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Abstract: Jakarta holds the distinction of being the largest capital city among ASEAN countries and
ranks as the second-largest metropolitan area in the world, following Tokyo. Despite numerous
studies examining the diverse urban land use and land cover patterns within the city, the recent state
of urban green spaces has not been adequately assessed and mapped precisely. Most previous studies
have primarily focused on urban built-up areas and manmade structures. In this research, the first-
ever detailed map of Jakarta’s urban green spaces as of 2023 was generated, with a resolution of three
meters. This study employed a combination of supervised classification and evaluated two machine
learning algorithms to achieve the highest accuracy possible. To achieve this, various satellite images
were utilized, including VV and VH polarizations from Sentinel-1, multiple bands from Sentinel-2,
and eight bands from Planet. The Planet data were subsequently transformed into the Red-Edge
Triangulated Vegetation Index and Red-Edge Triangulated Wetness Index. The data training and
testing samples for urban green spaces were obtained using the Street View images available on
Google Maps. The results revealed that using the Random Forest classifier algorithm and only eight
bands of Planet images achieved an accuracy rate of 84.9%, while a combination of multiple images
achieved an impressive 95.9% accuracy rate. Jakarta’s urban areas cover approximately 33.2% of
green spaces. This study provides unprecedented insights into the type, size, and spatial distribution
of Jakarta’s urban green spaces, enabling urban residents and stakeholders to explore and promote
healthier living and better manage these green areas. Additionally, a previously unexplored concept,
Jakarta’s urban green belt, is introduced.
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1. Introduction

Urban green space (UGS) provides the residents of a city with various benefits, in-
cluding improved public health and well-being [1–3], social sustainability [4], contact with
nature [5], and ecosystem service [6]. Some studies have argued that UGS also provides
benefits to older people [7,8] and improves mental health [9,10].

Studies have defined UGS through greenness. Greenness can be quantified using
spectral indices like the Normalized Vegetation Difference Index (NDVI) [11]. Another
study classified UGS from a combination of hyperspectral images and LiDAR data [12].
Both studies utilized spectral-based analysis to classify UGS using Earth observation
data. A recent study [13] presented a method for classifying UGS based on their features
using a deep learning approach. However, this method requires significant computational
resources due to its complexity.

A comprehensive study was conducted to evaluate the usage of UGS on a national
scale, utilizing big data analysis. It also considered the variations in UGS utilization between
areas within the city (intra-urban) and its outskirts (peri-urban). The study encompassed
366 cities across mainland China. The results indicated that 94.01% of UGS in China
remained unused. This study used data with a spatial resolution of 1 km × 1 km [14].
Another study conducted in Xiamen, China, aimed to assess the fairness of UGS and
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explored how they are distributed in relation to urbanization. The study discovered
that increased urbanization correlated with a greater provision of UGS services. It used
images of Landsat-8 OLI from 2015 with a spatial resolution of 30 m × 30 m [15]. A
study conducted in 2017 across 371 major cities in Latin America resulted in the creation
of the first 10 m resolution UGS map for the main urban clusters. This study utilized a
supervised classification method on Sentinel-2 satellite images and achieved an accuracy
rate of 87% [16].

The increasing collection of remote sensing images from MODIS, Landsat, and Sentinel
series, along with the availability of cloud-based image processing platforms such as Google
Earth Engine (GEE), have the potential to enhance the UGS classification maps. However,
the public currently has access to a maximum spatial resolution of 10 m. In this study, the
use of Planet datasets was introduced, which offer a higher spatial resolution of 3 m.

The current methods and technologies used to monitor urban green spaces, such as
aerial photography and satellite imagery, have some limitations. Aerial photogrammetry
can provide very high spatial resolution but only covers small areas. To cover larger areas,
more time and expense are required. Meanwhile, satellite imagery offers broader coverage
but suffers from low spatial resolution. Another challenge arises from cloud coverage in
tropical countries like Indonesia.

To address these issues, the suggestion in this study is to utilize Sentinel-1 SAR data
to overcome cloud cover challenges. Additionally, there are existing gaps or limitations
in current research concerning urban green space monitoring. For instance, accurately
mapping and quantifying green spaces in densely built urban environments, such as
Jakarta, poses significant challenges. Moreover, there is insufficient integration of multiple
remote sensing data sources for comprehensive analysis.

Thus, in this study, the proposal is to integrate multiple remote sensing data sources,
including microsatellite, SAR, and MSI, to potentially benefit from improved accuracy,
enhanced feature detection, and better discrimination of urban green space types.

Integrating satellite data from different sensors is a common approach in remote
sensing. To the best of the author’s knowledge, two studies have partially quantified the
improvement from applying a machine learning approach to Planet data within GEE. A
previous study integrated Planet imagery with Sentinel-1 and Sentinel-2 data to create land
use and land cover maps for Central Brazil. It compared pixel- and object-based methods
using solely Planet data, as well as a combination of Planet, Sentinel-1, and Sentinel-2
data. The findings revealed that utilizing this combined dataset enhanced classification
accuracy [17]. Another study combined Planet imagery, Landsat-8, and Sentinel-2 to classify
land use land cover maps of Central Italy using GEE [18]. In this study, the comparison
was made between pixel- and object-based approaches using the Random Forest (RF) and
Support Vector Machine (SVM) algorithms. The results revealed that the RF algorithm
achieved greater accuracy than SVM when classifying land use and land cover. Additionally,
it was noted that the object-based method can be resource-intensive, particularly when
dealing with higher-resolution data, given the computational constraints of Google Earth
Engine (GEE).

The objective of this study is to produce a very high-spatial-resolution UGS map for
Jakarta city with over 10 million urban inhabitants [19]. Two machine learning algorithm
classifiers, namely Random Forest (RF) and Classification and Regression Tree (CART),
will undergo evaluation. This study aims to assess the pixel-based classification results by
utilizing solely Planet data and a combination of Planet, Sentinel-1, and Sentinel-2 data
through a supervised approach.

2. Methodology
2.1. Study Area

This study is focused on Jakarta, the capital city of Indonesia (Figure 1). Jakarta covers
an area of 661.23 km2 and is located in the western part of Java Island. It is divided into five
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administrative areas: North Jakarta (147.46 km2), West Jakarta (125 km2), Central Jakarta
(47.56 km2), East Jakarta (185.54 km2), and South Jakarta (144.94 km2) [20].
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Figure 1. Jakarta as the study area overlaid with the Planet dataset. The base map is Google Road.
QGIS version 3.22.8-Białowieża was used to create the map.

Despite being the smallest province in Indonesia in terms of land area, in terms of
population, Jakarta boasts the largest metropolitan area in the ASEAN and the second-
largest in the world, surpassed only by Tokyo, Japan [21]. Jakarta is characterized by its
extensive urban development and numerous manmade structures, making it the most
densely populated city in Indonesia. This high population density is one of the key reasons
for selecting Jakarta as the study area. Additionally, the city was chosen due to its diverse
urban green spaces and the most updated availability of ground truth samples from Google
Maps Street View images.

2.2. Satellite Datasets: PlanetScope, Sentinel-1, and Sentinel-2

The PlanetScope satellite constellation comprises approximately 130 microsatellites,
also referred to as CubeSats. These CubeSats have dimensions of 10 cm × 10 cm × 30 cm,
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with a daily temporal resolution, three-meter spatial resolution, 12-bit radiometric resolu-
tion, and eight spectral bands [22].

The initial PlanetScope satellites were launched in 2018, featuring only four spectral
resolutions. The second generation is known as PS2.SuperDove (PS2.SD) or Dove-R, which
became available from 2019 to 2022. The third generation is also referred to as SuperDove
or PSB.SD, now boasts eight spectral bands, namely coastal blue (b1), blue (b2), green I (b3),
green (b4), red (b5), yellow (b6), red edge (b7), and near-infrared (b8).

In this study, the PlanetScope data were obtained through an education and research
standards license. These data were captured on 14 August 2023, encompassing three scenes
that encompassed the study area. These scenes provide surface reflectance products at
the analytic level, comprising eight bands. The data were accessed from https://www.
planet.com/explorer/ (accessed on 12 December 2023) and imported into QGIS software
version 3.22.8-Białowieża, and they were subsequently merged. The resulting merged
dataset was then uploaded to the Google Earth Engine (GEE) platform as an asset for
additional processing. In the GEE platform, the PlanetScope data were transformed into the
Red-Edge Triangulated Vegetation Index (RTVI) and the Red-Edge Triangulated Wetness
Index (RTWI) spectral indices using the first and second equations, respectively, as follows:

RTVI = (100 ∗ (NIR − RedEdge)− 10 ∗ (NIR − Green)) (1)

RTWI = (100 ∗ (RedEdge − NIR)− 10 ∗ (Green − Red)) (2)

The RTVI and RTWI were chosen to monitor the red-edge band, which is known to be
responsive to subtle variations in vegetation health. This choice enables a unique method
to address situations where the Normalized Difference Vegetation Index (NDVI) becomes
saturated in regions with extensive, dense vegetation or crops, limiting its effectiveness in
capturing changes [23].

Sentinel-1 is a part of the European Space Agency (ESA) and consists of two constella-
tions: Sentinel-1A and Sentinel-1B. This system is equipped with an active remote sensing
sensor that gathers data using dual-polarization C-band Synthetic Aperture Radar (SAR).
Its spatial resolution is 10, 25, and 40 m, and it captures data every 6 to 12 days [24].

In this study, the Sentinel-1 data in vertical–vertical (VV) and vertical–horizontal (VH)
polarizations were used, which were acquired in interferometric wide (IW) swath mode,
with ascending properties, during the post-rainy season (April to September 2023). This
ensured comprehensive coverage of the study area.

The queried Sentinel-1 data were processed to calculate the inter-quartile range (IQR)
as a measure of backscatter variability. All of the Sentinel-1 data used in this study were
ground-range-detected (GRD) and readily available in the Google Earth Engine (GEE)
data catalog.

Sentinel-2, like Sentinel-1, is part of the ESA program and consists of two satellite
constellations: Sentinel-2A and Sentinel-2B. However, unlike Sentinel-1, Sentinel-2 employs
a passive remote sensing sensor equipped with a multispectral imaging (MSI) sensor
capable of capturing data in 13 spectral bands. It offers variable spatial resolutions of 10,
20, and 60 m and a temporal resolution of 10 days at the equator with one satellite, and
5 days with two satellites under cloud-free conditions [25].

For this study, Sentinel-2 MSI Level-2A datasets available in the Google Earth Engine
(GEE) data catalog were utilized. All bands were incorporated into the classification
process, except for bands 1 and 9, which are primarily sensitive to aerosols and water vapor,
respectively, and have a lower spatial resolution of 60 m.

In line with Sentinel-1, the acquisition period for Sentinel-2 was also after the rainy
season, spanning from April to September 2023. The queried data underwent preprocessing
to remove cloud cover from the scenes. Only scenes with clear conditions proceeded to the
next stages of processing.

https://www.planet.com/explorer/
https://www.planet.com/explorer/
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2.3. Training and Validation Datasets

Based on the understanding of the study area, several polygons were manually gen-
erated using the GEE platform. Street View images from Google Maps were used as a
reference to ensure accuracy and verify the latest conditions. As depicted in Figure 2, paddy
fields were observed in North Jakarta as of July 2023.
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Figure 2. A street view image of a specific area in the part of the study area (North Jakarta) was
utilized as a point of reference to ensure precision and verify its current condition. Source: Google
Street View (https://shorturl.at/nsFWX, (accessed on 12 July 2023)).

In total, over 100 polygons were created randomly and categorized into six distinct
classes of urban green spaces: agriculture, forest, grassland, mixed, shrub, and wetland.
Further details regarding these categories are presented in Table 1.

Table 1. Urban green space categories.

Categories Description

Agriculture Paddy field, farm or farmland, orchard, plant nursery

Forest Forest, nature reserve, big tree

Grassland Grass, meadow, golf, sports center,
grassland, football fields, baseball fields, airport fields

Mixed Recreation ground, residential green, riparian zone,
disc golf course, garden, park, campsite, cemeteries

Shrub Small trees, persistent woody stems above the ground

Wetland Wetland, mangroves

Furthermore, the Pareto Principle was applied to split the created multiple polygons
into 70% for training data and 30% for testing data.

2.4. Machine Learning Algorithms and Classification

Two machine learning algorithms were assessed: Random Forest (RF) and Classifi-
cation and Regression Tree (CART). These algorithms were chosen because they all rely
on decision trees and can be compared. RF is an ensemble learning technique based on
decision trees [26], suitable for categorical data, unbalanced data, and data with missing
values [27], and it is renowned for its high accuracy and robustness in handling remote
sensing data [28]. The CART classifier algorithm is a commonly used tree-based frame-

https://shorturl.at/nsFWX
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work in remote sensing applications [29]. It starts by examining all input variables and
identifying the optimal binary split of a single variable that minimizes the deviation in
the output variable. In the case of the classification of Earth observation data, the input
variables include spectral and additional data, whether they are continuous or categorical,
and the output variable is the list of land use and land cover classes [30]. The crucial step
in determining the structure of a decision tree is choosing an input feature and a threshold
value for each split [31].

Before initiating the classification process, it is imperative to consolidate all datasets.
To elaborate, this consolidation encompassed two polarization channels from Sentinel-1;
nine spectral bands from Sentinel-2; eight bands from PlanetScope; and two specific indices,
namely RTVI and RTWI. Subsequently, the training dataset was employed to train the
classifier algorithms, culminating in the execution of the classification process.

The unit analysis for classification involved the use of administrative boundaries.
These administrative boundaries were derived from the Global Administrative Unit Layers
(GAUL) Level-2 dataset [32], which is accessible through the GEE data catalog. There are a
total of five administrative boundaries, namely North Jakarta, West Jakarta, Central Jakarta,
East Jakarta, and South Jakarta. The classification results were subsequently clipped based
on these administrative boundaries.

2.5. Accuracy Assessment, Data Conversion, and Area Calculation

The classification results were subsequently assessed using the matrix contingency
method. Finally, the classified images were exported to Google Drive, downloaded, and
imported into the QGIS environment for the final visualization process.

In the QGIS environment, the raster layer was first polygonized, and its geometry
was subsequently fixed. Next, a new “Class” field was created to categorize each “Digital
Number (DN)” value into distinct classes using a “CASE statement” within the field
calculator feature. Afterward, the vector layer was dissolved based on the “Class” field.
Using the resulting dissolved vector layer, the final area of each urban green space class
was calculated. Only areas larger than 0.1 km2 were considered for analysis, while the rest
were excluded. To refine the data, Google’s Open Building Data accessible through the
GEE data catalog was utilized. Specifically, only data with a confidence level of 75% or
higher were selected. Subsequently, the “Difference” function in the “Geoprocessing Tools”
of QGIS was employed. Vector data were manipulated to create a highly accurate urban
green space map for Jakarta, where the “input layer” and “difference layer” are urban
green space data and open building data, respectively. Figure 3 provides a summary of the
methodology that was developed and employed in this study.
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3. Results
3.1. Classification Results and Model Performance

Table 2 displays the overall accuracy values for the classification obtained from two
different classifier algorithms. This table provides information on the selected features
(bands) and their importance variables in each classifier.

Table 2. Classifier algorithm performance.

RF CART

PlanetScope Only Multiple Images PlanetScope Only Multiple Images

Overall
accuracy (%) 84.9 95.9 85.1 87.7

Variable of
importance

B2 (Blue), B8 (NIR), and
B7 (Red Edge)

B7 (Red Edge 3) of
Sentinel-2, B1 (Coastal Blue)

of PlanetScope, and B12
(SWIR 2) of Sentinel-2

B1 (Coastal Blue), B2
(Blue), and B3 (Green)

B2 (Blue) of Sentinel-2, B1
(Coastal Blue) of

PlanetScope, and B6 (Red
Edge 2) of Sentinel-2

When utilizing only the PlanetScope dataset and the RF classifier algorithm, a good
accuracy of 84.9% was achieved. However, when combining multiple images, the accuracy
increased significantly to 95.9%. In the case of CART classifier algorithms, using only the
PlanetScope dataset yielded an 85.1% accuracy, which increased slightly to 87.7% when
multiple images were employed.

When employing the RF classifier algorithm and a single PlanetScope dataset, the
most crucial values were derived from B8 (NIR), B2 (Blue), and B7 (Red Edge). When using
multiple images, the most crucial values were derived from band RTVI, followed by band
B2 (Blue) of Sentinel-2, and band B1 (Coastal Blue) of Planet. In contrast, when using the
CART classifier algorithm and a single PlanetScope dataset, the most crucial values were
derived from B1 (Coastal Blue), B2 (Blue), and B3 (Green). When using multiple images,
the most significant values were associated with band B2 (Blue) of Sentinel-2, followed by
band B1 (Coastal Blue) of PlanetScope and band RTVI.

The performance of the RF classifier algorithm showed that almost all the bands
used made a significant contribution to the classification. In contrast, the CART classifier
algorithm’s performance indicated that only certain bands were significant contributors
to the classification, while others were not. For instance, when using only PlanetScope
bands, B1 (Coastal Blue) was significant, whereas the other bands were not. When utilizing
multiple images, only B2 (Blue) from Sentinel-2 significantly contributed to the classification.
Table 3 summarizes the details.

The differences between RF and CART in the feature importance are because of
five factors: algorithm differences, randomness in RF, correlation among features, model
complexity, and interpretability.

RF and CART are two different algorithms used for classification tasks. Random
Forest is an ensemble learning method that builds multiple decision trees and merges their
outputs to improve accuracy and generalize well on unseen data. CART, on the other
hand, typically refers to a single decision tree. The differences in how these algorithms
construct decision boundaries and handle feature interactions can lead to variations in
feature importance.

RF introduces randomness in the feature selection process by considering a random
subset of features for each split in each decision tree. This random selection process can
cause different subsets of features to be chosen as important across different trees, leading
to a diverse set of feature importance rankings. In contrast, CART typically considers all
features for each split, potentially leading to a more consistent feature importance ranking.
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feature importance. 

RF introduces randomness in the feature selection process by considering a random 
subset of features for each split in each decision tree. This random selection process can 
cause different subsets of features to be chosen as important across different trees, leading 

Since PlanetScope and Sentinel-2 consist of multispectral bands, each capturing dif-
ferent aspects of the Earth’s surface, some bands may be highly correlated with each
other, meaning they convey similar information. In RF, the algorithm can exploit this
redundancy by randomly selecting a subset of features at each split, which may lead to
different bands being considered important in different trees. CART, on the other hand, may
consistently choose one of the correlated bands over others, resulting in different feature
importance rankings.

Furthermore, RF tends to be more robust to overfitting compared to CART, espe-
cially when dealing with high-dimensional data like satellite images. As a result, RF
may capture more complex relationships between features and the target variable, lead-
ing to different feature importance rankings compared to CART, which may prioritize
simpler relationships.

CART decision trees are generally easier to interpret compared to RF, as they represent
simple decision rules. The simplicity of CART models may influence the feature impor-
tance rankings, as they tend to highlight features that have a more direct impact on the
classification decision.

Table 4 presents a cartographic comparison of two classification results for the study
area, which were obtained using the two different classifier algorithms. The colors on
the map correspond to six distinct categories of urban green spaces (lavender pink for
agriculture, dark green for forest, yellow for grass, gold for mixed, deep saffron for shrubs,
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and pacific blue for wetland), while red indicates urban built-up areas with manmade
structures and blue signifies water bodies, such as coastlines, lakes, rivers, or reservoirs.

Table 4. Classification results.

RF

PlanetScope only Multiple images
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When using only PlanetScope bands, it becomes evident that the classification is heavily
skewed toward urban built-up areas and manmade structures, resulting in a reduced accuracy
in classifying urban green spaces. However, the inclusion of multiple bands from Sentinel-
1, Sentinel-2, RTVI, and RTWI significantly enhanced the classification results. Both the
classification maps generated by the RF classifier algorithm and the utilization of multiple
images corroborated the superior performance of the classification outcomes.

3.2. North Jakarta

North Jakarta boasts the most diverse urban green spaces compared to other admin-
istrative regions. It encompasses all six categories of urban green space, ranging from
agriculture to wetland areas, with a total urban green space area of 51.01 km2. Out of
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a total area of 147.46 km2, 34.59% is classified as urban green spaces. The largest por-
tion of urban green space consists of mixed areas (17.83 km2), followed by shrubland
(12.41 km2), grassland (11.7 km2), forested areas (3.89 km2), wetlands (3.23 km2), and agri-
cultural zones (1.95 km2) (Figure 4). Located in the northern part of Jakarta, the wetland
areas are predominantly covered by mangroves (Figure 5), while the agricultural zones are
mainly dominated by paddy fields.
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This area, formerly utilized by numerous illegal fish farmers, commenced its restora-
tion efforts in 1998. Transforming the region from a forested area into a fishpond not only
led to the removal of trees but also inflicted harm on the environment and the mangrove
ecosystem. Presently, it thrives as a wetland ecosystem primarily characterized by man-
grove trees. This conservation site is known as the Angke Kapok Nature Tourism Park, and
it is accessible to the public.

Unfortunately, certain sections of North Jakarta’s mixed urban green space are situated
within the exclusive Pantai Indah Kapuk district, which is restricted to residents only. In
North Jakarta, there are approximately 145 small parks accessible to the public, including a
city park of Taman Hutan Kota Kebon Pisang Penjaringan, interactive parks, environmental
parks, and a public building park of Taman Jakarta Islamic Center. The rest of the urban
green space is green lane roads and water banks, and eleven locations provide open spaces
for cemeteries.

3.3. West Jakarta

The urban green space percentage of West Jakarta is around 30.47% (38.1 km2). The
largest urban green space is grass (12.43 km2), followed by mixed areas (10.28 km2), shrub
(8.33 km2), and forest (6.22 km2) (Figure 6). A small part of the urban green space of West
Jakarta is agriculture, and it consists of paddy fields (Figure 7).
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In West Jakarta, there are approximately 202 small parks accessible to the public,
including the city parks of Taman Hutan Kota Kampung Sawah, interactive parks, envi-
ronmental parks, and a recreational park of Taman Kebun Bibit Srengseng. The rest of the
urban green space is green lane roads and water banks, and there are twelve open spaces
dedicated to cemeteries.

One of West Jakarta’s most renowned parks open to the public is Taman Cattleya.
Besides offering a place for relaxation and exercise, this park also provides an opportunity
for visitors to expand their knowledge by exploring its diverse range of plant species.
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Figure 7. Urban green space of West Jakarta. The base map is CartoDB Dark Matter. QGIS version
3.22.8-Białowieża was used to create the map.

3.4. Central Jakarta

The Central Jakarta region is the smallest among the five administrative regions. It
covers only 47.56 km2, and approximately 13.25 km2 of this area, which is roughly 27.85%,
is classified as urban green space (Figure 8). This urban green space consists mainly of
mixed areas (Figure 9), which cover 4.93 km2, followed by grassland spanning 3.86 km2;
shrub-covered areas of 2.98 km2; and a small, forested area measuring 1.48 km2.
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Figure 9. Urban green space of Central Jakarta. The base map is CartoDB Dark Matter. QGIS version
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Despite the limited availability of urban green spaces in Central Jakarta, it boasts the
highest number of city parks compared to the other five administrative regions. Central
Jakarta is home to five city parks, namely Taman Medan Merdeka (Monas), Taman Menteng,
Taman Suropati, Taman Situlembang, and Taman Lapangan Banteng. All of these city parks
are open to the public. The most famous urban green spaces that are open to public in the
Central Jakarta are the Gelora Bung Karno Complex and the National Monument (Monas).
Gelora Bung Karno Complex consists of multiple sports centers and city forests, while the
Monas is an open green space consisting of grass, a small forest, and mixed areas.

There are 295 small interactive parks, environmental parks, and other urban green
spaces, such as green lane roads and water banks. Additionally, there are four open spaces
specifically designated for cemeteries.

3.5. East Jakarta

The East Jakarta region is the largest administrative area when compared to the other
five regions. With a total area of 185.54 km2, it comprises 58.27 km2 of urban green space,
which accounts for approximately 31.41% of the total area (Figure 10). This urban green
space is primarily composed of mixed areas (29.4 km2), followed by shrub-covered areas
(15.64 km2) in the second place, grass areas (11.46 km2) in the third place, and a small
portion of forest (1.51 km2) and wetland (0.25 km2) (Figure 11).
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3.22.8-Białowieża was used to create the map.

Despite being the largest area, the East Jakarta region has no dedicated city parks.
Instead, it offers small interactive parks, environment parks, and a public building park.
However, East Jakarta boasts the highest number of dedicated cemetery locations, totaling
28. The remaining urban green spaces serve as green lane roads and water banks.

Some parts of mixed areas in East Jakarta fall under the exclusive zone such as Royale
Jakarta Golf Course, Suvarna Jakarta Golf Course, and Padang Halim Golf Course. The
most famous urban green space that is open to public in the East Jakarta is the Taman
Mini Indonesia Indah Complex. It offers visitors the experience of the vibrant Indonesian
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culture and breathtaking nature at the park, which showcases these treasures through
museums, gardens, and stunning replicas of Indonesia’s famous landmarks. Another
urban green space is Taman Piknik, a relatively new park located in East Jakarta, which
features Tabebuya trees that adorn its main area.

3.6. South Jakarta

With a total administrative area of 144.94 km2 and 60.1 km2 of urban green space, the
South Jakarta region boasts the largest urban green space, covering approximately 54.11%
of the area (Figure 12). This green space primarily comprises mixed areas (34.23 km2),
followed by shrub-covered areas (24.78 km2), grassy expanses (16.66 km2), and forested
areas (2.76 km2) (Figure 13).
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In South Jakarta, there are approximately 383 small parks accessible to the public,
including interactive parks, environmental parks, and public building parks. Among
these, Taman Ayodia serves as a city park, while three recreational parks, namely Taman
Kebun Bibit Ciganjur, Bumi Perkemahan Ragunan, and Taman Hutan Kota Tebet and Tebet
Eco Park, provide additional green spaces for residents and visitors. There are a total of
18 open urban green spaces specifically designated for cemeteries in South Jakarta, while
the remaining serve as green lane roads and water banks.

One of the most renowned urban green spaces open to the public in South Jakarta is
Ragunan Zoo, which ranks among the five largest zoos in Indonesia. Interestingly, the zoo
still features some pristine tropical rainforest within its confines, while other forests are
located within the University of Indonesia’s campus area in the southern part, bordering
Depok City in West Java Province.

3.7. Jakarta’s Urban Green Belt

Jakarta’s urban green belt refers to a network of connected green spaces spanning
from South Jakarta, through Central Jakarta, and up to North Jakarta. This expansive
belt encompasses various types of urban green areas, ranging from agricultural zones and
forests to grasslands, shrubbery, mixed-use areas, and wetlands. As depicted in Figure 14,
Jakarta’s urban green belt is quite extensive, covering approximately 124.34 km2 or 19.11%
of Jakarta’s total land area.
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Some parts of Jakarta’s urban green belt are located in exclusive areas, which means
limited access to the public or even closed to the public, such as elite residential green areas
and exclusive golf courses. However, a large part is still open to the public such as Ragunan
Zoo and City Forest within the University of Indonesia in South Jakarta; the Gelora Bung
Karno Complex, Gelora Bung Karno City Forest, and the Monas Complex in Central Jakarta;
and Angke Kapok mangrove forest, Kemayoran City Forest, and Penjaringan City Forest
Park in North Jakarta.

Jakarta’s urban green belt areas are essential components of the city’s urban planning
and environmental sustainability efforts. These areas play a crucial role in preserving natu-
ral ecosystems, enhancing the city’s resilience to environmental challenges, and improving
the overall quality of life for its residents. Some benefits of these areas are summarized in
Table 5.

Table 5. Benefits of Jakarta’s urban green belt.

Benefit Description

Environmental Conservation

Green belt areas in Jakarta are primarily established to conserve
natural habitats, including forests and wetlands. These areas are
vital for maintaining biodiversity and providing habitats
for wildlife.

Flood Mitigation
Jakarta is prone to seasonal flooding, exacerbated by urban
expansion. Green belts act as natural buffers, absorbing excess
rainwater and reducing the risk of flooding in the city.

Urban Planning and
Development Control

Green belt areas serve as a means of regulating urban
development. Zoning regulations restrict construction in these
zones, ensuring that urban sprawl is controlled and that green
spaces are preserved.

Recreational and
Educational Opportunities

Many green belt areas in Jakarta are open to the public and offer
recreational activities such as walking, biking, or bird watching.
These spaces also serve as outdoor classrooms for
environmental education.

Economic Benefits

The preservation of green belt areas can have long-term economic
benefits, including improved property values in nearby urban
areas, increased tourism, and potential for sustainable agriculture
or city ecotourism.

However, despite the benefits, Jakarta’s urban green belt areas face challenges such
as land use conflicts and inadequate enforcement of zoning regulations. These challenges
can lead to the degradation of these critical natural spaces. It is suggested that the Jakarta
government collaborates with various stakeholders and implements policies and programs
aimed at protecting and enhancing green belt areas. This may include reforestation efforts,
public awareness campaigns, and stricter land use regulations. Jakarta’s green belt areas are
likely to become even more critical in the face of climate change and urbanization. Urban
green space has an important role to play in creating a culture of health and well-being [33].
However, the availability of urban green space can also increase the land price [34]. Future
planning should focus on strengthening conservation efforts, expanding green belts where
possible, and integrating them into a broader sustainable urban development strategy.

4. Discussion
4.1. Driving Forces and Comparison of Other Existing Products

The primary driving force behind the creation of large-scale urban green spaces in
Jakarta is the governor’s policy, particularly Policy No. 9 of 2022 regarding green spaces [35].
This policy aims to ensure that Jakarta allocates 20% of its land to public green spaces
and 10% to private green spaces. Activities include enhancing the quantity, quality, and
coverage of urban green spaces.
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The urban green space master plan involves two crucial steps: strategic policy and an
action plan. Within the strategic policy, collaboration between the public and government
in managing urban green spaces stands out as pivotal. The government pledges financial,
human, and technological resources, along with infrastructure and tools for green space
management, research, and technical assistance. Meanwhile, the public is encouraged to
establish citizen communities or forums to oversee urban green spaces.

The action plan includes the development of an urban green space database, the revi-
talization of upstream areas through reforestation and afforestation, and the naturalization
of rivers in critical areas. It also entails the restructuring of dense slum settlements along
riverbanks, the revitalization of downstream areas through mangrove reforestation, and
the monitoring and evaluation of Jakarta’s urban green spaces. The implementation of this
policy is resulting in an expansion of urban green spaces throughout Jakarta.

However, according to the official data from the Ministry of Environment and Forestry
of Indonesia, Jakarta’s urban green space is notably scarce, measuring only 3.254 km2 as
of 2023 [36]. This disparity arises from differing definitions of urban green space. The
Ministry defines green space as elongated areas or clusters with open usage, where plants
naturally grow or are deliberately cultivated [37]. However, this definition is too narrow.
In this study, urban green space is defined more precisely and categorized into five classes:
agriculture, forest, grassland, mixed, shrub, and wetland. Other research [38] utilizing data
from the Department of Human Settlements for Spatial Planning and Land Affairs of DKI
Jakarta Province indicates that Jakarta’s urban green space measures only 83.55 km2. This
indicates the urban green space of Jakarta is only 12.6%. This underestimated area of urban
green space is due to the data sources referring to different years, different publicly editable
sources (open street map), and low-resolution Landsat-8 images.

4.2. Advantages

The availability of PlanetScope data through the standard education and research
license, along with Sentinel-1 and Sentinel-2 data in the GEE data catalog, opens up diverse
possibilities for mapping and monitoring the environment. Specifically, the high resolution
of PlanetScope data provides researchers and stakeholders with the means to enhance
the level of detail in urban green space analysis in developing countries. In this context,
this research seeks to evaluate the potential of PlanetScope data combined with Sentinel-1
and Sentinel-2 data for classifying urban green spaces in Jakarta with great precision and
efficiency in terms of computation time.

Prior to conducting the analysis using GEE, attempts were made to process a massive
4.5 GB mosaic of PlanetScope data to classify urban green spaces in Jakarta using QGIS.
After waiting for two days, the results proved inadequate, as QGIS encountered an error
and became unresponsive. In stark contrast, when utilizing the GEE platform, all that was
required was uploading the data to the cloud project. With a user-friendly programming
interface and intuitive JavaScript code, the process was completed in a matter of minutes,
yielding highly satisfactory results.

4.3. Limitations

Despite its advantages, the proposed methodology has certain limitations. For instance,
when utilizing the free version of GEE, one will encounter various constraints, such as
storage and image size limitations. To circumvent potential errors in computation time
and storage issues, it is necessary to resample all images to a 30 m spatial resolution before
proceeding with the classification process. Additionally, it should be borne in mind that
a single query to Earth Engine is restricted to a 10 MB size limit. This limit is typically
exceeded only when including large additional data directly in the query, like a shapefile
or a GeoJSON structure that has been embedded within the query. Another limitation is
that free GEE accounts are only permitted to ingest up to 250 GB of space and 10,000 assets.

On the 14 August 2023 acquisition, the PlanetScope data did not provide complete
coverage of the study area, with particular limitations in the East Jakarta region, covering
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approximately 96%. This limitation is primarily attributed to cloud cover issues, which are
especially prominent in tropical regions like Indonesia and pose a significant challenge for
passive remote sensing.

The PlanetScope data acquired on 14 August 2023 yield the best available dataset
for the study area. However, it is worth noting that other datasets exhibit cloud cover
exceeding 50%. This resulted in a discrepancy between the total area classification and the
administrative boundary. Additionally, not all of North and East Jakarta’s urban green
spaces were classified. Furthermore, Kepulauan Seribu was excluded from the analysis
because it lacks a substantial urban green space, and most of its green space is primarily
designated for cemeteries. New artificial islands located in the northern part of Jakarta
were also not included in the analysis.

4.4. Future Study

The proposed method for classifying urban green spaces using multiple datasets
does not incorporate advanced data fusion techniques; it simply stacks multiple images
into single images using the “add.Bands” function within the GEE platform. Hence, it is
recommended that future research delves into advanced fusion techniques and assesses
their outcomes. Such evaluation should not only prioritize accuracy but also factor in
computational efficiency.

5. Conclusions

This study successfully assessed the benefits of employing a supervised classification
approach with two different classifier algorithms within the GEE platform. The examination
encompassed the PlanetScope-only bands as well as combinations of multiple bands from
Sentinel-1 and Sentinel-2, alongside two proposed indexes, RTVI and RTWI.

When using only the PlanetScope bands and the RF classifier algorithm, the accuracy
reached 84.9%. However, by incorporating multiple image sources, accuracy significantly
improved to 95.9%. The CART classifier algorithm, when applied solely to PlanetScope
bands, achieved an accuracy of 85.1%, which saw a slight increase to 87.7% with the
inclusion of multiple images. The performance of the RF classifier algorithm demonstrated
that all the bands used significantly contributed to the classification.

On average, Jakarta’s urban areas cover approximately 33.2% of green spaces. Data
and maps from this study can be utilized by urban residents, researchers, and stakeholders
interested in urban green spaces. These maps enable the exploration and promotion of a
healthier lifestyle, the measurement of landscape metrics, the monitoring of urban green
space conditions, and a detailed assessment of existing urban green spaces in Jakarta.

The urban green belt areas in Jakarta play a crucial role in preserving the city’s natural
heritage, reducing environmental risks, and promoting sustainable urban development.
It is important for academic research and policy initiatives to consistently prioritize the
protection and improvement of these green spaces. This ensures a healthier and more
resilient future for Jakarta and its residents.
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