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Abstract: Joint transceiver beamforming is a fundamental and crucial research task in the field of
signal processing. Despite extensive efforts made in recent years, the joint transceiver beamforming
of frequency diverse array (FDA)-based multiple-input and multiple-output (MIMO) radar has
received relatively less attention and is confronted with some tricky challenges, such as range–angle
decoupling and the interaction between multiple performance metrics. In this paper, we initially
derive the generalized ambiguity function of the FDA-MIMO radar to explore the intrinsic correlation
between its waveform design and resolution. Following that, the joint beamforming optimization
is formulated as a nonconvex bivariate quadratic programming problem (NBQP) with the aim of
maximizing the Signal-to-Interference-Noise Ratio (SINR) of the FDA-MIMO radar system. Building
upon this, we introduce an innovative alternating manifold optimization with nested iteration (AMO-
NI) algorithm to address the NBQP. By incorporating manifold optimization into iterative updates
of transmit waveform and receiving filter, the AMO-NI algorithm considers the interdependencies
among the optimization variables. The algorithm efficiently and expeditiously finds global optimum
solutions within a finite number of iterations. Compared with other methods, our approach yields a
superior beampattern and higher SINR.

Keywords: FDA-MIMO radar; transceiver beamforming; generalized ambiguity function; alternating
optimization; Riemannian manifold

1. Introduction

As an emerging array structure, the FDA-MIMO radar has gained widespread atten-
tion over the past few years [1–3]. Due to its increased degrees of freedom (DOF) and
range resolution capability, the FDA-MIMO radar has been widely applied to mainlobe
interference suppression, target detection under clutter environment, and moving target
tracking based on multidimensional information sources [4–7]. In the FDA-MIMO radar,
orthogonal waveforms are emitted from the transmitter, and then the receiver is config-
ured with a multi-matched filter to separate the signals [8,9]. Given this, the signals are
synthesized into a time-independent and range–angle-dependent beampattern through
the collection of signals from multiple channels [10]. The whole transceiver process is
illustrated in Figure 1, which inherits the extra DOF from the frequency diversity of FDA
radar and the flexibility from the waveform diversity of MIMO radar. One of the most
critical problems in the process is to design the time-invariant equivalent transmit–receive
waveforms with more concentrated energy, naturally giving rise to an important research
topic—beamforming [11,12]. Beamforming aims to produce a multidimensional beampat-
tern through the selection and configuration of transmit waveforms and receive filters,
which is essential for improving target detection and localization and suppressing inter-
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ference from complex scenarios [5,13–15]. In response to the topic, numerous researchers
have dedicated substantial efforts.

Existing approaches are mainly divided into the following two categories. One is the
widely adopted “two-step” method of beamforming, which involves the individual design
of the transmitted waveform or the receive filters.

Figure 1. The illustration of transceiver processes and signal processing in the FDA-MIMO radar. The
joint transceiver beamforming is optimized for both the transmit waveform matrix and the receive
filter weights, enabling a transmitter–receiver beampattern with more concentrated energy. Here, in
the receive link, multi-matched and delay filters are added to eliminate the effects of time variations
and to separate the information from each path.

Specifically, a hybrid receive beamformer optimization for conventional MIMO radar
under a framework of minimum variance distortionless response (MVDR) beamformer is
proposed in [16], leveraging the idea of sparse signal recovery. In [17], an iterative scheme
combined with MVDR is designed for the MIMO system with low probability of intercept
(LPI) and multi-targets. Zhai et al. [18] designed a transmission waveform design method
for MIMO radar through convex optimization, avoiding the relaxation of the objective
function or constraints and improving computational efficiency. These methods are mainly
developed for conventional radar systems and may not extend well to novel radar sys-
tems [19]. Under such circumstances, Mohammad et al. [20] designed a coordinate descent
optimization framework for the coexisting system of communication and cognitive radar,
achieving sequential optimization of efficient environmental sensing and radar transmit
waveforms. The authors in [6] employed two-step independent optimization for the mini-
mum redundancy FDA-MIMO radar, where the orthogonal subspace projection method
is applied at the reception process and the covariance matrix is reconstructed at the trans-
mission stage, achieving a beampattern with certain anti-interference capabilities. Despite
this, the above design ignores the interrelationships between the variables, struggling in
the optimality of the comprehensive performance of the system.
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Another type of beamforming is the joint design of transmit waveform and receive
filters, which is the mainstream at present [21–23]. This genre mainly uses an alternating
optimization framework, which allows the multivariate problem to be decomposed into
subproblems and solved cyclically [24]. The authors [25] addressed joint transceiver beam-
forming in MIMO radar by decomposing the optimization problem using a polynomial-
time sequential convex approximation and norm constrained Capon beamformer (NCCB),
achieving the injection of interference energy in each shared frequency band. Xu et al. [26]
developed an alternating optimization algorithm based on semidefinite relaxation (SDR) to
maximize radar mutual information. Those approaches [24–26] use convex relaxation and
achieve better system performance in dealing with the problem of nonconvex functions
and constraints. Recently, some researchers have extended this optimization framework
to waveform design in the FDA-MIMO radar. In [27], the authors established an FDA
antenna model with multiple overlapping subarrays and utilized ADMM to optimize
the transmit beampattern, forming a beampattern with lower cross-correlation sidelobes.
Gong et al. [28] proposed a primal–dual algorithm to enhance the LPI capability in the
FDA-MIMO radar. To mitigate synthetic aperture radar interference, Lan et al. [29] devel-
oped iteration algorithms by introducing artificial interference, generating a trough-like
transceiver beampattern with arbitrarily distributed broadened nulls.

In addition to the exploration of beamforming mentioned above, some researchers have
explored and analyzed the impact of key parameters on radar system performance [19,30–33],
providing theoretical foundations for waveform design. For example, Xiong et al. [19]
derived the Cramér–Rao lower bound and mean square error for MUSIC-based range–
angle estimation in the FDA-MIMO radar, while also setting thresholds for range and
angle resolution in target detection and localization. In [30], the authors analyzed the
ambiguity function characteristics of FDA radar and proposed a method for parameter
optimization, leading to range-dependent beampatterns. The work of [31] establishes a
closed-form model capable of generating a range–angle decoupled beampattern in FDA
radar, and explores the relationship between FDA frequency increment and its beampattern.
To further explore the potential applications of the FDA in target detection, radar imaging,
and interference deception, the study by [32] extends the traditional ambiguity function to
FDA radar and analyzes the resolution capabilities for target detection and imaging. Bang
et al. [33] proposed a deceptive jamming method and the range-Doppler algorithm for a
Synthetic Aperture Radar inspired by the paradigm of the FDA radar, showing promising
results in high-resolution imaging.

While the aforementioned methods have achieved certain advances, there still remain
the following challenges. (1) These methods primarily emphasize the waveform design
for phased array or MIMO radars, and relatively few studies have taken into account the
joint transceiver beamforming of the new radar system the FDA-MIMO radar, especially
in improving the overall SINR of 2D beamforming. (2) The previous designs typically
concentrate on solving the parameters of the transmitter and receiver using semidefinite and
convex relaxation techniques, usually neglecting the decoupling of the two-dimensional
beam during the optimization process. (3) To the best of our knowledge, there has been
limited research analyzing the key parameters influencing 2D resolution in the waveform
design of the FDA-MIMO radar. (4) Most optimization methods, when extended to FDA-
MIMO, do not perform well in computational efficiency and resolution, as the optimization
variable dimension in the FDA-MIMO radar is squared compared to conventional radar
and the nonconvex objective function and constraints.

This paper introduces an effective beamforming method for joint transmission and
reception in the FDA-MIMO radar as shown in Figure 2. Specifically, we first establish
the signal model for the FDA-MIMO radar and derive its general ambiguity function
to analyze the impact of parameters on range–angle resolution. In light of the analysis,
we observe that the joint transceiver beamforming could alter the mainlobe width in the
range–angle profile, and affect the range resolution and the coupling term. Upon this, a
direct method is proposed for solving the SINR maximization problem under the constant



Remote Sens. 2024, 16, 1364 4 of 22

modulus constraint, ingeniously avoiding convex relaxation. We simplify the optimization
problem into a nonconvex binary quadratic programming problem (NBQP) and introduce
a nested iterative alternating manifold optimization (AMO-NI) algorithm. In AMO-NI,
transmit waveforms and receive filter weights are optimized alternately, reducing the
coupling between variables and accelerating the convergence process. Simultaneously,
AMO-NI transforms the feasible domain of the original problem from Euclidean space into
a Riemannian manifold for computing the conjugate gradient descent direction and an
effective step size under the Wolfe–Powell criterion, ensuring the algorithm’s convergence
and obtaining a global optimal solution. The main contributions can be summarized
as follows:

• We derive the generalized ambiguity function of the FDA-MIMO radar for studying
the key parameters that impact the range–angle resolution, and introduce a direct
solution framework that avoids convex relaxation.

• Under constant modulus conditions, the problem of jointly designing transmit wave-
forms and receive filter weights in the FDA-MIMO radar is transformed into a non-
convex bivariate quadratic programming problem (NBQP) for the simplicity of the
subsequent solution.

• A nested iterative alternating manifold optimization (AMO-NI) algorithm is proposed
for efficiently solving the NBQP and obtaining the optimal transmit waveforms and
receive filter weights after a finite number of iterations.

• Extensive experiments are conducted, and our method demonstrates a higher SINR while
outperforming other methods in range–angle decoupling and computational efficiency.

Figure 2. The algorithm framework of nested iterative alternating manifold optimization (AMO-NI).

The subsequent sections of this paper are structured as follows. Section 2 describes
the signal model and ambiguity function of the FDA-MIMO radar and proposes the
performance trade-off problem of optimizing the SINR and 2D beam resolution. In Section 3,
we illustrate the alternating manifold optimization that maximizes the system SINR and
maintains the decoupling of the transceiver beampattern in the range–angle dimension.
Numerical simulations are conducted in Section 4 to verify the performance of our method
in range–angle 2D beam and system SINR. Finally, Section 5 concludes the paper.

Notations: Boldface, bold italic, and italic letters are matrices, vectors, and variables.
XH , XT , and X∗ denote the conjugate transpose, transpose, and conjugate of the matrix
X. |·| is the modulus of the complex scalar. IN represents the N-dimensional identity
matrix. CN is an N-dimensional complex-valued vector space. ℜ(·) means the real part of
a complex-valued number. ⊗, ⊙, and ⊘ are the Kronecker product, Hadamard product,
and element-wise division.



Remote Sens. 2024, 16, 1364 5 of 22

2. Problem Formulation and Analysis

In this section, we first present the signal transmission model of the FDA-MIMO
radar and derive the generalized ambiguity function for investigating the main factors that
affect the range–angle resolution. Next, an optimization problem involving the transmitting
waveform matrix and receiving filter weight vectors is formulated to improve SINR without
sacrificing the range–angle resolution. Finally, we analyze the difficulties associated with
the problem.

2.1. Signal Model

We consider a narrow-band colocated FDA-MIMO radar with N transmit antennas
and M receive antennas. The transmit and receive antennas are uniform linear arrays with
an inter-element spacing of d, where d equals half the wavelength. The n-th transmit signal
is expressed as

xn(t) = sn(t)ej2πt( fc+FFn), (1)

where sn and fc represent the baseband waveform and carrier frequency. The frequency
component FFn equals Taylor(n)∆ f N(n − 1)/2, where Taylor(n) denotes the Taylor win-
dow function. We refer readers to [34–36] for more details. For the convenience of discus-
sion, we assume a far-field point target located at azimuth angle θq and range rq without
considering interference and noise. The received signal of the FDA-MIMO radar from the
m-th element is defined as

ym(t − τ) =
N

∑
n=1

xn(t − τn,m)

≈ ζ
N

∑
n=1

sn(t − τ)ej2π( fc+FFn)(t−τn,m)

= ζej2π fc[(t−τ)+(m−1) dsinθ
c ] ·

N

∑
n=1

sn(t − τ)ej2π[(t−τ)FFn+ fc(n−1) dsinθ
c ], (2)

where τn,m = (2r − d[(n − 1) + (m − 1)] sin θ)
/

c represents the physical delay, and 2r
denotes the distance between the first transmitting and receiving elements, while τ = 2r/c
is the reference element delay. fc and c are the carrier frequency and the speed of light. ζ
is the complex amplitude, which undergoes channel transmission, target reflection, and
amplitude attenuation.

As seen in Figure 1, the echo signals are separated via a multi-channel matching filter,
where the term e−j2πtFFn is employed to eliminate the time-dependence of the beampat-
tern [37–39]. The k-th transmit code of n-th antenna is sn(k), where n = 1, 2, ..., N and
k = 1, 2, ..., K. K is the snapshot number of each pulse. The k-th waveform vector of N
transmit antennas is represented as s(k) = [s1(k), s2(k), ..., sN(k)]

T ∈ CN×1. For illustrative
convenience, we define the transmit waveform matrix as X = [s(1), s(2), ..., s(K)] ∈ CN×K.
Stacking K snapshots, the transmission matrix can be integrated as S = XT ⊗ IM. In general,
the echo signal becomes more complicated under the presence of uncorrelated point-like
interferences and Gaussian white noise. For clarity, the received signal y stacked by the
signals after multi-matched filters can be written as

y =
Q

∑
q=1

ξqSAq +
L

∑
l=1

ϖlSBl + E , (3)

where ξq = ζe−j2πFFnτ and ϖl are the complex equivalent coefficient of the q-th target
and the l-th interference source, and l = 1, 2, ..., L (L indicates the number of interference
sources). Here, Aq = u

(
rq, θq

)
⊗ v

(
θq
)

and Bl = u(rl , θl)⊗ v(θl) are the “virtual array”
steering vectors. E represents additional white Gaussian noise, instantiated as a random
variable with a mean of zero and a variance of σ2. The transmit steering vector u

(
rq, θq

)
∈
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CN×1, which effectively controls the range and angle of the transmitting beam, and the
receive steering vector v

(
θq
)
∈ CM×1 is defined as follows:

u
(
rq, θq

)
=

[
ej2πFF1

rq
c , e−j4πFF2

rq
c , . . . , e−j4πFFN

rq
c

]T

⊙
[

1, ej2π fcd
sin θq

c , . . . , ej2π fc(N−1)d
sin θq

c

]T
, (4)

v
(
θq
)
=

[
1, e−j2π fcd

sin θq
c , . . . , e−j2π fcd(M−1)

sin θq
c

]T
. (5)

2.2. Generalized Ambiguity Function for FDA-MIMO Radar

Inspired by [30,32,40], we derive the generalized ambiguity function of the FDA-
MIMO radar in joint transceiver beamforming for investigating the parameters that affect
the range–angle resolution. We assume that the radial velocity of the target is depicted by
the vector υ and utilize the parameter θ and fd to represent the position (r, θ) and Doppler
shift of the target. With these definitions, the received signal y′m after the spread spectrum
is written as:

y′m(t − τ(t; Θ)) = ζ(t; Θ)ej2π fc

[
(t−τ(t;Θ))+(m−1)

dsinθq
c

]

·
N

∑
n=1

sn(t − τ(t; Θ))ej2π
[
(t−τ(t;Θ))FFn+ fc(n−1)

dsinθq
c

]
, (6)

where τ(t; Θ) is a function related to the reference delay τ. Time delays caused by inter-
element spacing, electromagnetic wave propagation and target motivation are provided
as follows:

τ(t; Θ) =τ(r) + τn,t(θ) + τm,r(θ) + τd(υt)
=2r/c − nd sin(θ)

/
c − md sin(θ)

/
c − 2υt/c. (7)

In general, under the far-field target condition, we can ignore the inter-element spacing
and the envelope delay. When sn(t − τ(t; Θ)) = sn(t − τ), the spread spectrum signal in (6)
is simplified to

y′m(t − τ) = ζej2π fc

[
(t−τ)+(m−1)

dsinθq
c

]

·
N

∑
n=1

sn(t − τ)ej2π
[
(t−τ)FFn+ fc(n−1)

dsinθq
c

]

· e−j2πFFn(τn,t(θ)+τm,r(θ))e−j2πFFnτd(υt), (8)

Here, only waveform design is emphasized without considering the propagation path
loss. The complex amplitude of received signal is set to 1 in this context. Subsequently,
down-conversion and matched filtering are used to separate signals, and M receiving
signals are stacked. The term ej2π(t−τ)FFn is reshaped as a matrix C(t − 2r/c). Here are
some approximations, including e−j2πFFnτd(υt) = ej2πηn fdt, ηn = FFn

/
fc and fd = 2υ fc

/
c.

The spread spectrum signal is rewritten as

J(t; Θ) = ej2πt fd [u(r, θ)⊗ v(θ)]TST(t − 2r/c)C(t − 2r/c), (9)

where fd = (2υ/c) fc represents the Doppler frequency, S(t) denotes the transmitting
waveform matrix, and C(t) =

[
ej2πtFF1 , ej2πtFF2 , ..., ej2πtFFN

]
⊗ Ik is the frequency offset

delay (assuming N = M). We define the ambiguity function χ of the FDA-MIMO in joint
beamforming as

χ(Θ1, Θ2) =
∫ ∞

−∞
J(t, Θ1) J∗(t, Θ2)dt, (10)
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where Θ1 = {r1, θ1, fd1} and Θ2 = {r2, θ2, fd2}. Furthermore, substituting J(t; Θ) from (9)
into (10), the ambiguity function χFF is redefined as Equation (11):

χFF(Θ1, Θ2) =
∫ ∞

−∞
ej2πt fd [u(r, θ)⊗ v(θ)]S(t − 2r/c)C(t − 2r/c)

· CH(t − 2r/c)SH(t − 2r/c)[u(r, θ)⊗ v(θ)]∗
(

ej2πt fd
)∗

dt
(11)

Building upon the previous steps, inserting the terms ∆r = r2 − r1, ∆ sin θ = sin θ1 −
sin θ2, ∆τ = τ2 − τ1, and ∆ fd = fd1 − fd2 into (11), an approximately equivalent χFF is
obtained as seen in (12). Here, since the baseband waveform is orthogonal, the following
inference is valid in (13):

χFF(Θ1, Θ2) =
N−1

∑
n=0

N−1

∑
n′=0

[un(r1, θ1)⊗ vn(θ1)]Cn′(∆τ)

·
∫ ∞

−∞
s(t)s∗(t − ∆τ)e

−j2πt
(

∆ fd+FF(n′−n)

)
dt[un′(r2, θ2)⊗ vn′(θ2)]

∗

=
N−1

∑
n=0

N−1

∑
n′=0

[un(r1, θ1)⊗ vm(θ1)][un′(r2, θ2)⊗ vn′(θ2)]
∗

· Cn′(∆τ)χort

(
∆τ, ∆ fd + FF(n′−n)

)
=χort(∆τ, ∆ fd)

N−1

∑
n=0

ej2π(FFn
2∆r

c − d
λ ∆ sin θ)

+
N−1

∑
n=0

N−1

∑
n′=0,n′ ̸=n

[un(r1, θ1)⊗ vn(θ1)][un′(r2, θ2)⊗ vn′(θ2)]
∗

· Cn′(∆τ)χort

(
∆τ, ∆ fd + FF(n′−n)

)

(12)

χort

(
∆τ, FF(n′−n)

)
=

∫ ∞

−∞
s(t)s∗(t − ∆τ)e

−j2πtFF(n′−n)dt = 0 (13)

From the expression of (12), it can be observed that this ambiguity function contains
two terms. The first is a crucial term, related to range, angle, and Doppler resolution,
while the second is a coupling term that is simply interference and has a negligible impact
on resolution:

|χFF(∆r, 0, 0)| = |χort(∆τ, 0)|
∣∣∣∣e−j2π

(
FFn

2r
c −d∆sin(θ)/λ

)∣∣∣∣
= |χort(∆τ, 0)|

∣∣∣∣e−j2π
(

FFn
2r
c −dλ/(λNd)

)∣∣∣∣
≈ |χort(∆τ, 0)|

∣∣∣∣∣∣
sin

(
2πFFmax

∆r
c

)
sin

(
2πFFmin

∆r
c

)
∣∣∣∣∣∣ (14)

To analyze the impact of joint transceiver beamforming on range resolution, we
substitute ∆ fd = 0 and θ1 = θ2 = 0 into (12) and let the baseband waveform satisfy (13).
The second term in (12) becomes 0, leaving only the first term. We have e−j2πFFnτ ≈ e−j2π fcτ ,
and the actual wavelength of the carrier in the FDA-MIMO radar satisfies λFDA < λ [40].
Based on these operations, the principal amplitude profile is derived as (14). Here, FFmax
and FFmin respectively represent the maximum and minimum values of FFn (n = 1, 2, ..., N).
The range resolution capability can be expressed as

res[∆r] = min
{

c
2B

,
c

2FFmax

}
. (15)
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where B is the bandwidth.
Following the above derivation, we can gain the three remarks as stated below:

• The range resolution is related to the frequency offsets and bandwidth.
• If choosing a nonlinear frequency offset, it is necessary to ensure that the maximum

frequency offset is smaller than the bandwidth.
• Optimizing the transmit and receive beamforming patterns can help lower the band-

width, thereby improving the range resolution.

In addition, we also analyze the parameters affecting the angle resolution. When we
set ∆r = 0, the angle profile is derived as

|χFF(0, ∆ sin θ, 0)| =
∣∣∣∣M−1

∑
m=0

e−j2π fcd(M−1)
sin θq

c

∣∣∣∣. (16)

The angle resolution capability can be depicted by

res[∆ sin θ] =
c

Md fc
. (17)

As we can see from (17), the factors affecting the angle resolution are similar to
those of conventional MIMO and PA radars. The angle resolution will be poor when
the frequency offset FFn is much smaller than the bandwidth. It is imperative to avoid
the value of FFn being too small or too large. According to [41–43], the range–angle
coupling can be effectively mitigated by rationally designing the nonlinear frequency
offsets. However, this does not mean that the change in equivalent transceiver in beam
space fails to influence the range–angle coupling. In fact, considering the coupling term
(r1 = r2 and fd1 = fd2), the angle profile is related to the equivalent joint transceiver
beam matrix. Given the interrelationships between the above parameters and performance
trade-offs in the FDA-MIMO radar, the following optimization problem is designed to
improve the overall performance.

2.3. Optimization Problem of Joint Beamforming

To obtain a transceiver waveform with high quality and reliability, we study the joint
design of the transmit waveform and receive filter. The SINR is a fundamental metric used
for evaluating the overall system performance [44–46]. In the FDA-MIMO radar, crucial
tasks such as target detection, interference suppressing, target tracking, and synthetic
aperture radar imaging necessitate a higher SINR output to facilitate the comprehensive ac-
quisition of multi-dimensional information. In this way, the joint transceiver beamforming
of the FDA-MIMO radar can be formulated as a SINR maximization problem.

Specifically speaking, we assume that the filter weight of the received signal y is
represented by w ∈ CMK×1. The SINR of the FDA-MIMO radar can be expressed as

SINR =

∣∣∣∣∣ Q
∑

q=1
ξqwHSAq

∣∣∣∣∣
2

wH
(

L
∑

l=1
ϖ2

l
SBlBH

l SH
)

w + σ2wHw
. (18)

To prevent the device from adversely affecting the waveform and power control,
nonlinear amplifiers are ideally in saturation mode [47]. The average power of the radar
antenna is modeled as a constant modulus (CM) constraint [18,47–49]. The optimization
problem under the CM constraint can be symbolized by max

S,w
SINR =

∣∣∣∑Q
q=1 ξqwHSAq

∣∣∣2
wHΨw + σ2wHw

s.t.
∣∣Sn,m,k

∣∣ = 1

, (19)
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where Ψ = ∑L
l=1 ϖ2

l
SBlBH

l SH .
Unlike the existing problem, addressing the issue in (19) poses the following new challenges.

(1) The optimization of the transmit sequence S in fixing the receive filter weights is
nonconvex and NP-hard. Traditional convex optimization methods [50] are no longer
applicable in this context, and their solution space may contain multiple local opti-
mal solutions.

(2) Searching for the global optimum of multiple variables in a high-dimensional solution
space becomes quite challenging as the dimension of variables increases. In this case,
previous methods run very slowly and struggle to meet the requirements in general
radar application scenarios [28,51].

(3) During the optimization process, the coupling terms can easily lead to the degradation
of the 2D resolution [32].

Accordingly, we develop an AMO-NI algorithm to overcome the difficulties of joint
transceiver beamforming in the FDA-MIMO radar.

3. Solution to the Optimization Problem

As previously mentioned, the problem in (19) is nonconvex. We reformulate it as the
following minimization problem:

min
w,S

wH(
Ψ + σ2IMK

)
w∣∣∣∑Q

q=1 ξqwHSAq

∣∣∣2
s.t.

∣∣Sn,m,k
∣∣ = 1

. (20)

In order to solve the above problems, we present an AMO-NI algorithm for optimizing
S and w efficiently as seen in Algorithm 1. The following will describe each step of the
AMO-NI algorithm.

(A) Solution of w

To solve for w, we can transform the problem of (20) into an MVDR problem as

min
w

wH(
Ψ + σ2IMK

)
w∣∣∣∑Q

q=1 ξqwHSAq

∣∣∣2 . (21)

The problem in (21) has a closed-form solution. At the t-th iteration, the solution wt
can be deduced as

wt =
(

Ψ + σ2IMK

)−1
St−1

(
∑Q

q=1 ξqAq

)
, (22)

where S0 is obtained through random initialization.

(B) Solution of S

In order to facilitate the discussion of question in (20), we set g = vec(X) ∈ CNK×1,
w = mat(w) ∈ CM×K, and ŵ = wH ⊗ IN , where mat(w) is the matricization of vector
w. Under the constraint of the constant modulus, seeking g solutions for a fixed ŵ is
challenging, so we convert the feasible domain of this problem from the Euclidean space
into the Riemannian manifold. Before optimization begins, we vectorize the parameters
in (20) and simplify them to 

min
g

gHŵHRcnŵg
gHŵHR0ŵg

s.t.
∣∣∣gp

∣∣∣ = 1, p = 1, . . . , NK
, (23)

where Rcn = ∑L
l=1 ϖlBlBH

l + σ2INM and R0 = ∑Q
q=1 ξqAqAH

q . Rcn and R0 are covariance
matrices with NM × NM.
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Algorithm 1 AMO-NI.

Require: tol = 10−4, ε = 10−6, τ0 = 10.
Ensure: S′, w′.

1: while t ≤ 50 do
2: Compute wt by (22);
3: Initialize X0 ∈ Mc,
4: g0 = vec(X0);
5: Compute η0 = −∇ f (g0);
6: g1 = (g0 + τ0η0)⊘ |g0 + τ0η0|;
7: i = 1;
8: while i ≤ 1000 do
9: Compute ∇M f (gi) by (27) and (28);

10: Compute ℵi and ρi by (29)–(31);
11: Compute gi+1 by (33) and (34);
12: if

∥∥−∇M f
(
gi+1

)∥∥ ≤ ε then
13: Break;
14: end if
15: i = i + 1;
16: end while
17: w′ = wt;
18: St = mat(gi+1)

T ⊗ IM;
19: S′ = St;
20: if |SINRt − SINRt−1| ≤ tol then
21: Break;
22: end if
23: t = t + 1;
24: end while

Secondly, the nonconvex constraints related to the g in (23) are converted into a search
for the optimal solution within the complex-circles manifold. To be specific, we define a
complex-circles manifold Mc ∈ CNK×1 as

Mc =
{

g ∈ CNK×1
∣∣∣ |g(p)| = 1}. (24)

Furthermore, the problem in (23) can be converted into an unconstrained optimization
problem, written as

min
Mc

f (g) =
gHŵHRcnŵg
gHŵHR0ŵg

. (25)

For the problem stated in (25), we introduce an iterative loop to compute g given ŵ.
Figure 3 depicts the optimization solution process of g. In the i-th iteration, the tangent
space is defined as

Tgi
Mc =

{
b∈ CNK×1|ℜ(b ⊙ g∗i ) = 0

}
, (26)

The Riemannian gradient is obtained as

∇M f (gi) = Projgi
(∇ f (gi)) = ∇ f (gi)−ℜ{∇ f (gi)⊙ g∗i } ⊙ gi. (27)

Here, Projgi
(·) and ∇ f (gi) are orthogonal projection operators and Euclidean gradients,

respectively. When setting ϕ = ŵHRcnŵ and υ = ŵHR0ŵ, the Euclidean gradient ∇ f (gi)
can be computed by (28):
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∇ f (gi) =
1[

gH
i (ŵHR0ŵ)gi

]2 ·
{[(

ŵHRcnŵ
)

g∗i +
(

ŵHRcnŵ
)T

g∗i

][
gH

i

(
ŵHR0ŵ

)
gi

]
−

[(
ŵHR0ŵ

)
g∗i +

(
ŵHR0ŵ

)T
g∗i

][
gH

i

(
ŵHRcnŵ

)
gi

]}
=

2
(
ŵHRcnŵ

)
g∗i

gi
H(ŵHR0ŵ)gi

−
2
(
ŵHR0ŵ

)
g∗i
[
gH

i
(
ŵHRcnŵ

)
gi
](

gH
i (ŵHR0ŵ)gi

)2

=
2ϕg∗i

gi
Hυgi

−
2υg∗i

[
gH

i ϕgi
](

gH
i υgi

)2

(28)

Figure 3. Conjugate gradient descent (red) versus steepest descent method (blue), observing that the
former is superior to the latter.

On top of the Riemann gradient, we can search the steepest descent direction by the
Polak–Ribiere conjugate gradient ℵi. ℵi can be sought from

ℵi = −∇M f (gi) +ℑTgi−1→gi
M(ℵi−1). (29)

In (29), ℑ represents the Polak–Ribieres conjugate parameter. Tgi−1→gi
M(ℵi−1) de-

notes the linear mapping from the tangent space at gi to gi+1. In this search, a point gi is
determined, and the search direction ℵi is easily obtained. Once the descent direction is
obtained, the Armijo–Goldstein criterion can search for a suitable step size in most cases.
However, the minimum points obtained from this method easily fall within the interval of
nonminimum points. Consequently, we search for a faster-descending step using a strong
Wolfe–Powell criterion [52]. The objective of the search is to find the step size ρi.

In the i-th iteration, the step size ρi based on the strong Wolfe–Powell line search can
be obtained by (30)–(32):

f (gi + ℵiρi) ≤ f (gi) + ρi∂βiℵi (30)∣∣∣∇ f (gi + ℵiρi)
Tℵi

∣∣∣ ≥ −ϱ∂Tℵi (31)

ρi = −βi∇M f (gi) (32)

Here, βi ∈ (0, 1), ϱ ∈ (∂, 1), and ∂ ∈ (0, 1/2). The f (gi) + ρi(1 − ∂)βi
Tℵi is below the

second dashed line f (gi) + ρiβi
Tℵi due to βiℵi < 0, and that is also below the first dashed

line f (gi + ρiℵi) as shown in Figure 4. The first criterion in (30) is to determine whether
the minimum point is within the range [b, c]. Due to the “stronger criterion” in (31), the
slope of the tangent line is greater than or equal to ϱ times the initial slope at an acceptable
point. The interval of admissible points is restricted to a smaller interval [d, e] containing
the minimum points. The red line denotes the process wherein the objective function values
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are “sandwiched” or “squeezed” between the upper and lower bounds defined by the
strong Wolfe–Powell criterion, ensuring an effective search for the global minimum point.
We update the variable gi and assign its value to gi+1 by

g̃i = gi + ρiℵi, (33)

gi+1 = g̃i ⊘ |g̃i|. (34)

Finally, St can be updated from St = [mat(gi+1)]
T ⊗ IM.

Figure 4. Step size search under a strong Wolfe–Powell criterion, where the horizontal and vertical
coordinates represent the transmission sequence to be optimized and the objective function in (25).

4. Numerical Simulations

In this section, a series of experiments are performed to verify our method’s effective-
ness. Without loss of generality, we assume that all targets and interference source reflection
coefficients are assumed as 1, and the noise coefficients obey a standard complex Gaussian
distribution. We consider an FDA-MIMO radar with the simulation parameters as listed in
Table 1. In our experiment, all numerical simulations are conducted on a computer with
the Intel i7-12700F processor and 16 GB RAM, using Matlab 2018b.

Table 1. Configuration of simulation experiment parameters.

Parameter Value Parameter Value

transmitting sensors N = 20 range grid 181
receiving sensors M = 20 angle vector [−90°,90°]
snapshot number K = 20 angle grid 301
frequency offset ∆ f = 20 kHz target location (0◦ , 30 km)
carrier frequency fc = 10 Ghz interference 1 (−50◦ , 10 km)

speed of light c = 3 × 108 m/s interference 2 (55◦ , 15 km)
inter-element spacing d = 1/2 interference 3 (60◦ , 20 km)

complex coefficient ξq = ωl = 1 interference 4 (84◦ , 45 km)
range vector [0 km, 60 km]

4.1. The Convergence Evaluation and Complexity Analysis

Figures 5 and 6 display the Riemannian gradient norm and SINR curves as the number
of iterations increases. As can be seen, (1) there is no significant fluctuation in the gradients,
and (2) the value of SINR stabilizes at around 31.15 dB after about 20 iterations, reaching a
converged state.

Additionally, we compare our method with some other representative optimization
approaches in terms of complexity and running time as shown in Table 2. The compared
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optimization methods include NCCB [53], MVDR [16], ADMM [51], SDR [50], and ASM-
ADMM [28]. It can be observed that (1) in a single iteration, the complexity of the proposed
method is O(M3K3 + N2), which is lower than other methods. (2) The algorithm’s running
time is 0.2 s, faster than others.

Figure 5. Change curves of Riemann gradient norm.

Figure 6. Change curves of output SINR. The red dot is the value of SINR at the 18th iteration.

Table 2. Comparison results of complexity and runtime.

Method Complexity (Single Iteration) Time (s)

NCCB [53] O(N2 + N3 M3K3) 1.51
MVDR [16] O(N2 + M3K3) 1.29
ADMM [51] O(M3K3 + N3.5K3.5) 25.20

SDR [50] O(M3K3 + N3.5K3.5 + N2) 0.37
ASM-ADMM [28] O(N2K2 + N3K3 + N3K3 + M3K3) 543
AMO-NI (Ours) O(N2 + M3K3) 0.20

All this demonstrates the excellent performance of our algorithm in terms of stability
and efficiency. We attribute these promising results to the fact that (i) our method reduces
the complexity of the optimization for S as shown in (24), (ii) our method is a 2D search
in manifold and possesses a faster convergence rate (see Figure 5), and (iii) our method
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avoids convex relaxation and extensive matrix eigenvalue decomposition, thus speeding
up the solution process.

4.2. Results of Transceiver Beampattern

We compare our method with other schemes in half-power widths, 2D-beampatterns,
as well as range and angle profiles. The comparison results are presented in Table 3. Our
algorithm achieves the narrowest half-power widths (3.6 degrees and 8.9 km). This indicates
that the proposed method possesses superior capabilities in beam focusing and decoupling.

Table 3. Comparison results of half-power width. ↓ indicates better performance with lower values.

Method
Half-Power Width

Angle (Degree) ↓ Range (km) ↓

NCCB [53] 6.0 14.2
MVDR [16] 10.0 35.0
ADMM [51] 4.0 9.4

SDR [50] 87.0 16.9
ASM-ADMM [28] 5.7 10.8
AMO-NI (Ours) 3.6 8.9

Figure 7 presents the 2D beampatterns of our method and other ones. With the
same configuration, our method generates beampatterns that effectively point towards
the target center (refer to the highlighted regions at the black four-pointed stars) than
other methods, including NCCB, MVDR, ADMM, SDR, and ASM-ADMM. Meanwhile, our
method better suppresses the generation of X-shaped beampatterns and has deeper nulling
at the interferences (blue regions at red points). All these indicate that our method could
form a beampattern with a lower sidelobe level, less scattering, and more concentrated
energy. We attribute these superiorities primarily to our use of a maximized SINR objective
function in optimizing the transmit and receive beamforming variables, which maximizes the
power indication to the target while minimizing the beam power in the direction of interference.

In Figure 8, we show the results of different optimization methods in terms of angle
profiles. Our approach achieves deeper and more accurate nulling in the angle profile
among all algorithms under the same setting. To be specific, our AMO-NI obtains the
lowest nulling (about −95 dB), which significantly beats the strongest competitor ASM-
ADMM. This implies that the proposed method effectively directs the beam towards desired
directions while suppressing undesired ones, which is consistent with the conclusions
drawn from the observations in Figure 7 and demonstrates that optimizing the transmit
waveform and receive filter weights could enhance the accuracy of beamforming in angle
once again.

As shown in Figure 9, the performance in the range profile is also consistent. Our
method has narrower mainlobe width and faster sidelobe attenuation than others. At the
range profile, a minimum nulling of −45 dB is achieved at the interference region, notably
surpassing the best-performing method SDR (−45 dB vs. −33 dB). This indicates that
our method exhibits better directionality in the range dimension and possesses greater
potential for interference suppression. We argue that these advances in range dimension
mainly benefit from iteratively optimizing and coordinating subproblems to obtain the
global optimal solution.
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Figure 7. Transceiver beampatterns of (a) NCCB, (b) MVDR, (c) ADMM, (d) SDR, (e) ASM-ADMM, and
(f) AMO-NI. The black four-pointed star and the red dot represent the target and interference, respectively.

Figure 8. Angle profile comparison between different optimization methods. The dashed line vertical
to the horizontal axis indicates the angle of the interference source.
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Figure 9. Range profile comparison between different optimization methods. The dashed line vertical
to the horizontal axis indicates the range of the interference source.

4.3. Results of SINR

In Figure 10, we present the output SINR versus transmit SNR for our method and
other approaches. Our method achieves the highest output SINR, surpassing NCCB [53],
MVDR [16], ADMM [51], SDR [50], and ASM-ADMM [28] by 64 dB, 48 dB, 48 dB, 18 dB,
and 21.3 dB, respectively. Those results demonstrate that our AMO-NI has higher signal
quality and availability of communication in FDA-MIMO radar systems.

Figure 10. SINR versus transmit SNR among different methods.

4.4. Effects of Frequency Offset Configuration on Beamforming

We analyze the changes before and after using our beamforming method at different
frequency offsets. Table 4 presents half-power widths of the beampattern in range and angle
dimensions with and without AMO-NI at various frequency offset configurations, including
uniform, symmetric logarithmic, random, and improved Taylor window function. As
observed, after applying AMO-NI, the half-power width in the angle dimension decreases
from 22 degrees to 3.6 degrees under different frequency offsets, and a competitive half-
power width of 8.9 km is achieved in the range dimension with the improved Taylor
frequency offset. Here, the uniform frequency offset is not discussed due to its serious
range–angle coupling. The above results demonstrate that frequency offsets have a minimal
impact on the half-power width in the angle dimension but significantly affect it in the
range dimension. This is consistent with the fact that the primary parameters affecting the
range dimension resolution in the FDA-MIMO radar are frequency offset and bandwidth,
and the nonlinear frequency offset configuration can decouple the range and angle. On the
other hand, we find a significant reduction in the half-power widths with our AMO-NI.
This reduction is primarily attributed to the optimization of transmit sequences and receiver
filter weights, resulting in a decrease in the bandwidth.
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Table 4. Half-power width test at different frequency offsets with and without AMO-NI.

Half-Power Width without AMO-NI Half-Power Width with AMO-NI
Frequency Offsets

Angle (Degree) Range (km) Angle (Degree) Range (km)

Uniform [39] 22 1.2 3.6 0.3
Symlog [34] 22 24.8 3.6 22
Random [54] 22 26.8 3.6 22

Improved Taylor [35] 22 11.2 3.6 8.9

Figure 11 depicts transceiver beampatterns with and without AMO-NI under various
frequency offsets. The first row in Figure 11 exhibits S-shaped beampatterns with periodic
appearance at the target (see yellow highlights), which indicates range–angle coupling.
Without employing AMO-NI, X-shaped beampatterns with dot-shaped yellow highlights
at the target and increased scattering are presented as seen in the leftmost rows 2 to 4
of Figure 11. These X-shaped beampatterns are decoupling, but their beam focusing is
inadequate and spectral leakage is serious. Conversely, the scattering of the beampatterns
after applying AMO-NO (see right rows of 2 to 4 in Figure 11) is notably diminished, and
optimal focusing performance is demonstrated (see right last row). This improvement is
attributed to the optimization algorithm modifying the transmitted beam space matrix,
thus partially reducing beam illumination power towards nontarget areas.

Figure 11. Transceiver beampattern comparisons before and after AMO-NI at various frequency
offsets. (a) Without using AMO-NI. (b) After using AMO-NI.
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4.5. Extended Experiments

Beyond high-quality beamforming in the FDA-MIMO radar, we extend our method
AMO-NI to additional test cases, such as multi-beam generation in a drone swarm and
swarm interference suppressing in mainlobe. For comparison in these two cases, we
select a competitive algorithm named ASM-ADMM as the baseline. Next, the experiment
configuration and results of each test case are presented, respectively.

Multi-beam generation in drone swarm: Tracking the drone swarm with slow or
uniform motion poses a challenge [55]. To evaluate the generality of our method in
such a challenging scenario, an ideal environment with open space and clear weather is
considered, where the angles and ranges of the drone swarm are randomly generated
within ΘQ =

{(
θq, rq

)∣∣− 90◦ ≤ θq ≤ 90◦, 0 km ≤ rq ≤ 60 km
}

.
We utilize the proposed algorithm AMO-NI to synthesize multiple beams to indicate

the direction of each drone. There are two testing settings (i.e., X1 and X2) randomly
generated, each comprising four targets with their angles and ranges as follows:{

X1 = {(23.5◦, 47.2 km), (−3.7◦, 54.8 km), (68.3◦, 28.9 km), (41.7◦, 14.2 km)}
X2 = {(56.6◦, 9.7 km), (73.4◦, 47.7 km), (−67.1◦, 18.3 km), (8.4◦, 22 km)} . (35)

As shown in Figure 12, we present the comparison results of our method AMO-NI and
ASM-ADMM in the 3D normalized power spectrum. Our AMO-NI produces clear main
beams at the four targets, whereas ASM-ADMM shows noticeable false peaks and fails to
distinguish these main peaks. Additionally, in the same test settings, compared with ASM-
ADMM, our proposed algorithm demonstrates good performance in both the range and
angle resolution, especially within the degree intervals [−90◦,−70◦] and [70◦, 90◦], with
lower sidelobes in nontarget regions. The results demonstrate that (i) our algorithm can
effectively synthesize multiple beams, and (ii) the beams synthesized by our algorithm have
higher spectral efficiency. These phenomena are consistent with the analysis in Section 2.2
and the results in Section 4.2, suggesting the generality of our approach to multi-beam
generation in drone swarm.

Swarm interference suppressing in mainlobe: Swarm interference is very common
in real-world applications [6,12]. Assuming that prior knowledge of both the interfer-
ence sources and the targets can be obtained, we synthesize the main beams to indi-
cate target positions, forming nulls in the interference regions. The target and swarm
interference powers are set to 10 dB and 30 dB, respectively. To verify the robustness
of the proposed algorithm suppressing swarm interference at the same angle, we con-
ducted two testing settings. In the first testing setting, the target is randomly located at(
θq1, rq,1

)
= {23.2◦, 15.6 km}, and the six swarm interference is randomly distributed in

area ΘJ,1 =
{(

θj,1, rj,1
)∣∣20◦ ≤ θj,1 ≤ 30◦, 30 km ≤ rj,1 ≤ 40 km

}
. The details of the interfer-

ence sources are as follows:

ΘJ,1 =

{
(20.7◦, 38.1 km), (29.5◦, 34.9 km), (22.9◦, 39.4 km),
(26.4◦, 30.2 km), (24.0◦, 31.8 km), (21.6◦, 37.5 km)

}
. (36)

In the second testing setting, we randomly generate the target coordinate
(
θq,2, rq,2

)
= {−11.7◦, 33.5 km}, and the swarm interference coordinates within ΘJ,2 =

{(
θj,2, rj,2

)∣∣
−20◦ ≤ θj,2 ≤ −10◦, 40 km ≤ rj,2 ≤ 50 km

}
. The interference coordinates randomly gener-

ated are

ΘJ,1 =

{
(−13.7◦, 43.5 km), (−12.9◦, 46.3 km), (−15.2◦, 44.8 km),
(−17.8◦, 41.9 km), (−11.4◦, 48.2 km), (−11.9◦, 49.7 km)

}
. (37)

As shown in Figure 13, our AMO-NI shows clear focusing at target positions (yellow
regions) and deep nulling in the interference areas (green rectangles). In contrast, ASM-
ADMM shows poor focusing at target positions and lacks nulling in the interference
areas. This indicates the superiority and potential of our method for swarm interference
suppressing in the mainlobe. We attribute the superiority of our algorithm to the fact that
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our optimization method effectively improves the range resolution and suppresses the
spectral energy in the interference region.

Figure 12. Comparison results of our method AMO-NI and ASM-ADMM in the 3D normalized
power spectrum under the different testing settings (see Equation (35)).

Figure 13. Comparison results of our method AMO-NI and ASM-ADMM for swarm interference
suppressing capability in mainlobe under different testing settings (see Equations (36) and (37)),
where the green rectangles indicate the region of swarm interference.
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5. Conclusions

This paper proposes an efficient optimization algorithm, termed AMO-NI, to address
the problem of joint transceiver beamforming in the FDA-MIMO radar. Firstly, we derive
the generalized ambiguity function of the FDA-MIMO radar and conclude that optimized
transceiver beamforming can reduce the bandwidth, improving range resolution. Upon
this investigation, we formulate the transceiver beampattern optimization as a nonconvex
bivariate quadratic programming problem (NBQP). To tackle the NBQP while ensuring
the solution’s optimality for transmit waveform and receive filter weight, an innovative
alternating manifold optimization algorithm is proposed. In the experiments, our algorithm
demonstrates higher operational efficiency (0.2 s), capable of generating more focused
beampattern, with a half-power width of 3.6 degrees in angle and 8.9 km in range, as well
as surpassing the closest competitor, ASM-ADMM, by 21.3 dB in the system SINR.

Our method has achieved promising results in beamforming. However, an interesting
fact worth exploring is the collaboration of our algorithm with parameter estimation to
achieve robust target detection.
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