
Citation: Ren, J.; Wang, H.; Li, K.-M.;

Luo, Y.; Zhang, Q.; Chen, Z.

Separation of Multicomponent

Micro-Doppler Signal with Missing

Samples. Remote Sens. 2024, 16, 1369.

https://doi.org/10.3390/

rs16081369

Academic Editor:

Massimiliano Pieraccini

Received: 1 March 2024

Revised: 2 April 2024

Accepted: 11 April 2024

Published: 12 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Separation of Multicomponent Micro-Doppler Signal
with Missing Samples
Jianfei Ren 1,† , Huan Wang 2,† , Kai-Ming Li 1,3,* , Ying Luo 1,3,4 , Qun Zhang 1,3,4 and Zhuo Chen 2

1 Information and Navigation College, Air Force Engineering University, Xi’an 710077, China;
jeffery_ren@163.com (J.R.); luoying2002521@163.com (Y.L.); rsplzq@163.com (Q.Z.)

2 Xi’an Electronic Engineering Research Institute, Xi’an 710100, China; lake_wh@outlook.com (H.W.)
3 Collaborative Innovation Center of Information Sensing and Understanding, Xi’an 710077, China
4 Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education),

Fudan University, Shanghai 200433, China
* Correspondence: kimysunrsp@163.com
† These authors contributed equally to this work.

Abstract: The problem of separating multicomponent micro-Doppler (m-D) signals is common in the
field of radar signal processing. In some implementations, it is necessary to separate the multicom-
ponent m-D signal that contains missing samples. To address this issue, an optimization model has
been developed to recover and decompose multicomponent m-D signals with missing samples. To
solve the underlying optimization problem, a two-algorithm-based alternate iteration framework
is proposed. This method uses three techniques—the null space property, ridge regression method,
and matching pursuit principle—to estimate the individual component, complex-valued differential
operator, and regularization parameter. Finally, as shown by both simulation and measured data
processing results, the proposed method can accurately separate the multicomponent m-D signal
from incomplete data.

Keywords: micro-Doppler signal; time-frequency analysis; signal decomposition; iterative methods;
incomplete sampling

1. Introduction

Micro-motion refers to small movements, such as vibrations and rotations of the
target or target parts, which are excluded from the translation of the main body [1]. A
micro-motion target produces frequency modulation on the radar echoes, causing a multi-
component micro-Doppler (m-D) signal. Multicomponent m-D signal decomposition has
received extensive attention in microwave remote sensing due to the ability of m-D signal
components to exhibit more detailed target characteristics, such as the precession frequency
of artificial metal targets or the length of the rotating blades [2].

As the instantaneous frequency (IF) of the spinning scatterer echo can be approximated
using a sinusoidal function, several multicomponent m-D signal decomposition methods
based on sinusoidal frequency modulated (SFM) signal matching have been proposed.
Peng et al. [3] proposed the sinusoidal frequency modulation Fourier transform (SFMFT)
based on SFM signal space for multicomponent SFM signal decomposition. Furthermore,
by introducing the K-resolution parameter on the Bessel function basis, researchers in [4]
proposed the sinusoidal frequency modulation Fourier–Bessel (SFMFB) transform to sepa-
rate multicomponent m-D signals. Based on point-line duality, the inverse Radon transform,
Hough transform, and their extension methods are applied to estimate the parameters of
the SFM signal and extract the micro-motion features [5–8]. However, the above methods
are not applicable when the pattern of IF is more complex or irregular.

For micro-Doppler signal components with irregular IF, the Hilbert–Huang transform
(HHT) and the variational modal decomposition (VMD) method are proposed for signal
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decomposition, which derives from adaptive filtering methods [9]. Since most of the radar
data are complex signals, extended VMD methods such as complex-valued empirical mode
decomposition (CVEMD) and bivariate variational mode decomposition are used to sepa-
rate the echo signals of the main body and the micro-motion parts of the target [10,11]. The
decomposition result of measured data has demonstrated that these methods perform well
with nonstationary signals. However, these methods do not fit for decomposing multicom-
ponent signals with the overlapping frequency spectrum. Although some variants of VMD
have been successfully proposed for extracting multicomponent m-D signals containing
crossed modes, such as the short-time variational modal decomposition (STVMD) [12]
and variational nonlinear chirp mode decomposition (VNCMD) [13], they both require
the number of components as a priori. Based on the recursive decomposition scheme, the
operator-based signal separation (OSS) method [14,15] and adaptive chirp mode pursuit
(ACMP) [16] have been used in multicomponent signal decomposition without the number
of components in advance. In addition, signal separation methods based on fractional
Fourier transform FRFT [17], time-scale frequency-modulation slope operator [18], and
chirplet transform [19] have been successively used to extract the frequency-changing
curves of nonstationary signals that are concerned with the time-frequency domain. These
methods estimate the instantaneous frequency of each component signal by searching
the parameters of the multicomponent signal from the three-dimensional space of time,
frequency, and frequency modulation slope.

In real-world scenarios, the radar data of micro-motion targets may be incomplete with
randomly missing samples due to strong interference. When echoes of micro-motion targets
are corrupted with only randomly positioned samples due to interference or sensor failure,
the state-of-art radar imaging techniques become invalid. Under this circumstance: (1) In
the situation of long-range, the micro-motion target with a small radar cross section (i.e., low
signal-to-noise (SNR)) may not be extracted from the receiver noise. (2) Some samples must
be discarded during the strong interference of the micro-motion target echo; otherwise,
sensor failure and outliers prevent effective observation of the data samples [20]. To recover
target features from incomplete data, methods based on over-complete parameters or
time-frequency (T-F) dictionaries have been proposed. However, the above methods do not
achieve effective separation of multicomponent signals [21–25].

In this paper, inspired by the OSS method, an alternate iterative optimization frame-
work is constructed for multicomponent m-D signal with missing samples decomposition
and reconstruction. The specific contributions of this paper are as follows:

(1) We propose two algorithms to solve the alternate iteration framework. The first
algorithm uses the iteratively reweighted least squares (IRLS), Tikhonov regulariza-
tion, and the matching pursuit principle to extract signal components, regularize the
complex-valued differential (CD) operator, and calculate the optimization parameters,
respectively.

(2) To improve the accuracy of extracting signal components, the second algorithm
employs the alternating direction method of multipliers (ADMM), iterative Tikhonov
regularization, and the fixed-point iteration principle to extract signal components,
regularize the CD operator, and calculate the optimization parameters, respectively.

(3) Furthermore, an adaptive parameter updating method is proposed for iterative
Tikhonov regularization.

The rest of this paper is organized as follows: The signal model and problem for-
mulation are described in Section 2. Section 3 proposes a decomposition method for
multicomponent m-D signals with missing samples. Section 4 illustrates the effectiveness
of the proposed method by simulated and measured signals. Section 5 is a discussion and
Section 6 is a conclusion.
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2. Signal Model and Problem Formulation

In a high-frequency electromagnetic regime, the target can be constructed by a point
scattering model [23]. The micro-motion target echo can be regarded as a multicomponent
m-D signal. The multicomponent m-D signal with missing samples can be expressed as

s(t) =
K

∑
k=1

p(t)sk(t) + η(t) =
K

∑
k=1

p(t)ak(t) exp
(

j
4π

λ
Rk(t)

)
+η(t) (1)

where K represents the number of scatterers; p(t) stands for missing samples, p(t) ⊂
{0, 1}. j2 = −1. ak(t) > 0 indicates the instantaneous amplitude (IA). R(t) denotes the
instantaneous range between the radar and the k-th scatterer. φk(t) = 4πRk(t)/λ stands
for instantaneous phase. sk(t) is the individual component. fk(t) = φ′k(t)/2π stands for
IF. η(t) is the Gaussian white noise. The IA and IF of a signal change more slowly than its
phase function and |a′k(t)|, | f ′k(t)| ≪ | fk(t)|.

Ω(·) is defined as a second-order differential operator, which is Ω(sk(t)) = d2sk(t)/dt2.
The second-order differential of individual components can be expressed as

Ω(sk(t)) = αk(t)sk(t) (2)

with

αk(t) =
a′′ k(t)
ak(t)

−
(

φ′k(t)
)2

+ j
(

2a′k(t)φ′k(t)
ak(t)

+ φ′′ k(t)
)

(3)

where Ω− αk is set to be the null space operator Tk, and Tk(sk(t)) = 0. It means that Tk
has the function of individual component decomposition. Based on the ability of Tk to
decompose individual components and the sparsity of individual components in the T-F
domain, the decomposition of individual components sk(t) with missing samples can be
described as an optimization problem in (4),

min
αk ,sk
∥Tksk∥2

2 + λ∥s− Psk∥2
2 + υ∥Wsk∥1 + µ∥Ωαk∥2

2 (4)

in which Ω can be written as

Ω =


1 1 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 0 1 −2 1
0 · · · 0 0 0 1 −1

 (5)

where s =[s(t1) . . . s(tn) . . . s(tN)]
T stands for m-D signal with missing samples, sk =

[sk(t1) . . . sk(tn) . . . sk(tN)]
T stands for the k-th component, and n ∈ [1, N], (·)T denotes

the transpose of matrix. Tk= Ω−αk, Ω is a modified second-order differential operator
and αk = diag{αk(t1) . . . αk(tn) . . . αk(tN)}, diag{·} denotes a diagonalization operator.
W ∈ CMN×N is a short-time Fourier transform matrix, M = N/ms and ms stand for
the step of the sliding window. W = HQ, H = diag{Y, . . . Y} and H ∈ CMN×MN . Y
stands for the Fourier transform matrix. Q= [B1 . . . Bm . . . BM]T

is the sliding window
matrix, Bm = diag{bm(1), . . . bm(n), . . . bm(N)} represents the m-th window matrix, and
Bm ∈ RN×N [25]. P is an incomplete sampling diagonal matrix, which consists of p(t).
The first term denotes the extraction of component sk by the null space operator Tk. The
second term is used to regularize the residual signal s− Psk. υ, λ and µ are regularization
parameters. υ denotes the regularization parameter. In general, the larger the value of
υ, the sparser the result of the reconstruction. It is reasonable to assume that sk is sparse
in the time-frequency (TF) domain, so the third term represents sparse prior of Wsk. The
parameter λ determines the energy of sk in the null space. The fourth term indicates the
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regularization of the CD operator αk and ensures the smoothness of the operator. ∥·∥1 and
∥·∥2 stand for L1-norm and L2-norm, respectively.

3. Algorithm Design

In Section 2, the decomposition of incomplete multicomponent m-D signals has been
formulated as an optimization problem. In that section, two methods are proposed for
solving the problem. As the CD operator is not known as a priori, the problem described in
(4) needs to be split into two optimization problems solving the signal components and CD
operator separately. As shown in Algorithm 1, the problem constructed by Problem (4) can
be approximately solved by solving Problem (6) and Problem (7) alternately.

Algorithm 1 The framework of the proposed method

Initialization i = 0, λ(i), υ(i), µ, α(i)
k

(
T(i)

k = Ω−α
(i)
k

)
, s(i)k , ξ;

Repeat
Given α

(i)
k

s(i+1)
k = argmin

sk
∥Tksk∥2

2 + λ∥s− Psk∥2
2 + υ∥Wsk∥1 (6)

Given s(i)k

α
(i+1)
k = argmin

αk
∥Tksk∥2

2 + µ∥Ωαk∥2
2 (7)

Update regularization parameters λ and υ

Until ∑k

∥∥∥s(i+1)
k − s(i)k

∥∥∥2

2
/
∥∥∥s(i)k

∥∥∥2

2
< ξ

3.1. IRLS-Based Algorithm

The problem described in (6) can be regarded as a basis pursuit or variable splitting
problem, which can be addressed by interior-point methods [24] or alternating direction
methods of multipliers [26], respectively. In order to take advantage of the automatic
parameter updating of the proposed approach, the problem is solved by the IRLS algorithm
here, and Equation (6) can be reformulated as

sk = argmin
sk
∥Tksk∥2

2 + λ∥s− Psk∥2
2 + υsH

k WHR−1Wsk (8)

where R = diag{|Wsk|} and L1-norm ∥Wsk∥1 can be viewed as an adaptively weighted
version of the squared L2-norm ∥QWsk∥2

2. The problem given in (8) can be reformulated as

sk = argmin
s(i)k

∥Tksk∥2
2 + λ∥s− Psk∥2

2 + υ∥QWsk∥2
2 (9)

where R−1 = QTQ. By using IRLS, the solution to Problem (9) can be formulated as

s(i+1)
k =

(
2TH

k T + 2λPTP + 2υWHQHQW
)−1

2λPs (10)

For the problem in Equation (7), let αk be the vector that θk = diag{αk}, and the
Equation (7) can be rewritten as

Γ(θk) = ∥Ωsk − Ξkθk∥2
2 + µ∥Ωθk∥2

2 (11)
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where Ξk = diag
{

si+1
k

}
. The Equation (11) can be regarded as Tikhonov regularization. By

taking the partial derivative of Γ(·) with respect to θk and making the result being zero,
the problem described in Equation (11) can be solved as

θ
(i+1)
k =

(
ΞH

k Ξk + µΩTΩ
)−1

ΞH
k Ωs(i+1)

k (12)

Based on the matching pursuit principle, the individual component sk and residual
signal s− sk are approximately mutually orthogonal, i.e.,

(sk)
H(s− sk) = 0 (13)

The parameter λ determines the amount of information about the residual signal.
According to Equations (10) and (13), the parameters λ can be calculated by

sH(V(Tk, Q,υ, λ))s

λsH(V(Tk, Q,υ, λ))H(V(Tk, Q,υ, λ))s
= 1 (14)

with
V(Tk, Q,υ, λ) =

(
2TH

k Tk+2λPTP+2υWTQTQW
)−1

P (15)

According to Equation (14), the value of λ can be estimated by

λ(i+1) =
sH(

V
(
Tk, Q,υi, λi))s

sH
(
V
(
Tk, Q,υi, λi

))H(
V
(
Tk, Q,υi, λi

))
s

(16)

The IRLS-based algorithm is shown in Algorithm 2, which consists of two loops.
The first loop is used to update the residue signal and the second loop is used to ex-
tract the component sk. The parameter ξ is the relative error, η is the stopping thresh-
old, r is the residue signal, and r(0) = s. The parameter µ determines the smooth-
ness of αk. Since µ is insensitive to αk, it is set to be a fixed value. The initializa-

tion of αk can be obtained by θ
(1)
k = ((R(m))

H
R(m) + µΩTΩ)

−1(
R(m))

H
Ωr(m), where

R(m) = diag{r(m)
}

,θ(1)
k = diag{α(1)

k

}
.

Algorithm 2 IRLS-based algorithm

Input: i = 0, m = 0, λ(i)υ, µ, s(i)k η, ξ.

while
∥∥∥r(m)

∥∥∥2

2
/∥s∥2

2 > η do

Initialization α
(i)
k

(
T(i)

k = Ω−α
(i)
k

)
while

∥∥∥s(i+1)
k − s(i)k

∥∥∥2

2
/
∥∥∥s(i)k

∥∥∥2

2
> ξ do

i← i + 1

s(i+1)
k =

(
2TH

k T + 2λPTP + 2υWHQHQW
)−1

2λPr(m)

V(Tk, Q,υ, λ) =
(
2TH

k Tk+2λPTP+2WTQTQW
)−1

P

λ(i+1) =
(r(m))

H
(V(Tk ,Q,υi ,λi))r(m)

(r(m))
H
(V(Tk ,Q,υi ,λi))

H
(V(Tk ,Q,υi ,λi))r(m)

θ
(i+1)
k =

(
ΞH

k Ξk + µΩTΩ
)−1

ΞH
k Ωs(i+1)

k
end while

update the residue signal r(m)= s−
m
∑

k=1
sk

m← m + 1
end while
Output: reconstructed components sk
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3.2. ADMM-Based Algorithm

The variable splitting method [26] is introduced to solve the problem described in (6),
and it can be rewritten as

min
fk ,sk

f1(fk) + f2(sk) s.t. fk = Wsk (17)

with
f1(fk) = υ∥fk∥1 (18)

f2(sk) = ∥Tksk∥2
2 + λ∥s− Psk∥2

2 (19)

where fk stands for time-frequency representation (TFR) of sk. The variable splitting
problem defined in (17) can be solved by the simplex algorithm based on subproblems,
which are more complicated compared with ADMM. Therefore, the problem (17) is solved
by ADMM [26]. The augmented Lagrange function of (17) can be expressed as

L(sk, fk, u) = ∥Tksk∥2
2 + λ∥s− Psk∥2

2 + υ∥Wsk∥1 + ⟨u, Wsk − fk⟩T +
ρ

2
∥Wsk − fk∥2

2 (20)

where u stands for Lagrange multiplier, ρ stands for penalty coefficient, and ⟨·, ·⟩ represents
inner product operation. The Equation (20) can be reformulated as

L(sk, fk, u) = ∥Tksk∥2
2 + λ∥s− Psk∥2

2 + υ∥Wsk∥1 +
ρ

2

∥∥∥∥Wsk − fk +
1
ρ

u
∥∥∥∥2

2
− 1

2ρ
∥u∥2

2 (21)

To estimate the single component sk, the objective function (21) can be rewritten as

sk = argmin
sk
||Tksk||22 + λ||s− Psk||22 +

ρ

2

∥∥∥∥Wsk − fk +
1
ρ

u
∥∥∥∥2

2
(22)

Finding the partial derivative with respect to sk for Problem (22), i.e.,

∂
∂sk

{
∥Tksk∥2

2 + λ∥s− Psk∥2
2 +

ρ
2

∥∥∥Wsk − fk +
1
ρ u

∥∥∥2

2

}
= 2TH

k Tksk + 2λ
(
PTPsk − PTs

)
+ ρ

2

(
2WHWsk − 2WHfk +

2
ρ WHu

) (23)

Let the value of Equation (23) be zero, then the solution to Problem (22) is

s(i+1)
k =

(
2TH

k Tk + 2λPTP + ρWHW
)−1(

2λPTs+ρWH(fk − u)
)

(24)

To estimate fk, the objective Function (21) can be rewritten as

fk = min
fk

υ||fk||1 +
ρ

2

∥∥∥∥Wsk − fk +
1
ρ

u
∥∥∥∥2

2
(25)

Problem (25) is L1-norm regularization. The solution to Problem (25) can be obtained
by the soft threshold function

f(i+1)
k = so f t

(
Ws(i+1)

k +u,
2υ

ρ

)
(26)

with
so f t(z, λ) = sign(z)max{0, |z| − λ} (27)

Based on the gradient ascent method, the Lagrange multiplier u can be expressed as

u(i+1) = u(i) + ρ
(

Ws(i+1)
k − f(i+1)

k

)
(28)
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In each iteration, the individual component sk can be defined as

sk =
(

2TH
k Tk + 2λPTP + ρWHW

)−1(
2λPTs+ρWH(fk − u)

)
= M(Tk, Q,υ, λ)/λ

(29)

with

M(Tk, Q,υ, λ) =
(

2TH
k Tk/λ + 2PTP + ρWTW/λ

)−1(
2λPTs+ρWH(fk − u)

)
(30)

where M(Tk, Q,υ, λ) related to Tk, Q, υ and λ. Based on the matching pursuit principle,
Equation (13) can be reformulated as

λ =
M(Tk, Q,υ, λ)M(Tk, Q,υ, λ)

M(Tk, Q,υ, λ)s
(31)

where M(·) = M
(
Tk, Q,υi, λi). Based on the fixed-point iterative method, (31) can be

rewritten as

λ(i+1) =
λ(i)sH

k sk

sH
k s

(32)

As iterative Tikhonov regularization can obtain more accurate solutions in solving
ridge regression, the problem described in (11) can be redefined as

θ
(i+1)
k = argmin

θk
∥Ωsk − Ξkθk∥2

2 + µ
∥∥∥Ω

(
θk − θ

(i)
k

)∥∥∥2

2
(33)

where i is the iteration counter. The value θ
(i+1)
k of the solution for Problem (33) is close to

θ
(i)
k . If 0 < µ < ∞, the value of

∥∥∥Ωsk − Ξkθ
(i+1)
k

∥∥∥2

2
is smaller than that of

∥∥∥Ωsk − Ξkθ
(i)
k

∥∥∥2

2
.

Finding the partial derivative with respect to θk for Problem (33), i.e.,

∂
∂θk

{
∥Ωsk − Ξkθk∥2

2 + µ
∥∥∥Ω

(
θk − θ

(i)
k

)∥∥∥2

2

}
= −2ΞH

k Ωsk + 2ΞH
k Ξkθk + µ

(
2ΩTΩθk − 2ΩTΩθ

(i)
k

) (34)

Let the value of Equation (34) be zero, then the solution to Problem (33) can be
expressed as

θ
(i+1)
k =

(
ΞH

k Ξk + µΩTΩ
)−1(

ΞH
k Ωsk + µΩTΩθ

(i)
k

)
(35)

To obtain the regularization parameter µ, Equation (35) can be expressed as

µΩTΩ
(
θ
(i+1)
k − θ

(i)
k

)
= ΞH

k Ωsk − ΞH
k Ξkθ

(i+1)
k (36)

According to Equation (35), Ωsk can be approximated as Ξkθ
(i+2)
k . Furthermore,

approximating
(
θ
(i+2)
k − θ

(i+1)
k

)
as

(
θ
(i+1)
k − θ

(i)
k

)
, Equation (36) can be redefined as

µΩTΩ
(
θ
(i+1)
k − θ

(i)
k

)
≈ ΞH

k Ξk

(
θ
(i+1)
k − θ

(i)
k

)
(37)

By multiplying the left side of the equation by
(
θ
(i+1)
k − θ

(i)
k

)
, Equation (37) can be

rewritten as

µ
(
θ
(i+1)
k − θ

(i)
k

)
ΩTΩ

(
θ
(i+1)
k − θ

(i)
k

)
≈

(
θ
(i+1)
k − θ

(i)
k

)
ΞH

k Ξk

(
θ
(i+1)
k − θ

(i)
k

)
(38)
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Then, the updated formula for the regularization parameter µ can be expressed as

µ(i+1) =

∥∥∥Ω
(
θ
(i+1)
k − θ

(i)
k

)∥∥∥2

2∥∥∥Ξk

(
θ
(i+1)
k − θ

(i)
k

)∥∥∥2

2

(39)

The method for the ADMM-based algorithm is shown in Algorithm 3.

Algorithm 3 ADMM-based algorithm

Input: i = 0, m = 0, λ(i)υ, µ(i), s(i)k , η, ξ.

while
∥∥∥r(m)

∥∥∥2

2
/∥s∥2

2 > η do

Initialization α
(i)
k

(
T(i)

k = Ω− α
(i)
k

)
while

∥∥∥s(i+1)
k − s(i)k

∥∥∥2

2
/
∥∥∥s(i)k

∥∥∥2

2
> ξ do

i← i + 1

s(i+1)
k =

(
2TH

k Tk + 2λPTP + ρWHW
)−1(

2λPTr(m) + ρWH(fk − u)
)

f(i+1)
k = so f t

(
Ws(i+1)

k +u, 2υ
ρ

)
u(i+1) = u(i) + ρ

(
Ws(i+1)

k − f(i+1)
k

)
λ(i+1) =

λ(i)sH
k sk

sH
k r(m)

θ
(i+1)
k =

(
ΞH

k Ξk + µΩTΩ
)−1(

ΞH
k Ωsk + µΩTΩθ

(i)
k

)
µ(i+1) =

∥∥∥Ω
(
θ
(i+1)
k −θ(i)

k

)∥∥∥2

2∥∥∥Ξk

(
θ
(i+1)
k −θ(i)

k

)∥∥∥2

2

end while

update the residue signal r(m)= s−
m
∑

k=1
sk

m← m + 1
end while
Output: reconstructed components sk

4. Experimental Results

In this section, we will demonstrate the performance of the proposed method by the
simulated signal, experimental data, and real-life data. The relative error ξ is fixed at 0.0001
to 0.01. According to experience, the proposed method can work effectively when η is set
between 0.01 and 0.1. The step of sliding window ms is 1. The window function of STFT is
the Gaussian window.

4.1. Simulated Data

As most micro-Doppler signals can be considered amplitude modulation and fre-
quency modulation (AM-FM) signals, the proposed method is verified by multicomponent
AM-FM signals. Since the IFs of returned signals of most micro-motion target scatterers
are sinusoidal or linear functions, the AM-FM signal is set to consist of two SFM signal
components and a linear FM signal component. The simulated AM-FM signal can be
presented as

s(t) = s1(t) + s2(t) + s2(t) + g(t) (40)

with
s1(t) = a1(t) exp

(
j2π

(
30t + 5t2))

s2(t) = a2(t) exp(j2π(20t− cos(πt)))
s3(t) = a3(t) exp(j2π(10t− cos(πt)))

(41)

where a1(t) = 1.5, a2(t) = 0.9(1 + 0.2 sin(1.8πt)) and a3(t) = (1 + 0.2 cos(1.6πt)). g(t)
represents additive Gaussian noise and SNR = 20 dB. The sampling interval is 0.01 s and
100 samples are collected. The TFR of the complete signal described by Equation (41)
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is shown in Figure 1a. The sampling frequency is 100 Hz. The length of the window
function is 23. The collected samples are missing 40% at random. The data missing model
is presented in Figure 1b where the white and black bars denote missing and available
samples, respectively. The TFR of the incomplete signal is shown in Figure 1c. Because
of the missing data, the TFR of the signal is defocused. Figure 1d–f shows the TFR of the
three components decomposed by the IRLS-based algorithm. The computational time of
the IRLS-based algorithm is 17.1 s. Figure 1g–i shows the TFR of the three components
decomposed by the ADMM-based algorithm. The computational time of the ADMM-based
algorithm is 28.3 s. The proposed method can effectively extract the components from
missing sampling data and reconstruct the well-focused TFRs. Compared with the IRLS-
based method, the signal components reconstructed by the ADMM-based method are more
similar to the ideal signal without missing samples.
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The relative error and regularization parameters λ with the number of iterations are
shown in Figure 2. Figure 2a,c shows the relative error curves of the IRLS-based method and
the ADMM-based method with the number of iterations, respectively. Figure 2b,d shows
the curves of regularization parameters λ of the IRLS-based method and the ADMM-based
method with the number of iterations, respectively. The simulation results demonstrate
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that as the number of iterations increases, the relative errors as well as the regularization
parameters of all the micro-motion signal components show a steady downward trend and
converge to the desired optimization level after several iterations.
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Furthermore, the signal-to-noise ratio (SNR) is used to evaluate the performance of
different methods to decompose and reconstruct the signal components, which can be
calculated by

o = 10 log10

(
∥s(t)∥2

∥ŝ(t)− s(t)∥2

)
(42)

where ŝ(t) is the extracted component signal, s(t) is the correct component signal, and a
random 30% missing of the signal (see Equation (41)) is introduced to test the ACMD [16],
STVMD [12], OSS [14], and the proposed method. The missing signals separated by ACMD,
STVMD, and OSS are preprocessed by the TFR reconstruction method [23]. Table 1 shows
that the ADMM-based algorithm and the IRLS-based algorithm can extract component
signals with high SNR from incomplete data. In addition, the SNR of the signal components
extracted by the ADMM-based method is higher compared with the IRLS-based method.

Table 1. The SNR of signal components separated by different methods.

ADMM-Based IRLS-Based ACMD OSS STVMD

s1(t) 4.64 dB 4.2 dB 3.62 dB 3.29 dB 3.37 dB
s2(t) 4.58 dB 4.03 dB 3.56 dB 3.2 dB 3.38 dB
s3(t) 3.21 dB 2.98 dB 2.68 dB 2.23 dB 2.31 dB

4.2. Experimental Data

The effectiveness of the proposed method is further verified by using the returned
signal from rotating targets. The experimental setup and rotating target are shown in
Figure 3. The frequency of the transmit signal from the vector network analyzer (VNA) is
17 GHz. The power amplifier is used to increase the strength of the transmitted signal. The
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sampling interval of the returned signal is 0.0031 s. The two horn antennas are horizontally
polarized. The rotating target consists of two rotating cylinders and a fixed metal cylinder.
The rotating speed of the rotary table is 12 rpm.
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Figure 3. Diagram of the experimental setup and rotating target.

The rotating target returned signal processed by STFT is provided in Figure 4a. The
length of the window function is 53. The collected samples are missing 25% at ran-
dom. The missing data model is shown in Figure 4b. The TFR with spurious peaks
is shown in Figure 4c. The TFR of the three components decomposed by the IRLS-based
method and the ADMM-based method are illustrated in Figure 4d–f and 4g–i, respectively.
The computational time of the IRLS-based algorithm and the ADMM-based method are
148.4 s and 222.6 s. As shown in Figure 4d–i, the proposed method can effectively separate
and reconstruct the returned signal from the rotating target. The TF spectral entropy is
introduced to compare the background noise of signals extracted by different methods [27].
In general, the lower the entropy, the smaller the background noise of TFR. The TF spectral
entropy in Figure 4d–i is 3.49, 3.21, 2.75, 3.07, 3.15, and 2.68, respectively. Therefore, the
ADMM-based method extracts signal components with less background noise compared
with the IRLS-based method.
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4.3. Real-Life Data

In this subsection, EEG data [18] and bat echolocation call signal is used to validate
the proposed method.

Brain activity can be observed through electroencephalographic (EEG) signals, and
extracting these EEG components is important for studying and predicting human health.
In addition, similar to the returned signal of the micro-motion target, the EEG signal
contains AM-FM signal components. Therefore, we used EEG signals of seizure to test
the effectiveness of the proposed method. The EEG seizure data used for the analyses is
selected from the EEG database [28]. The number of data sampling points is 128 and the
sampling time is 8 s. The real EEG data is transformed into a complex analytic signal by
the Hilbert transform for processing by the proposed method, and it can be expressed as

gc(t) = gr(t) + jH(gc(t)) (43)

where gr(t) is the real EEG data, H(·) represents the Hilbert transform, and gc(t) is the
complex analytic signal. The EEG signal processed by STFT is provided in Figure 5a. The
length of the window function is 33. The collected samples are missing 30% at random.
The missing data model is shown in Figure 5b. The TFR of the incomplete data is shown in
Figure 5c. Figure 5d–i shows the results obtained by the proposed method. The compu-
tational times of the IRLS-based algorithm and the ADMM-based method are 53.6 s and
82.3 s. As shown in Equation (42), the SNR is used to evaluate the performance of the IRLS-
based algorithm and the ADMM-based algorithm, where ŝ(t) is the sum of the extracted
component signal, and s(t) is the correct signal. The SNR of the IRLS-based algorithm
and the ADMM-based algorithm is 3.53 dB and 5.16 dB. Therefore, in comparison to the
IRLS-based method, the ADMM-based method reconstructs more complete EEG signal
components.

The sonar system of bats has many similarities with radar systems. Although bats use
sound waves and radar uses electromagnetic waves to detect objects, their basic principles
are the same. The proposed method is demonstrated by a bat echolocation call signal
collected by Rice University, downloadable at https://dsp.rice.edu/ (accessed on 1 October
2022). The number of data sampling points is 200 and the sampling period is 7 µs. The bat
echolocation call signal is also converted into the complex signal by Formula (43).

Figure 6a shows the bat echolocation call signal processed by STFT. The length of the
window function is 33. The collected samples are missing at a random rate of 30%. The
model of the missing data is shown in Figure 6b. The TFR of the missing data is shown in
Figure 6c. Figure 6d–f shows the TFRs of the three components decomposed by the IRLS-
based method, while Figure 6g–i shows the TFRs of the three components decomposed
by the ADMM-based method. The computational times of the IRLS-based algorithm and
the ADMM-based method are 40.3 s and 74.6 s. The results show that bat echolocation call

https://dsp.rice.edu/
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signal components reconstructed by the ADMM-based method are smoother and more
complete compared with the IRLS-based method.
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5. Discussion

It should be noted that both the IRLS-based algorithm and ADMM-based algorithm
extract single-component signals sequentially in a recursive framework, so the above two
methods cannot thoroughly separate the energy of multicomponent signals crossing in the
time-frequency domain. An example with two overlapping chirps is introduced to show
this limitation.

s = exp
(

j2π
(

10t + 10t2
))

+ 1.5 exp
(

j2π
(

30t− 10t2
))

(44)

The analysis results for the signal in (44) by the proposed method are shown in
Figure 7. The STFT of the ideal signals is shown in Figure 7a. The TFR of the incomplete
signal is shown in Figure 7b. The TFR of the two components decomposed by the IRLS-
based method and the ADMM-based method are illustrated in Figure 7c,d and Figure 7e,f,
respectively. As shown in Figure 7c–f, the proposed method cannot effectively separate the
cross-time-frequency signal. The corresponding discussion is added in the Section 6.

The echoes of the rotating components can be regarded as a sinusoidal FM signal.
As shown in Figure 3, the proposed method can effectively separate the multicomponent
sinusoidal FM signal. It should be pointed out that the existing work can only separate
multicomponent signals that do not overlap in the time-frequency domain. Future work
will focus on the application of instantaneous frequency extraction methods [17–19] and
new algorithmic frameworks for effectively separating the energy of multicomponent
signals that cross in the time-frequency domain.
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Figure 7. Analysis results for multicomponent signals that cross in the time-frequency domain by
the proposed method. (a) TFR of the ideal signal. (b) TFR of the incomplete data. (c,d) TFR of each
component signal separated via IRLS-based method. (e,f) TFR of each component signal separated
via ADMM-based method.

6. Conclusions

In this paper, a novel method is proposed for separating multicomponent micro-
Doppler signals with missing samples. The method reconstructs the incomplete data based
on sparse signal representation theory and separates the reconstructed independent compo-
nents according to the null space characteristics. In addition, the regularization parameters
are updated adaptively during iteration. The processing results of the simulation signal,
microwave darkroom data, and real-world data demonstrate that the proposed method
can reconstruct the signal component from the multicomponent micro-Doppler signal with
random data missing sampling, and the SNR of the signal component extracted by the
ADMM-based method is higher than that of the IRLS-based algorithm. The proposed
method has potential application prospects in feature extraction of micro-motion targets
and automatic target recognition.
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