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Abstract: NDVI data are crucial for agricultural and environmental research. The Fengyun-3 (FY-3)
series satellites are recognized as primary sources for retrieving NDVI products on a global scale.
To apply FY-3 NDVI data for long-term studies, such as climate change, this study conducted a
thorough evaluation to detect the potentials of the FY-3B and FY-3D satellites for generating a long
time series NDVI dataset. For this purpose, the spatiotemporal consistency between the FY-3B and
FY-3D satellites was evaluated, and their performances were compared. Then, a grey relational
analysis (GRA) method was applied to detect the factors influencing the consistency among the
different satellites, and a gradient boosting regression (GBR) model was constructed to create a
long-term FY-3 NDVI product. The results indicate an overall high consistency between the FY-3B
and FY-3D NDVIs, suggesting that they could be used as complementary datasets for generating a
long-term NDVI dataset. The correlations between the FY-3D NDVI and the MODIS NDVI, as well
as the leaf area index (LAI) measurements, were both higher than those of FY-3B, which indicates a
better performance of FY-3D in retrieving NDVI data. The grey correlation degrees between the NDVI
differences and four parameters, which were land cover (LC), DEM, latitude (LAT) and longitude
(LON), were calculated, revealing that the LC was the most related to the NDVI differences. Finally, a
GBR model with FY-3B NDVI, LC, DEM, LAT and LON as the input variables and FY-3D NDVI as
the target variable was established and achieved a robust performance. The R values between the
GBR-estimated NDVI and FY-3D NDVI reached 0.947, 0.867 and 0.829 in the training, testing and
validation datasets, respectively, indicating the feasibility of the established model for generating
long time series NDVI data by combining data from the FY-3B and FY-3D satellites.

Keywords: Fengyun satellites; NDVI product; assessment; long term; grey relational analysis;
gradient boosting regression

1. Introduction

Vegetation coverage and growth conditions are crucial information for estimating
global carbon sequestration, investigating vegetation–climate interactions and managing
natural resources [1–3]. Over the past decades, a large number of remote sensing vegetation
indicators, such as the enhanced vegetation index (EVI), normalized difference vegetation
index (NDVI), fractional vegetation cover (FVC) and leaf area index (LAI), have been devel-
oped for mapping vegetation dynamics on a regional scale. As one of the most important
and useful vegetation parameters, the remote-sensed NDVI has been extensively adopted
for forecasting agricultural production, detecting drought intensities and exploring the
climate effects on vegetation conditions in many previous studies [4–6]. In general, NDVI
products can be derived from surface reflectance in the near-infrared and red wavelengths
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through several primary sensors, including the advanced very high resolution radiome-
ter (AVHRR) on board the National Oceanic and Atmospheric Administration (NOAA)
satellites, the moderate resolution imaging spectroradiometer (MODIS) on board Terra
and Aqua, the enhanced thematic mapper plus (ETM+) on board Landsat, the medium
resolution spectral imager (MERSI) and the second-generation MERSI (MERSI-II) on board
the Fengyun-3 (FY-3) series satellites [7–10].

The FY-3 series satellites, including the FY-3A, FY-3B, FY-3C, FY-3D, FY-3E, FY-3G,
FY-3F and additional satellites to be launched in the next few years, are China’s second-
generation polar-orbiting meteorological satellites. These satellites are equipped with more
than ten sets of advanced remote sensing instruments, such as the visible and infrared
radiometer (VIRR), global navigation occultation sounder (GNOS), microwave radiometric
imager (MWRI), high spectral infrared atmospheric Sounder (HIRAS), microwave tem-
perature sounder (MWTS) and microwave humidity sounder (MWHS), thus enabling
them to collect the quantitative, multispectral, three-dimensional and all-weather earth
surface characteristic parameters on a global scale [11,12]. Among these instruments, the
MERSI and MERSI-II sensors were designed as key visible and infrared spectral imaging
instruments for detecting the atmospheric, terrestrial and oceanic features, and providing
important operational products such as the outgoing longwave radiation (OLR), precip-
itable water vapor (PWV) and NDVI. Compared to MERSI onboard FY-3A/B/C satellites,
the performance of MERSI-II onboard FY-3D has been greatly upgraded and improved,
with more imaging channels, a higher radiometric calibration accuracy and an enhanced
infrared detection capability [12]. In many previous studies, FY-3 MERSI and MERSI-II data
have been widely used to monitor the vegetation coverage and conditions, detect natural
disaster events and support weather forecasting sand environmental studies [13–16].

Cross-comparisons among vegetation indices (VIs) derived from different satellites
and sensors is of great significance for their application, calibration and cooperative in-
version using multisource remote sensing data [11]. Many previous studies have utilized
methods such as regression analysis to recognize differences between VIs extracted from
different satellite systems and sensors [17–19]. For example, seven VIs, including NDVI,
EVI, normalized difference water index (NDWI), soil adjusted vegetation index (SAVI),
green vegetation index (GVI), land surface water index (LSWI) and normalized burn ra-
tio (NBR), provided by two sensors, which are the ETM+ on board Landsat 7 and the
operational land imager (OLI) on board Landsat 8, were compared by researchers. The
results showed that the correlation coefficients between different indices from ETM+ and
OLI were high, indicating that those two sensors can be used to collect complementary
data [17]. Additionally, the NDVI values across different land cover types from Landsat 7
and Landsat 8 were compared, revealing that differences between NDVI images from the
two satellites were larger in low-vegetation-covered areas than in high-vegetation-covered
areas, which indicates the need for calibration in low-vegetation-covered areas to achieve
higher consistency between Landsat 7 and Landsat 8 NDVI images [20]. Despite the large
number of early studies regarding cross-comparison analyses between vegetation parame-
ters from different sensors and satellites, few studies have focused on the NDVI product
from different generations of the FY-3 series satellites.

The FY-3D satellite equipped with the upgraded MERSI-II instrument was launched
in November 2017 and started to provide an operational NDVI product in 2019, which
indicates the short time series of the FY-3D NDVI data. Thus, the application of FY-3D
NDVI in fields such as climate change was limited.

To solve this issue, this work proposes a novel scheme, as follows: Firstly, the con-
sistency between FY-3B and FY-3D NDVI data was assessed to detect the possibility of
combining different FY-3 satellites’ data into complementary datasets for generating a
long-term NDVI dataset. Secondly, a correlation analysis between FY-3 products and two
reference datasets was conducted to determine the satellite with the better performance.
Thirdly, a grey correlation method was applied to detect the possible factors that could
affect the consistency degree among different satellites. Finally, an ensemble regression
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model was established for generating long time series NDVI data by combining different
FY-3 satellites. The paper is organized as follows: Section 2 introduces the study area, data,
and methods. In Section 3, the results are described. Sections 4–6 illustrate the discussion,
practical applications and conclusions, respectively.

2. Data and Methods
2.1. Study Area

China is the world’s third largest country with an approximately 9.6 million km2

territory area. It is located in the east of Asia and on the west coast of the Pacific Ocean with
coordinates of 18◦N to 54◦N and 73◦E to 135◦E (Figure 1). The terrain of China gradually
increases from lower than 100 m in the east to more than 8000 m in the west. The Qinghai
Tibet Plateau, known as the roof of the world, is located in the southwest of the study
area, with an average elevation of 4000 m (Figure 1a). There are mainly six land cover
types across China, including forest, grassland, farmland, barren, urban lands and water
bodies, as shown in Figure 1b. Most parts of China are covered by various vegetation
types. The forests are mainly distributed in southeastern and northeastern China, showing
a regular zonal distribution from north to south. Grasslands are widely distributed in the
northwestern, southeastern and northeastern regions of the study area. The distribution
of farmland in China is quite unbalanced due to the effects of topography and climate
environments, especially the water resources. Most cultivated lands are densely located in
the central and eastern regions with flat terrain, mild climate and abundant precipitation.
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Figure 1. The DEM (a) and land cover types (b) in China.

Over the past several decades, China has experienced a rapid increase in extreme
climate event occurrences in the context of global climate change, which have led to spatio-
temporal changes in vegetation coverage and other vegetation activities [21,22]. Therefore,
it is urgent and of great importance to achieve accurate and continuous NDVI dataset on a
regional scale for China’s vegetation monitoring and carbon sequestration detection.

2.2. Data
2.2.1. RCH-CEOS NDVI Product Derived from Fengyun Satellites

To produce a highly homogenous and long time series NDVI product for vegetation
applications in fields such as climate change, the National Satellite Meteorological Center
(NSMC) adopted the unified calibration method to achieve the Retrospective Calibration
of Historical Chinese Earth Observation Satellites (RCH-CEOS) NDVI dataset. The RCH-
CEOS NDVI product was derived from the calibrated Level 1 reflectance of FY-3A, FY-3B
MERSI and FY-3D MERSI-II, with spatial resolutions of 1 km and 250 m. The maximum
value composite (MVC) approach was applied to generate the composite NDVI maps
from 2010 to 2023 at ten-day and monthly intervals [10,23]. Among them, the NDVI
products for 2010, 2011–2020 and 2019–2023 were derived from the FY-3A, FY-3B and FY-3D
satellites, respectively. In this study, pixel values were extracted from FY-3B/MERSI and
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FY-3D/MERSI-II NDVI products for the months from January to December 2020. The
averaged NDVI values for forest, grassland, farmland, barren land and the entire country
were then calculated and compared to assess the consistency among the RCH-CEOS NDVI
products derived from different Fengyun satellites.

2.2.2. In Situ LAI Measurements from CMA

The website for the China meteorological data (https://data.cma.cn/, accessed on
18 October 2023), which is operated by the National Meteorological Information Cen-
ter (NMIC) of the China Meteorological Administration (CMA), collects and releases an
abundance of weather-related data, including meteorological station-based measurements,
radar and satellite remote sensing images, numerical forecasting products, reanalysis data,
atmospheric composition data and climate forecasting products. Here, 16 in situ LAI mea-
surements collected from agrometeorological stations were downloaded from the China
meteorological data website, and the latitudes and longitudes of each station were applied
to calculate the rows and columns of station pixels located at the FY-3 NDVI images. Then
the correlation between NDVI values at those pixels and the LAI measurements was ana-
lyzed to identify the ability of FY-3B and FY-3D for monitoring the vegetation growth on a
site scale.

2.2.3. Land Cover and NDVI Products Derived from MODIS

The MODIS acquires the features of the land, ocean and atmosphere every 1–2 days
and provides important time series datasets for quantifying changes in the global envi-
ronment [24]. Many of the MODIS’s data and products, such as the MODIS land cover
(MODIS LC) and MODIS NDVI products, have been widely used for land cover type
classification and crop yield estimation in many early studies [25,26]. The MODIS LC
products (MOD12Q1) contain 17 land cover types based on the international geosphere
biosphere programme (IGBP) scheme. Here, these land cover types were merged into
8 types, including forest, grassland, wetland, farmland, urban and built-up land, barren,
snow and ice, and water bodies, for assessing the consistency among NDVI values of FY-3
satellites across various land types. The MODIS NDVI products (MOD13A3, v006) for
the months from January to December 2020 were downloaded from the NASA website
(https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 11 October 2023) as the reference
dataset. Then, the correlation coefficients between MODIS NDVI and NDVI values derived
from the different FY-3 satellites were calculated to evaluate the ability of FY-3B and FY-3D
for monitoring vegetation conditions on a regional scale.

2.2.4. DEM Data from GMTED2010

The digital elevation model (DEM) is one of the branches of the digital terrain model
(DTM), which is a discrete mathematical representation of the Earth’s surface topography,
and is frequently selected as auxiliary data for use in many areas of research [27,28]. The
global multiresolution terrain elevation data in the 2010 (GMTED2010) dataset contain
multisource elevation data, including shuttle radar topography mission (SRTM) digital
terrain elevation data from US National Geospatial-Intelligence Agency (NGR), Canadian
digital elevation data, US continental and Alaska elevation data, the second DEM for
Australia and the DEM from Antarctic and Greenland radar and laser altimeters [29]. The
GMTED2010 dataset has proven to be more accurate than the GTOPO30 model and was
adopted to map the topography across the study area in this study.

2.3. Methods
2.3.1. Grey Relational Analysis Method

The grey relational analysis (GRA) method, which is an important part of the theory of
grey systems, has been extensively applied in conducting relational analyses, performing
predictions, and solving decision-making problems in various sectors [30,31]. In general,
the degree of similarity or diversity of the developing trend among factors are measured
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using the GRA method for achieving the relevance of multiple factors and ranking the
alternatives [32–34].

The GRA method involves the following steps: Step 1: Define the reference sequence
(X*) and m comparison sequences (Xi) (i = 1, 2,. . . , m) as:

X∗ = [X1
∗, X2

∗, . . . , Xk
∗, . . . , Xn

∗] (1)

Xi = [X1
i, X2

i, . . . , Xk
i, . . . , Xn

i] (2)

where n is the number of samples in each sequence, k (k = 1, 2, . . ., n) is the index of samples,
Xk* represents the reference sequence for the kth sample, and Xk

i represents the comparison
sequence for the kth sample of the ith alternative. Step 2: Transform the original data into
nondimensional sequences (Ck

i) ranging from 0 to 1 using the following equations:

Ck
∗ =

Xk
∗ − Xmin

∗

Xmax
∗ − Xmin

∗ (3)

Ck
j =

Xk
j − Xmin

j

Xmax
j − Xmin

j (4)

where Xmin* and Xmax* are the minimum and maximum values for the reference sequence,
respectively. Xmin

j and Xmax
j are the minimum and maximum values for the jth comparison

sequence, respectively. Step 3: Calculate the grey relational coefficient (ξi
k) and grey

relational degree (Di) using the following equations:

ξi
k =

min
1≤i≤m

min
1≤k≤n

∣∣∣Ck
∗ − Ck

i
∣∣∣+ ρ max

1≤i≤m
max

1≤k≤n

∣∣∣Ck
∗ − Ck

i
∣∣∣∣∣∣Ck

∗ − Ck
i
∣∣∣+ ρ max

1≤i≤m
max

1≤k≤n

∣∣∣Ck
∗ − Ck

i
∣∣∣ (5)

Di =
1
n

n

∑
k=1

ξi
k (6)

where ρ is the identification coefficient ranging from 0 to 1, which was set as ρ = 0.5 in
this study. ξi

k represents the grey relational coefficient between Ck
i and Ck*. Di repre-

sents the grey relational degree between the reference sequence and the ith comparison
sequence. A greater value of Di indicates a higher proximity of sequence Xi to the reference
sequence [35].

In this study, the GRA method was adopted to analyze the importance of factors
influencing the NDVI bias from different Fengyun satellites. Here, the difference between
the FY-3B and FY-3D NDVI values in 2020 was set as the reference sequence, and several
potential influencing factors, such as the land cover types, during the same period were set
as the sequences to be compared. Then, the grey relational degrees between the reference
and comparison sequences were calculated to rank the importance of each factor influencing
the NDVI difference.

2.3.2. Gradient Boosting Regression Model

Various versions of the boosting algorithm, such as AdaBoost and gradient boosting
(GB), have proven to be very competitive in a wide range of applications [36,37]. Among
them, the GB model, which was introduced by Friedman, in 2001, has been extensively
applied for solving classification and regression problems as one of the most powerful
ensemble learning techniques [38–41].

In general, the performance of the GB model is improved by training a series of basic
learners and minimizing the expectations of the loss function [41]. There are several most
frequently used loss functions, including the Gaussian L2 loss function, Laplace L1 loss
function, Huber loss function and Quantile loss function [39]. Here, the Huber loss function
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was selected considering its robustness to outliers. The Huber loss function comprises two
parts and is designed as follows:

L(y, f (x))Huber,δ =

{
(y− f (x))2/2 |y− f (x)| ≤ δ
δ(|y− f (x)| − δ/2) |y− f (x)| > δ

(7)

where y is the true value, f (x) is the predicted value and δ is the threshold parameter, which
specifies the robustness of the Huber loss function. To achieve a more accurate global
optimum and reduce the time needed to update those parameters, the mean squared error
(MSE) is applied when the prediction error is less than or equal to δ, and a linear error
indicator such as mean absolute error (MAE) is applied when the prediction error is greater
than δ.

The GB model is built in a stepwise fashion. For each step, the pseudo-residual of
each weak learner decreases in the direction of the negative gradient by fitting the negative
gradient of the loss function of the previously cumulative model, so that the cumulative
model loss decreases after the addition of the weak learner. Assume that the number of
training samples is n. The approximate solution is initialized as:

F0(x) = arg min f∈F

m

∑
i=1

L(yi, f (xi)) (8)

where f is one of the basic learners, and F is the set of basic learners.
Assume that the number of applied basic learners is m. For step j (j = 1, 2, . . ., m), the

negative gradient G and learner f for the current step are computed as follows:

Gj(xi) =

[
−∂L(yi, f (xi))

∂ f (xi)

]
f (xi)= f j−1(xi)

(9)

f j(xi) = νjGj(xi) (10)

where the parameter ν is the multiplier and is computed based on the following equation:

νj = arg minρ

n

∑
i=1

L(yi, f (xi) + νjGj(xi)) (11)

Then, the GB model is updated as follows:

Fj(xi) = Fj−1(xi) + f j (12)

In this study, to further improve the consistency among the NDVI products derived
from different Fengyun satellites, the gradient boosting regression (GBR) model was built
for the NDVI estimations, pixel by pixel, using multiple inputs.

2.4. Evaluation Criteria

To evaluate the consistency between the FY-3D NDVI product and the NDVI derived
from FY-3B and the estimated NDVI using the multivariate GBR model, five statistical
indicators, including the correlation coefficient (R), root mean square error (RMSE), mean
absolute error (MAE) and rate of change (RoC), were adopted in this study.

The R represents the relative accuracy between the original FY-3B NDVI retrievals
or the estimated NDVI values using the GBR model and the FY-3D NDVI retrievals,
respectively, and can be defined by Equation (13).

R =
∑N

i−1 (CNDVIi − CNDVI)(RNDVIi − RNDVI)√
∑N

i−1 (CNDVIi − CNDVI)2
√

∑N
i−1 (RNDVIi − RNDVI)2

(13)
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where CNDVIi represents the NDVI values to be compared, which refer to the FY-3B NDVI
and the GBR-estimated NDVI values in this study. RNDVIi represents the reference NDVI
values, i.e., the FY-3D NDVI retrievals. CNDVI represents the average of the FY-3B NDVI
retrievals or the GBR NDVI estimations across all pixels in the study area, RNDVI indicates
the average of the FY-3D NDVI retrievals, and N represents the number of valid pixels in
each dataset.

The RMSE and MAE evaluate the absolute difference between the FY-3B NDVI product
or NDVI estimations using the GBR model and the FY-3D NDVI data, which can be
calculated by Equations (14) and (15).

RMSE =

√
∑N

i=1 (CNDVIi − RNDVIi)
2

N
(14)

MAE =
1
N ∑N

i−1|CNDVIi − RNDVIi| (15)

The RoC evaluates the degree of the GBR model for improving the consistency between
NDVI products from FY-3B and FY-3D, and it can be defined as the following equation:

RoC =
Eg − Eb

Eb
× 100% (16)

where Eg represents the error metrics between the GBR-estimated NDVI and the FY-3D
NDVI data, and Eb represents the error metrics between the FY-3B NDVI and the FY-3D
NDVI data.

3. Results and Analysis
3.1. Consistency Assessment of NDVI Products Derived from Different Fengyun Satellites

The variation curves of FY-3B NDVI (solid line) and FY-3D NDVI (dash line) for
different land cover types in 2020 are displayed in Figure 2. Generally, the FY-3B and
FY-3D NDVI data showed an overall high consistency, with the averaging NDVI difference
values across the study area being lower than 0.01. However, the NDVI differences varied
in different time periods and for different land cover types. In particular, the deviations
between FY-3B and FY-3D from October to December were larger than in other months. For
the forest and farmland areas, the NDVI value of FY-3D was slightly higher than that of FY-3B.
The FY-3D NDVI was slightly lower than FY-3B NDVI in most months for the grassland.
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The spatial distributions of the NDVI difference values between FY-3B and FY-3D
in January, April, July, and October 2020 are mapped in Figure 3. Generally, the FY-3B
NDVI values in the southeast region of the study area were lower than those of FY-3D, and
the FY-3B NDVI values in southwest China were greater than those of FY-3D. The NDVI
differences vary in different months. Compared with April and July, the FY-3B and FY-3D
NDVIs’ difference in January and October was significantly higher.
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Figure 3. The spatial distribution of the difference in the NDVI values between FY-3B and FY-3D:
(a) January; (b) April; (c) July; (d) October.

3.2. Comparing the Performances of Different Fengyun Satellites in Monitoring Vegetation Conditions

To further evaluate the potentials of the FY-3B and FY-3D NDVIs for monitoring
vegetation growth conditions, a correlation analysis between the measured LAI data and the
NDVI values extracted from the FY-3B and FY-3D satellites was conducted. The scatterplots
and the coefficients of determination (R2) are shown as Figure 4. The results show that
the R2 value between the FY-3D NDVI and the station-based LAI (0.349) was higher than
that between the FY-3B NDVI and the in situ LAI measurements (0.231), which indicates
that the FY-3D NDVI is more reliable in reflecting vegetation growth and conditions on a
site scale.

The MODIS NDVI is recognized as one of the most popular vegetation indices; thus,
it was selected to evaluate the abilities of FY-3B and FY-3D for monitoring vegetation
conditions on a grid scale. The R and MAE values between MODIS NDVI and NDVI
products extracted from the FY-3B and FY-3D satellites were calculated, as shown in
Figure 5. The results show that the R value between the MODIS NDVI and the NDVI
values calculated by FY-3D and FY-3B across all pixels in the study area reached 0.983 and
0.973, respectively, indicating that the overall consistency between the MODIS NDVI and
the FY-3D NDVI was slightly higher than that of the FY-3B NDVI. In addition, the averaged
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MAE values of FY-3B and FY-3D were both less than 0.01, indicating that the FY-3 NDVI
and the MODIS NDVI were generally close.
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Figure 5. The correlation coefficients and mean absolute errors between the MODIS NDVI and the
NDVI derived from FY-3B and FY-3D for different land cover types.



Remote Sens. 2024, 16, 1363 10 of 16

The consistency between the FY-3 and MODIS NDVI varied for the different land cover
types. The FY-3 NDVI and MODIS NDVI for grassland achieved the highest consistency,
with R values between the MODIS NDVI and the NDVI derived from FY-3B and FY-3D,
reaching 0.976 and 0.985, and the MAE values reached 0.013 and 0.010, respectively. The
FY-3B and FY-3D NDVI values for forest were lower than that of the MODIS NDVI, and
the underestimation degree of FY-3B (MAE = −0.092) was higher than that of FY-3D
(MAE = −0.035). For farmland, the FY-3B NDVI was lower than the MODIS NDVI,
with an MAE value equivalent to −0.027, while the FY-3D NDVI was much closer to the
MODIS NDVI with an MAE value equivalent to 0.014. Among those land cover types, the
correlations with barren areas were the worst, with average R values lower than 0.2.

3.3. Detecting the Factors Affecting the NDVI Difference Using the GRA Method

In this study, the GRA method was applied to analyze the factors affecting the NDVI
difference in January, April, July and October. Firstly, the FY-3B and FY-3D NDVIs’ differ-
ence values at each pixel were extracted to construct the reference sequence. The DEM,
LC, LAT and LON values at pixels were used to construct four sequences to be compared.
Then, the correlation degree values between the reference sequence and those comparison
sequences were calculated according to Equations (3)–(6), as shown in Figure 6. The grey
correlation between the NDVI difference sequence and the LC sequence was the highest in
each month, with correlation degree values reaching 0.578, 0.601, 0.603 and 0.603 in January,
April, July and October, respectively, which illustrated that the land cover condition was
closely related to the FY-3B and FY-3D NDVIs’ difference. By ranking the grey correlation
degrees in decreasing order, the importance of those affecting factors were ranked as fol-
lows: LC > DEM > LAT > LON in January; LC > LAT > DEM > LON in April; LC > LAT
> LON > DEM in July; and LC > LON > LAT > DEM in October.
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3.4. Establishing a GBR Model for Forming Long Time Series NDVI Data

In this study, the monthly FY-3B and FY-3D NDVI products in 2019 and 2020, as well
as several auxiliary data, including the DEM, LC, LAT and LON, were selected to establish
and validate the GBR model for improving the consistency among NDVI products extracted
from different FY-3 satellites. To be specific, 90% and 10% of the samples in 2019 were
adopted as the training and testing datasets, respectively, and the samples in 2020 were
used as the validation dataset. Considering that the inconsistency issue was relatively more
serious in October, as demonstrated in Section 3.1, a GBR model with the FY-3B NDVI, LC,
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DEM, LAT and LON as the input variables and FY-3D NDVI as the target variable was built
to correct the FY-3B NDVI for the formation of a long-term FY-3 NDVI product in October.

The error metrics, including R, RMSE, MAE and RoC, between the reference variable
(FY-3D NDVI) and the NDVI values extracted from the FY-3B satellite, as well as the esti-
mated NDVI using the GBR model (GBR NDVI), were calculated as shown in Table 1. The
results showed that the R values between the GBR NDVI and FY-3D NDVI reached 0.947,
0.867 and 0.829 in the training, testing and validation datasets, respectively, which greatly
increased by 5.0%, 17.2% and 51.6% compared with that between the FY-3B and FY-3D
NDVIs. In addition, the RMSE values decreased by 27.2%, 15.8% and 34.3%, and the MAE
values decreased by 29.2%, 13.3% and 32.7% during the training, testing and validation
processes, respectively, which indicated a robust performance of the GBR for generating
long time series NDVI data by combining data from the FY-3B and FY-3D satellites.

Table 1. The error metrics between the FY-3D NDVI retrievals and the NDVI values extracted from
the FY-3B and the GBR model.

Dataset
Error FY-3B NDVI GBR NDVI

R p RMSE MAE R p RoC RMSE RoC MAE RoC
Training 0.902 <0.001 0.092 0.065 0.947 <0.001 +5.0% 0.067 −27.2% 0.046 −29.2%
Testing 0.774 <0.001 0.120 0.090 0.867 <0.001 +17.2% 0.101 −15.8% 0.078 −13.3%

Validation 0.547 <0.001 0.213 0.159 0.829 <0.001 +51.6% 0.140 −34.3% 0.107 −32.7%

The importance coefficients of each input factor were calculated by the GBR model and
are shown in Figure 7. Among those variables, the FY-3B NDVI contributed the most, with
the coefficient of importance (CI) reaching 0.529, followed by the latitude (CI = 0.150) and
land cover (CI = 0.143). The longitude and DEM contributed less than the other variables,
with the CI values equivalent to 0.097 and 0.081, respectively.
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The established GBR model was applied to perform the NDVI estimations across the
study area, pixel by pixel. The FY-3D, FY-3B and GBR model-based NDVI images were
mapped and are displayed in Figure 8. Compared to the FY-3D NDVI (Figure 8a), the FY-3B
NDVI (Figure 8b) significantly overestimated the NDVI values in the southwest (mainly
the Qinghai–Tibet Plateau) and northeast parts of the study area. The overestimation issue
was largely improved in the estimated NDVI product based on the GBR model (Figure 8c),
which indicates the feasibility of the use of the established GBR model for generating long
time series Fengyun NDVI data with higher consistency.
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4. Discussion

A large number of China’s Fengyun meteorological satellites were launched in recent
years to support weather forecasting and extreme events detection. However, the products
derived from the Fengyun satellites are limited for long-term applications in fields such as
climate change due to their short time series. This study explored the possibility of generat-
ing a long-term NDVI dataset by combining different Fengyun satellite NDVI products.
The results are promising and can be used as a reference idea and method for evaluating
and improving Chinese Fengyun satellite products for weather and climate applications.

Previous studies have pointed out that the observed NDVI signal could be greatly
affected by the aerosol optical depth (AOD), which could significantly underestimate the
amount of vegetation [42,43]. Apart from the AOD, atmospheric water vapor, clouds, and
differences in spectral wavelengths could also cause differences in NDVI values [44,45].
The results in this work have shown a relatively lower consistency between the FY-3B and
FY-3D NDVIs during the months from October to December than in other months. This
can be attributed to the relatively higher aerosol loads in winter, as well as the differences
in spectral wavelengths of FY-3B/MERSI and FY-3D/MERSI-II. Compared with the MERSI,
the number of MERSI-II channels increased from 20 to 25, with more infrared channels and
enhanced infrared detection capability [23]. Moreover, the FY-3D NDVI applied the 6SV
method for atmospheric correction and greatly decreased the atmospheric effects [10], thus
achieving more accurate NDVI data in periods with higher aerosol optical thickness.

Field campaigns and ground truth could greatly contribute to the evaluation and
validation processes of satellite remote sensing products [46]. In this study, the in situ LAI
measurements were selected as reference data to evaluate and compare the capacity of the
FY-3B and FY-3D for monitoring vegetation growth conditions because of the unavailability
of ground-based NDVI or spectral measurements. The results indicate a higher correlation
between the FY-3D and LAI measurements than that of the FY-3B, which could be explained
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by the fact that the FY-3D carries more advanced instruments than the FY-3B. Although a
reasonable result was achieved, there are several issues with the current LAI data, which
could cause a biased evaluation of the performance of remote sensing products. The in situ
LAI data contain only two land cover types, which are grassland and farmland; thus, the
representativeness of the LAI samples needs to be further improved in future studies for
a more reliable evaluation. In additions, the mismatch of scales between meteorological
stations and satellites could also potentially influence the reliability of the assessment [47].

5. Practical Applications

This work provides a reliable method for evaluating and correcting NDVI products
derived from different Chinese meteorological satellites for forming long time series NDVI
data. The generated FY-3 long-term NDVI dataset could contribute to research in fields such
as climate change, ecological environment detection, crop growth monitoring, phenological
extraction and carbon sequestration trend analysis. For example, long-term NDVI time
series data, together with other climatic data, can be applied to detect the effect of extreme
events on vegetation activities [21]. This information is quite crucial for local ecosystem
conservation, especially in climate-sensitive regions. Apart from these potential application
fields of long-term NDVI data, the idea proposed by this study could be adopted as a
reference method to process various remote sensing products, such as the land surface
temperature (LST), outgoing longwave radiation (OLR) and surface soil moisture (SSM),
from different Fengyun satellites for weather and climate applications in the future.

6. Conclusions

This study introduced an overall strategy that could be extended for evaluating and
improving the Chinese FY-3 meteorological satellite systems for long-term environmental
research on a regional scale. There are four main components contained in this strategy:
(1) consistency assessment among different satellites to provide information for supple-
mentary dataset selection and further improvement; (2) performance comparison among
different satellites to recognize the target data for the correction model; (3) correlation
analysis to detect the factors affecting the differences among satellites; and (4) an ensemble
machine learning model to form long time series data by combining different satellites.

In this study, the variation trends of the FY-3B/MERSI and FY-3D/MERSI-II NDVIs
for different land cover types in 2020 were compared, and the results show an overall
high consistency between the FY-3B and FY-3D NDVIs, indicating the potential of the
FY-3 satellites for providing long-term NDVI datasets as complementary data sources.
The correlations between the FY-3 NDVI and two reference data, which were the MODIS
NDVI and in situ LAI measurements, were analyzed to determine the satellite with the
better performance. The correlation coefficients indicate that FY-3D/MERSI-II has a better
capacity for retrieving an NDVI product on both the regional and site scales. This study
applied the GRA method to detect the factors related to the NDVI differences among
different satellites. The results show that the grey correlation degree between the LC and
the NDVI difference sequences was the highest in each month, implying that the LC is an
important parameter for the FY-3 NDVI product correction.

This study established a GBR model with the FY-3B NDVI, LC, DEM and geographical
locations as input variables and the FY-3D NDVI as the target variable to generate long-term
NDVI data using the FY-3B and FY-3D satellites. The R values between the model-based
NDVI estimates and the FY-3D NDVI reached 0.947, 0.867 and 0.829 in the training, testing
and validation datasets, respectively, which significantly improved compared with the R
values between the FY-3B and FY-3D. Therefore, the GBR model has the feasibility to correct
the FY-3B NDVI for generating a long-term FY-3 NDVI dataset, with the historical data more
consistent with the upgraded data. In addition, this study calculated the feature importance
of the GBR model. The results showed that the FY-3B NDVI contributed the most (0.529)
to the model, followed by LAT (0.150), LC (0.143), LON (0.097) and DEM (0.081). Note
that although the GBR model is one of the most widely used ensemble machine learning
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models for solving classification and regression problems, it has some limitations, such as
a high sensitivity to outliers and complex parameter optimization, which suggests that it
will be necessary to further optimize the parameter analysis in future studies to minimize
its drawbacks and increase its performance.
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