 2002 to June 2023 shows a significant declination about of
−4.89 ± 0.86 mm/year, which represents −14.82 km3/year depletion (Table 2). The GRACE
and WGHM results demonstrate spatial domain similarity with strong signals using
GRACE’s behavior in GWS. The results show a negative trend throughout the entire
area. The Arabian Peninsula is well known for its oil production, with an average an-
nual production of 1.1 km3/year (or 19–20 million barrels per day) in this region. This
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rate amounts to around 7.5% of the total depletion estimated by GRACE-derived GWS
measurements (as shown in Table 2).

According to Figure 8a, the most stressed region is the north AP, and the depletion rate
reaches about 17 mm/year in the An-Nafud desert and Hail region in Saudia Arabia. While
the most wet region is south of AP in southwestern Yemen in Aden and Hudaydah cities, in
addition to south parts of Oman country, these regions, according to our results in Figure 3b,
show that most regions had precipitation in AP during the period of study. In the Arabian
Peninsula, the WGHM does not smoothly capture changes in GWS within the spatial
domain, unlike the GRACE-derived GWS. GRACE, utilizing satellite-based measurements,
provides a broader-scale view of GWS changes, offering a more comprehensive spatial
perspective. However, it is important to note that globally, the WGHM adequately captures
spatial patterns of groundwater depletion [39,59]. However, the reliability of the GW
variability modeled by WGHM depends strongly on optimal irrigation estimates and the
corresponding GWS abstraction rates. Improved GWS variability and trends are obtained
when assimilating GRACE-based TWSA into the models [74]. The discrepancies between
the GRACE-derived GWS trends and those from WGHM can be attributed to the inherent
differences in the methodologies and data sources of these two models for approximately
three reasons: (1) Scale of Measurement: GRACE measures groundwater storage changes on
a broader scale, utilizing satellite-based measurements that provide a more comprehensive
spatial perspective. In contrast, WGHM is a model-based approach that relies on ground-
based measurements and climatic data. This difference in scale might result in WGHM not
capturing the changes in GWS as smoothly as GRACE. (2) Data Assimilation: The reliability
of GW variability modeled by WGHM depends strongly on optimal irrigation estimates
and the corresponding GWS abstraction rates. Any inaccuracies in these estimates could
lead to discrepancies in the GWS trends derived from WGHM and GRACE. (3) Model
Limitations: While WGHM has been found to adequately capture global spatial patterns
of GW depletion, it might not be as effective in regions with complex hydrogeological
characteristics or where data is sparse or unreliable.

4.3. Climate Factors Effect on GWS and GA

The extensive use of GWS reflects the drought in this region. The Global Precipitation
Climatology Centre Drought Index (GPCC-DI) assesses water supply anomalies based
on long-term statistics. Combining the Standardized Precipitation Index (SPI-DWD) with
adaptations from Deutscher Wetterdienst and the Standardized Precipitation Evapotranspi-
ration Index (SPEI), it utilizes precipitation data from the GPCC and temperature data from
NOAA’s CPC. Available in various accumulation periods (1, 3, 6, 9, 12, 24, and 48 months)
for diverse applications, the GPCC-DI has been issued monthly since January 2013 [75]. It
is calculated on a regular grid with a 1◦ spatial resolution.

In this analysis, monthly data were utilized to calculate the average, spanning from
January 2013 to June 2023. Following the classification of GPCC-DI values, Lloyd-Hughes
and Saunders [76], positive values indicate wet conditions, whereas negative values denote
drought. The severity of drought or wetness increases progressively from mild (0 to −1
or 1) to moderate (up to −1.5 or 1.5), severe (−1.5 or 1.5 to −2 or 2), and extremely severe
(above −2 or 2), respectively. The findings reveal that a significant portion of the Arabian
Peninsula experiences extremely severe drought, particularly in the central region (refer to
Figure 9). Conversely, areas of high elevation in the western and southern parts of the AP
exhibit wet conditions (refer to Figures 9 and 5b).

One prominent factor contributing to the substantial depletion of groundwater in
this region is its climatic conditions. The precipitation rate in the Arabian Peninsula
(AP) is notably scarce when compared to the rate of evapotranspiration (ET). Monthly
precipitation rates hover around a comparable magnitude to ET rates in AP, providing
minimal opportunity for GWS replenishment. Figure 10 illustrates the sharp decline in the
GWS time-series, juxtaposed with the bar chart depicting the average monthly precipitation
and ET.
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Figure 9. The average monthly drought index for the time frame between January 2013 and June
2023, using monthly GPCC data. The drought is depicted in colors ranging from yellow to red, with
the severity of the drought increasing from mild (0 to −1) to moderate (up to −1.5), severe (−1.5 to
−2), and extremely severe (below −2). Conversely, the wet is represented by a range of blue hues,
with the level of wetness increasing from mild (0 to 1) to moderate (up to 1.5), severe (1.5 to 2), and
extremely severe (above 2) (authors’ calculation).
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Figure 10. Comprehensive analysis of GWS trends and meteorological factors in the AP. This figure
comprises a time-series of GRACE-derived GWS, the mean temperature, and a bar chart depicting Pr
and ET (authors’ calculation).

The monthly precipitation and ET exhibit considerable variability, fluctuating from
approximately zero to about 30 mm, with an average of 7.99 mm for monthly precipita-
tion and 6.74 mm for ET (Figure 10). This rate is classified as relatively low compared to
global averages. Given these rates and the equilibrium between precipitation and ET, com-
pounded by the region’s high temperatures (as discussed in Section 2.1) and the substantial
water demand for a population exceeding 97 million people (refer to Table 1), the GWS
undergoes a significant decline. This depletion of GWS further influences the equilibrium
of gravitational forces in the region, contributing to a notable shift in the gravity balance.
The intricate interplay between these climatic, hydrological, and demographic factors
underscores the challenges faced by the Arabian Peninsula in sustaining groundwater
resources amidst escalating demand and unfavorable climate conditions.

Due to a better understanding of this relationship, we employed a multiple linear
regression model to investigate the relationship between GA, with GWS, precipitation,
and ET (Figure 11). The main two components’, GWS and GA, trends show the same
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declination direction. Therefore, the model demonstrated a significant fit, explaining a
substantial proportion of the variance in GA, as indicated by the high R-squared value
of 0.8061.
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The regression coefficients indicated that both GWS and precipitation and ET were sig-
nificant predictors of GA. For instance, for every unit increase in GWS, the gravity anomaly
increased by 2.32 × 10−5, assuming rainfall is held constant. Similarly, for every unit in-
crease in precipitation, the GA decreased by 1.16 × 10−5, assuming GWS is held constant.
These relationships were statistically significant at the 0.05 level (p-values: 2.47 × 10−65, for
GWS, 4.09 × 10−5 for precipitation and 0.0097 for ET). Residual analysis revealed that the
assumptions of the regression model were adequately met. The residuals were randomly
distributed around zero when plotted against the predicted values, suggesting that the
model provided a good fit to the data.

Correlation Analysis

The results of the correlation analysis between GA with GWS and rainfall provide
valuable insights into the hydrogeological dynamics of the AP during the period of study
(Figure 12). The correlation coefficients reveal a notably strong correlation of 0.8 between
GA and GWS. This substantial correlation suggests a robust and consistent relationship
between GA values and variations in GWS levels. The high positive correlation implies
that changes in GWS contribute significantly to the observed variations in GA. This finding
aligns with expectations, as fluctuations in groundwater levels can influence the density
distribution in the subsurface, consequently impacting GA measurements.

Contrastingly, the correlation between GA and rainfall is observed to be weak. The
coefficient of correlation, as evidenced by the scatter plot, suggests a lack of a strong
linear relationship between GA and rainfall in the studied period (as discussed earlier in
Figure 10). This outcome underscores that precipitation patterns alone may not be the
dominant driver of gravity anomaly changes over the analyzed timeframe.

Consequently, the correlation analysis indicates a robust connection between gravity
anomalies and GWS in the AP, affirming the sensitivity of GA to changes in groundwater
levels. Conversely, the weak correlation with rainfall emphasizes the need to explore addi-
tional factors influencing GA dynamics in the region. These findings contribute valuable
insights to the understanding of hydrogeological processes in the AP and underscore the
complex interplay of environmental variables influencing GA variations.
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4.4. GWS Prediction

In this study, a SARIMA model was utilized to predict GWS over the Arabian Penin-
sula, spanning 255 months from April 2002 to June 2023. The groundwater storage fore-
casting employed an ARIMA (4,0,2) model with SARIMA, featuring an autoregressive
(AR) component covering lags 1 to 4, a moving average (MA) component at lags 1 and
2, and seasonality introduced through seasonal AR terms at multiples of 12 (SAR) up
to lag 48. The model effectively captures both short-term and long-term dependencies
within the GWS time-series data. Statistical tests on the parameter estimates elucidate
the significance of each component; specifically, the constant term demonstrates statistical
significance (p-value < 0.05), suggesting a meaningful impact on groundwater storage.
Likewise, multiple autoregressive and seasonal coefficients exhibit statistical significance,
underscoring their relevance in elucidating variations in the GWS time-series. In our study,
all p-values for coefficients are below 0.05, indicating the statistical significance of each
corresponding coefficient.

Figure 13 shows the GWS time-series divided into three parts training data, testing
data, and predicted data using the SARIMA model. The SARIMA model was applied to
forecast GWS for an additional 120 months, extending the prediction period to mid-2033
beyond the initial 255-month observation span. Utilizing 80% of the data (204 months) for
training and reserving the remaining 20% (51 months) for testing, the robust correlation
coefficient of 0.94 between the test and predicted data over the 51-month test period
underscores the reliability of the predictive insights.

Comparatively, when juxtaposed with the GRACE-derived GWS trend of
−4.89 ± 0.86 mm/year, the forecasted trend for the upcoming 120 months manifests as
−4.79 ± 0.79 mm/year. This observation implies a noteworthy overall depletion trend
of approximately −5.15 ± 0.94 mm/year (equivalent to ≈15.97 km3/year) across the ex-
pansive Arabian Peninsula. While interpreting these results, due consideration should be
given to the inherent uncertainties associated with long-term forecasting, coupled with the
dynamic and intricate nature of groundwater systems in this geographically diverse region.
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2033. The graph features three distinct lines: the blue line represents the training data, the orange line
signifies the testing data, and the green line depicts the predicted GWS values (authors’ calculation).

Given the significant depletion of GWS, it is crucial to study this depletion in the AP.
Understanding its impact on gravity stability and, consequently, crust stability, is essential
for the future. To mitigate groundwater depletion, we recommend several strategies:
enforce stricter water management policies; explore artificial recharge methods (such as
injecting treated wastewater or excess surface water into aquifers); invest in desalination
plants, promote sustainable agriculture practices; and raise public awareness about water
conservation. Integrated water resource management plans should consider both surface
water and groundwater, tailored to the unique hydrogeological characteristics and socio-
economic context of the region.

5. Conclusions

In conclusion, this study investigated the intricate relationships between groundwater
storage and gravity changes in the Arabian Peninsula. To study GWS behavior, we integrate
datasets from GRACE and GLDAS, as well as climate factors such as precipitation, temper-
ature, and evaporation. The analysis reveals a deeply concerning trend of extremely severe
drought due to low precipitation, with an average precipitation of 95.88 ± 0.50 mm/year
and average evaporation of 80.88 ± 0.61 mm/year during the study period, attributed to
an average temperature of 26.5 ◦C. This drought peak is particularly severe in the Arabian
Peninsula’s central region, posing a significant challenge to groundwater replenishment.
In contrast, the southwest had humid conditions. The time-series analysis revealed a
significant decline in GWS from April 2002 to June 2023, with an observed rate of approxi-
mately −4.59 ± 0.84 mm/year, according to GRACE observations. Groundwater volume
decreased by −14.82 ± 2.61 km3/year, highlighting its impact on the gravity field. The
WGHM hydrological model predicted a groundwater decline of −3.30 ± 0.67 mm/year
from 2003 to 2019. Temporal analysis of GWS and gravity anomalies (GAs) reveals a parallel
decrease, which explains the region’s negative gravitational changes. Climate factor analy-
sis indicates a scenario of severe drought (>2.5) in the Arabian Peninsula, particularly in the
central region, consistent with the GPCC-DI, and precipitation scarcity was evident. The
SARIMA model predicts a −5.15 ± 0.94 mm/year depletion trend over the next 120 months
until June 2033, surpassing previous analyses. A multiple linear regression model was
used to investigate the interaction of GWS, GA, and climatic factors. The model shows that
GWS, precipitation, and evaporation have a significant influence on GA, accounting for
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80.61% of the variance. The strong correlation (0.8) between GWS and GA demonstrates
the importance of GWS in shaping gravitational variations in the region.
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