
Supplementary Materials: Evaluating a Novel Approach to 
Detect the Vertical Structure of Insect Damage in Trees Using 
Multispectral and Three-Dimensional Data from Drone 
Imagery in the Northern Rocky Mountains, USA 
 

S1. Outbreak history of study area and drone mission flight lines 

 

 

Figure S1. Drone flights (yellow lines) superimposed on polygons from the USDA Forest Service 
(“USFS”) Region 1 (“R1”) Aerial Detection Surveys (“ADS”) showing insect damage from recent 
years. “DCA”: damage causal agent.  



S2. Drone data pre-processing 

S2.1. GCP marker corrections and point cloud optimization 

Table S1. Estimated positional errors (root mean square error, RMSE) from each processing 
step by drone mission. RMSE values are estimated using Agisoft Metashape and are accessible 
via the generation of processing reports. The control points and check points are chosen from 
the pool of available GCP markers for each drone mission site. 

 

Processing Stage Mission 
X Error 

(m) 

Y Error 

(m) 

Z Error 

(m) 

Total Error 

(m) 

RTK-GNSS error M1 2.04 0.68 0.48 2.20 

 M2 1.66 1.10 1.76 2.66 

 Mean 1.85 0.89 1.12 2.43 

Final product fit  

(control points RMSE) 
M1 0.12 0.25 0.20 0.35 

 M2 0.01 0.01 0.05 0.05 

 Mean 0.07 0.13 0.13 0.20 

Final product accuracy 

(check points RMSE) 
M1 0.02 0.09 0.03 0.09 

 M2 0.01 0.03 0.07 0.07 

 Mean 0.02 0.06 0.05 0.08 

  



S2.2. Assignment of multispectral reflectance values to SfM point cloud 

The MX-RedEdge sensor records data in five spectral bands (MicaSense, Inc, 2023), and these 

multispectral reflectances can be assigned to the point cloud using the “Calculate Point Colors” 

option in Metashape [1]. However, the American Society for Photogrammetry and Remote 

Sensing (ASPRS) [2] specifications for .las format data limit the band data storage to only 4 

bands while exporting (R, G, B, and NIR). Therefore, a workaround was implemented to create a 

.las point cloud file. The point cloud constructed from the multispectral sensor was exported as a 

.XYZ file (plain text file) from Agisoft Metashape. The .XYZ point cloud file was imported into 

CloudCompare (version 2.12.4, https://www.cloudcompare.org/, accessed August 2022) and re-

exported as a .las file, with the projected coordinate system set to EPSG:26912 (NAD83/UTM 

Zone 12). During this process, the five-band reflectance data were stored as “Extra Bytes 

Variable Length Records (VLR)” on the .las file. If future updates to the LAS specifications 

allow for more than four-band information storage, then a streamlined export to the .las file from 

Agisoft Metashape is suggested. 

The SfM point cloud with multispectral reflectance values was imported into R using the lidR 

package [3]. The attributes of each point in the point cloud were stored as a data.table format 

under the @data slot of the imported “LAS-class” object [3]. The data.table package [4] 

allows for efficient memory allocation and recycling in R and is thus central to data storage and 

manipulation in the lidR package [3]. Since the data.table format is an extension of R’s 

native data.frame class [4], the data.table format was used throughout the project, 

especially when accessing and updating point cloud data attributes.  



S3. Reference data 

S3.1. Utilization of individual drone-captured images 

The locations of the reference trees from the manually delineated tree crown polygon layer were 

exported as a point shapefile to Metashape. The imported reference tree location shapefile was 

converted to “markers”, and the “filter photos by markers” option was used to view individual 

drone-captured images that contained the reference trees. This backtracking to individual drone 

images allowed for the location determination and evaluation of the damage along the height of 

the trees, as the same tree can be seen in multiple images from different angles. These multi-

image evaluations of tree damage were used for qualitative assessments of the random forest 

classification of points in the point cloud and the separation of individual trees into different 

damage severities. 

S3.2. On-screen selection of points representing green, grey, red, and shadow classes on the 

point cloud data set 

The point cloud with tree segmentation was loaded into R, and an “ID_point” attribute was 

programmatically added to the point cloud data set. The “ID_point” attribute represented a 

unique identification number for each point in the point cloud data set. 

The point cloud with the “ID_point" attribute was imported into CloudCompare with the 

reference trees polygon layer from ArcGIS (Figure S2a). The “point-picking” tool was used to 

identify the “ID_point” attributes of points representing the green, gray, red, and shadow classes 

within the point cloud of trees from the reference data set (Figure S2b). The “ID_point” attribute 

was recorded in a spreadsheet and imported into R. The point cloud attributes representing the 



spectral values and indices of each point were joined with the imported reference data 

spreadsheet using the “ID_point” field. This process resulted in a reference data set of spectral 

values and indices of points representing the green, gray, red, and shadow classes. 



 

 

Figure S2. Methods for assembling the reference data set of point clouds using manual point 
picking in CloudCompare. (a) Top–down view (displayed in CloudCompare) of the subset of the 
point cloud with the manually identified reference trees (labeled with text). (b) Example of 
using the “Point-picking” tool in CloudCompare to query the “ID_point” of the point 
representing the green class on the reference tree labeled “green_tree”.   



S4. Segmentation of point cloud into trees 

S4.1. Ground classification and height normalization of point cloud 

The ground/non-ground classification and height normalization of the point cloud required for 

individual tree segmentation followed recommendations from Mohan et al. [5] and Roussel et al. 

[6] using the lidR R-package [3]. 

The “algorithm” parameter of the normalize_height function was set to the K-nearest 

neighbor with an inverse distance weighting algorithm using the knnidw function available in 

the lidR package [3]. The authors of the lidR package suggested the knnidw algorithm as a 

suitable compromise between the other two available algorithms [3]. These other algorithms are 

triangular irregular network (TIN) interpolation, which is computationally fast but has weak 

estimations of edges with prominent edge artifacts, and kriging interpolation, which provides the 

best results in terms of representation of the terrain with minimal edge artifacts but is 

computationally demanding [3]. 



 

 

Figure S3. (a) Height normalization for a subset of the point cloud. Points classified as ground 
are light green and non-ground points are dark green. Visual assessment indicates the 
successful execution of the ground classification algorithm (ground-classified points 
predominantly located at lower heights) and height normalization (flat areas demonstrate the 



removal of the influence of terrain). (b) Tree segmentation (individual trees are represented in 
different colors). 

S4.2. Tree segmentation algorithms 

S4.2.1. Algorithm background and parameters 

The lidR package consists of various tree segmentation methods that can be broadly categorized 

into two types: image-based (raster-based) and point cloud-based methods [3]. These methods 

can be used to perform point cloud segmentation of trees. 

In image-based tree segmentation methods, the treetops are first detected using a canopy height 

model (CHM), and the detected treetops are used to segment the point cloud into individual trees 

[3]. The CHM was generated using the rasterize_canopy function from the lidR package 

[3] and was smoothed using the focal function from the terra package [7]. A majority of 

drone-based studies in forestry use a fixed window local maximum filtering (LMF) algorithm for 

tree segmentation [8–10]. Hence for this project, the lmf algorithm with the locate_trees 

function from the lidR package [3] was used for tree segmentation. The lmf algorithm 

parameters for a fixed moving circular window were set to a radius of 1.5 m and a minimum 

height of 1.35 m. The LMF-located treetop points and the smoothed CHM were used as input for 

the segment_trees function to segment the point cloud into tree segments using the 

silva2016 method in the lidR package [3,11]. The resulting segmented point cloud consisted 

of a new attribute, treeID, allocated to every point that was segmented as a tree object, i.e., 

every point that was segmented as an individual tree had the same treeID attribute value [3]. 

The li2012 algorithm starts with the highest point in the point cloud data set and applies a 

proximity search, where if a second point falls within a radius (set as a parameter), it is 



considered to belong to the same tree as the first point, and the algorithm continues to assess all 

points that fall within the search radius [12]. The algorithm progresses to the next highest point 

that falls outside of the search radius, considers this outside point as a separate tree, and repeats 

the search as with the first tree [12]. All points belonging to an identified tree are allocated the 

same treeID attribute [3]. 

The crown_metrics function from the lidR package [3] was used for individual tree crown 

delineation. The geom argument for the crown_metrics function was set to concave. 

S4.2.2. Case study to compare tree segmentation algorithms 

A preliminary assessment was conducted to determine which tree segmentation algorithm to use 

for this study. Both tree segmentation algorithms were applied to a subset of the point cloud, and 

the resulting tree crown polygons were imported in ArcGIS and overlayed on the MS 

orthomosaic. Qualitative visual assessments and comparisons were conducted to select the 

better-performing tree segmentation algorithm. 

The visual assessment of the image-based [11] and point cloud-based [12] segmentation 

algorithms indicated a better performance by the point cloud-based algorithm [12]. The image-

based segmentation algorithm [11] had difficulty separating tree crowns in areas with a dense 

forest canopy, failing to detect some of these trees in the subset area (Figure S3a). Conversely, 

the point cloud-based algorithm [12] had some errors associated with dividing a single tree into 

multiple trees (over-segmentation) (Figure S3b). Correctly detecting trees but with over-

segmentation was preferred to failing to detect the presence of trees, and therefore, the point 

cloud-based tree segmentation method [12] was used here. 



 

 

Figure S4. Example of results of tree segmentation from two algorithms. (a) Using the image-
based segmentation algorithm (Silva et al., 2016); arrow shows error in detecting trees (no tree 
detected within polygon indicated by arrow). (b) Using the point cloud-based segmentation 
algorithm (Li et al., 2012); arrow shows error of dividing one tree into multiple segments 
(trees). 



S4.2.3. Accuracy assessment of tree segmentation 

The crowns delineated by the tree segmentation were clipped to a smaller extent to remove the 

edge artifacts of the orthomosaic (Figure 1). The “Create Accuracy Assessment Points” tool in 

ArcGIS was used to create randomized reference locations (as point features) within the clipped 

extent of the tree segmentation polygon layer. The input information source was set to the tree 

segmentation polygon layer such that the randomized reference locations (ArcGIS point feature) 

inherited the tree segmentation classification results under the “Classified” attribute. 

Randomized points were evaluated with an on-screen assessment to label each point’s reference 

classification under the “GrndTruth” attribute. The “Classified” attribute of the randomized point 

cloud represents the predicted class, and the “GrndTruth” attribute represents the reference class. 

A total of 1000 randomized points were qualitatively assessed to build the accuracy assessment 

reference data set. The “Compute Confusion Matrix” tool in ArcGIS was used for the accuracy 

assessment reference locations (ArcGIS point feature) to produce the confusion matrix and 

calculate the accuracy metrics. 

The second accuracy assessment of the tree segmentation was performed using the reference data 

set of manually delineated tree crowns (100 trees) on ArcGIS. The crowns from the reference 

data were overlaid with the crowns delineated by the tree segmentation (Figure S5a). The 

“Union” tool was used to separate the overlapping areas of tree crowns from the reference data 

set and tree segmentation (area A, Figure S5b) as well as the areas that did not overlap (areas B 



and C, Figure S5b). The sum of areas A, B, and C were used to calculate the Sørensen’s 

coefficient (SC; Equation 1) [13]. 

 

 

 

Figure S5. (a) Manually delineated crown polygon (reference data set) overlaid with crown 
delineation from the tree segmentation algorithm, with true color drone orthomosaic as the 
basemap imagery. (b). Polygons A, B, and C produced using the “Union” tool in ArcGIS with the 
tree segmentation and manual delineated crowns. “A” is the area identified as the tree crown 
by the manual delineation and the tree segmentation, “B” is area identified as the tree crown 
by the tree segmentation algorithm but not by the manual delineation, and “C” is the area 
identified as the tree crown by the manual delineation but not by the tree segmentation. 



 

 

Figure S6. (a) Example from the 352 cases of the “tree” class misclassified as the “not tree” class 
(Table 2). The point (reference location, yellow dot indicated by red arrow) falls in between the 
over-segmented tree crown polygons of the tree of interest. (b) Example from the 31 cases of 
the “not tree” class misclassified as “tree” class due to tree segmentation issues. The point falls 
on the ground or understory vegetation but was erroneously identified as being within the tree 
crown polygon. 

  



S5. Correlation matrix of predictor variables used in random forest models 
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S6. Evaluation of point classification 

Table S2. Top five two-variable and three-variable random forest models. 

 

Rank Variable 

Overall 

Accuracy 

(%) 

Maximum Pairwise 

Absolute Correlation 

Coefficient (|r|) 

Two-variable models    

1 RGI + GRE 97.25 0.227 

2 RGI + REDEDGE 97.25 0.230 

3 RGI + meanRGB 97.25 0.566 

4 RGI + BLU 97.00 0.487 

5 RGI + NDRE 97.00 0.311 

Three-variable models    

1 RBI + GLI + GRE 98.75 0.542 

2 RBI + NDVI + REDEDGE 98.625 0.389 

3 RBI + NDVI + GRE 98.625 0.541 

4 RBI + GLI + meanRGB 98.625 0.567 

5 RBI + SR + REDEDGE 98.5 0.407 



 

 

Figure S8. Overall accuracy (OA) as a function of the number of variables used in the random 
forest (RF) models. Points in black are the highest overall accuracies of RF models from the best 
subsets’ algorithm of explanatory variable combinations with low multicollinearity. The gray 
points are the overall accuracies from the remainder of the RF models. 

 



 

 

Figure S9. (a), (b), (c) Examples of trees used to evaluate classification models of healthy versus 
damaged points. Columns (left to right): true color image, false color image (red–green–near 
infrared), and results from three random forest models (text indicates explanatory variables in 
models). Green points correspond to green class, red to red class, gray to gray class, and black 
to shadow class. Red and green arrows indicate damaged (gray and red classes) and healthy 
areas, respectively, where the second-ranked, three-variable model (RBI + NDVI + REDEGDE 
model) agrees better with the visual assessment than the other models. 



 

 

Figure S10. Pairwise plots of predictor variables used to develop the final random forest model 
(RBI + NDVI + REDEDGE) using the reference data set of points. The diagonal from the top left to 
the bottom right consists of the histograms of classes for each spectral band and index. The 
top-right space above the diagonal consists of correlation values for each of the classes in the 
respective spectral bands and indices. The bottom-left area below the diagonal consists of a 
scatterplot of reference data classes, with bands and indices plotted on the corresponding axes. 
The colors of the classes are as labeled in the legend. Figure produced with R function ggpairs 
in the ggally package ([14]).  



S7. Application of final random forest model to point cloud 

The lidR R package stores point cloud data as a “LAS-class” R object [3]. The attributes of 

points in the point cloud data were accessed via the @data slot of the “LAS-class” R object [3] 

and stored as a data.table. A subset data.table was created, which consisted of data from 

columns representing only the reflectance bands (five bands). The vegetation indices (Table 1) 

were computed and were added as columns to this subset data.table. This data.table with 

reflectance bands and vegetation indices was used as the input data to apply the RF model and 

calculate class probabilities. 

The class probabilities for each point from the final RF model were calculated using the 

predict function’s “type = prob” argument [15]. The values returned represent the final RF 

model’s classification probability for each point; these values were added as attributes to the 

point cloud data.table. 

The RF model classification and class maximum probabilities were added to the “LAS-class” R 

object using the @data slot to manually update the attributes of the point cloud object in R. The 

“LASheader-class” is an object in R constructed following ASPRS LAS specifications [2] that 

helps define the properties and attributes of point cloud object in R and other software that read 

.las format files [3]. Therefore, the addition of attributes to the point cloud data set required 

updating the “LASheader-class”. The classify_ground and segment_trees functions add 

attributes to the data.table of the “LAS-class” object in R and automatically update the 

“LASheader-class” of the point cloud object [3]. Manually adding the RF model classification 

and RF model class probabilities as attributes of each point did not automatically update the 



“LASheader-class”. The add_lasattribute function was used to update the “LASheader-

class” with the RF classification attributes and export the classified point cloud as a “.las” file. 

 



 

 

Figure S11. The RBI + NDVI + REDEDGE random forest (RF) model applied to the point cloud 
data set for the drone site M2. (a) True color rendering of the SfM point cloud for M2. (b) RF 
classification of SfM point cloud for M2; colors respond to respective classes, with black used 
for shadow. (c) Probability of each, classified by the RF model; darker brown colors indicate 
higher probabilities, lighter yellow colors indicate lower probabilities. 



 

 

 

Figure S12. Distributions of classification probabilities of points classified as (a) “green” class, 
(b) “gray” class, (c) “red” class, and (d) “shadow” class. Frequencies are normalized by the 
maximum number of points per bin in each histogram to allow for a comparison among classes.  



S8. Tree-level damage algorithm 

S8.1. Definition of damage severities 

 

 

Figure S13. Classification tree used for the separation of trees into healthy, damaged, and 
different damage severities. “Damage” refers to the sum of red and gray points on each tree. 
The area with dashed lines indicates the damage severities for which the top-kill algorithms 
(“top2bin” and “bin2bin”) were applied.  



S8.2. Preparation of point cloud for damage assessment algorithm 

The tree-segmented classified point cloud file was imported into R as a “LAS-class” R object to 

identify the damage severity of a tree using the lidR package [3]. The points classified as 

ground and shadows were not used in the damage assessment. The ground and shadow points 

were removed using the filter_poi function from the lidR package [3]. 

The unique function was used to create a list of unique treeID attributes from the @data slot 

of the “LAS-class” R object. This list of unique treeID attributes was used to iterate individual 

trees in the imported point cloud data set. The filter_poi function from the lidR package [3] 

was used to isolate points for individual segmented trees from the imported “LAS-class” R object 

by setting the “treeID ==” argument to the elements of the unique treeID list. The damage 

analysis only requires the height and classification information, and therefore, only the Z and 

classification columns were extracted from the filtered point cloud data set’s @data slot and 

stored as a data.table for the tree-filtered point cloud data set. Performing a damage 

assessment on a data.table with only two columns is more efficient than using the “LAS-

class” R object with multiple columns and data slots, especially for iterative operations.  



S8.3. Types of tree-level damage algorithms 

 

 

Figure S14. (a) The “top2bin” algorithm assesses the percentage of damage points within a set 
of height bins from the top of the tree to a given height; the algorithm begins at the top of the 
tree and progresses downward. For example, if a tree is 10 m tall, the “top2bin” algorithm 
assesses damage from 10 m above the ground to 9.75 m above ground (0.25 m bin) for the first 
set of bins (consisting of one 0.25-m bin), and then assesses damage from 10 m above ground 
to 9.5 m above ground for the second set (consisting of two 0.25-m bins). The algorithm halts 
when the percentage of damaged points within a set of bins is below a threshold. (b) The 
“bin2bin” algorithm assesses the percentage of damage points for each height bin beginning at 
the top of the tree and progressing downward. For example, if the tree is 10 m tall, the 
“bin2bin” algorithm assesses damage from 10 m above ground to 9.75 m above ground for the 
first bin, and then assesses damage from 9.75 m above ground to 9.5 m above ground for the 
second bin. The algorithm halts when the percentage of damaged points within a bin is below a 
threshold.  



S8.4. Accuracy assessment of tree-level damage algorithm 

The tree polygons with tree-level damage analysis information were imported into ArcGIS, and 

the polygon layer was clipped to a smaller extent to remove the edge artifacts of the MS and 

RGB orthomosaics. 

The “Create Accuracy Assessment Points” tool in ArcGIS was used to create stratified random 

assessment reference locations (ArcGIS point feature) within the clipped extent. The input 

information source was set to the tree damage assessment polygon layer such that the 

randomized reference locations (ArcGIS point feature) inherited the damage severity identified 

by the algorithm under its “Classified” attribute. Randomized reference locations were evaluated 

with an on-screen assessment, in which each location’s reference damage severity was recorded 

as its “GrndTruth” attribute. The MS and RGB orthomosaics were used as the primary source of 

visual assessment, and individual drone-captured images were consulted for cases that needed 

additional information. A total of 1000 randomized reference locations were qualitatively 

assessed to build the accuracy assessment reference data set. 

The “Compute Confusion Matrix” tool in ArcGIS was used on the accuracy assessment locations 

to produce the confusion matrix and calculate the accuracy metrics. The confusion matrix from 

the accuracy assessment on ArcGIS consisted of substantial class imbalances, with most of the 

reference locations falling in the “healthy” class. To address this class imbalance, the attribute 

table of the accuracy assessment reference locations (ArcGIS point feature) was imported in R, 

and a bootstrap sampling method was implemented to produce an averaged confusion matrix and 

computed accuracy metrics [16]. 



 

 

Figure S15. (a) Point cloud of a “dead” tree from the reference data set with green classified 
points on the bottom and middle. (b) Oblique view of the true color image of the “dead” tree in 
(a). 

  



S8.5. Live crown base issue with SfM point clouds 

 

 

Figure S16. (a) True color and (b) false color drone images of an example tree with a live crown 

base above the ground (red arrows indicate live crown base). (c) SfM point cloud of the example 

tree in (a) and (b); red arrow on SfM point cloud shows absence of points, providing 

inconclusive information for live crown base estimation; gray dashed line represents the ground. 

The orientation of the point cloud in (c) was adjusted to match the view of the tree in (a) and (b). 

The placement of the red arrows was an estimation of where the points representing the crown 

base should be based on the orientation.  
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