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Abstract: Unsupervised change detection of land cover in multispectral satellite remote sensing
images with a spatial resolution of 2–5 m has always been a challenging task. This paper presents
a method of detecting land cover changes in high-spatial-resolution remote sensing imagery. This
method has three characteristics: (1) Extended center-symmetric local binary pattern (XCS-LBP) is
used to extract image features to emphasize spatial context information in initial change detection.
Then, spectral information is combined to improve the accuracy of change detection. (2) The local
histogram distance of XCS-LBP features is used as the change vector to improve the expression of
change information. (3) A progressive Otsu method is developed for threshold segmentation of the
change vector to reduce the false detection rate. Four datasets with different landscape complexities
and seven state-of-the-art unsupervised change detection methods were used to test the performance
of the proposed method. Quantitative results showed that the proposed method reduced the false
detection rate and improved the accuracy of the detection of land cover changes. The F1 score
achieved by the proposed method reached 0.8688, 0.8867, 0.7725, and 0.6634, respectively, which are
higher than the highest corresponding F1 score achieved by the benchmark methods (0.8533, 0.8549,
0.6545, and 0.5895, respectively).

Keywords: high-spatial-resolution remote sensing imagery; histogram distance; land cover; unsupervised
change detection

1. Introduction

Remote sensing (RS) change detection is one of the most active research topics in the
RS community [1]. It has been widely used in natural disaster management [2], urban
planning [3], artificial target detection [4,5], land use/cover mapping [6,7], and environ-
mental protection [8,9]. High-spatial-resolution (HR) RS imagery has become a typical and
essential data source for regional change detection.

RS change detection methods can generally be categorized into supervised and un-
supervised [10,11]. Supervised methods usually achieve higher detection accuracy than
unsupervised methods because they are trained using existing ground truth. However,
it is time-consuming and labor-intensive to collect enough valid training samples. Un-
supervised methods have attracted more interest [12] and have become a hot topic in
current research because of their high level of automation and the absence of a requirement
for training samples. Many studies are gradually improving the detection accuracy of
unsupervised methods [13].
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Unsupervised methods usually comprise two critical components: change vector
(CV) generation and change information extraction [14]. CV is generated by comparing
and analyzing bitemporal images in a specific way and deriving a value that expresses
information about the magnitude of the change. The larger this value, the more likely it is a
changed pixel. Typical methods of CV generation include image difference [15], ratio [16],
log-ratio [17], and change vector analysis (CVA) [15]. Change information extraction is the
process of extracting change information from the generated CV or other features. Typical
methods include clustering [18,19], threshold segmentation [20–22], Bayesian [23], and
conditional random field methods [24]. Among these, threshold segmentation is the most
widely used, such as the representative Otsu method [20].

According to the processing unit, unsupervised methods can be categorized into pixel-
based and object-based methods [25]. The former are popular because of their simplicity
and ease of understanding. However, they are liable to create more specks because the
calculations are based on individual pixels and ignore the spatial context information of
the pixels. The latter methods use spatial context information but are heavily influenced by
the segmentation method [26].

Research has shown that introducing spatial context information can significantly
improve detection accuracy for both supervised and unsupervised methods [27]. Spatial
context information provides texture information for land cover to supplement spectral
information and improve detection accuracy [27]. It benefits HR RS imagery with high
spatial heterogeneity and great uncertainty in change detection. There are many meth-
ods for capturing spatial context information in RS imagery, such as the neighborhood
window [28], Markov random field (MRF) [29], Gabor wavelet transform [30], local bi-
nary pattern (LBP) [31], and hypergraph [32]. Among these, LBP has the advantage of
grayscale invariance [33]. Moreover, numerous typical methods based on spatial context
information have emerged, such as principal component analysis (PCA)-K-means clus-
tering using neighborhood information [28], change detection based on morphological
attribute profiles [34], the adaptive object-oriented spatial-contextual extraction algorithm
(ASEA) [35], change detection based on weighted CVA and improved MRF (WCIM) [36],
and the deep learning model-based methods deep slow feature analysis (DSFA) [37], deep
CVA (DCVA) [38], and deep Siamese kernel PCA convolutional mapping network (KPCA-
MNet) [39].

However, the characteristics of HR RS imagery itself lead to two issues that require
further consideration in unsupervised pixel-based change detection in HR RS imagery:
(1) The limitation of the spectral domain leads to uncertainty in the spectral reflectance of
the HR RS imagery itself and a lack of reliability in the differences between bitemporal HR
RS images, which affects the extraction of spatial context information based on specific
grayscale values. (2) The segmentation methods used for change thresholds need further
refinement to improve their applicability in HR RS imagery.

A new change detection method for HR RS imagery is proposed to solve these issues.
This method combines spatial context information and spectral information to improve
detection accuracy and replaces single threshold segmentation with multiple and progres-
sive threshold segmentation to reduce the false detection rate. One difference from existing
methods is that our method extracts the initial change information using spatial context
information only, and this process includes:

(1) introducing a variant of LBP with noise resistance and a small data scale to ex-
tract spatial context information as the initial image features to avoid extracting spatial
information based on the original and specific grayscale values;

(2) generating CV based on the differences in the histograms of appropriate local
ranges in the initial image features;

(3) proposing a new progressive Otsu method (POTSU) applicable to HR RS image
change detection to extract change information from the generated CV.
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The second difference is that region growth of the spectral CV is performed based on
the spatial context information represented by the initial change information to obtain the
final detection result.

Four sets of HR RS images with different spatial resolutions and landscape complexi-
ties were used to validate the proposed method, including a set of WorldView-2 images
with a spatial resolution of 1.8 m, a set of SuperView-1 images with a spatial resolution
of 2.0 m, and two sets of TripleSat-2 images with a spatial resolution of 3.2 m. Moreover,
seven state-of-the-art unsupervised methods were used to compare the performance of
the proposed method. These comprised the traditional CVA combing Otsu threshold
segmentation method (TCO) [20,40], three unsupervised change detection methods based
on spatial context information (PCA-K-means, ASEA, and WCIM), and three unsupervised
deep-learning-based methods (DSFA, DCVA, and KPCA-MNet).

The rest of this paper is organized as follows: Section 2 introduces the method and the
process. Section 3 describes experimental results and compares the detection performance
of the different methods. Section 4 further discusses and analyzes the proposed method.
Section 5 presents the conclusion.

2. Methodology

The proposed method is termed change detection based on local histogram similarity
and progressive Otsu method (LHSP). It consists of three steps (Figure 1): (A) a CV is
generated based on local histogram differences of the extended center-symmetric local
binary pattern (XCS-LBP) [41] features; (B) the proposed POTSU segmentation achieves
an initial detection result; and (C) the final change detection image (CDI) is obtained by
combining the region growth of the spectral CV.
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Figure 1. Flowchart of the proposed LHSP change detection method. The three steps, (A–C), are 
described in the text. Step A generates a change vector, step B segments the change vector using the 
proposed POTSU, and step C implements region growth to obtain the final change detection image. 

2.1. CV Generation by Local XCS-LBP Histogram Similarity 
CV generation is a critical step in unsupervised change detection and directly affects 

the detection results. Much research has combined spatial context information to generate 
CVs. Still, this problem remains: spatial context information is directly extracted based on 
the original and specific grayscale values in many methods, such as mean values, extreme 
values, and key point values, which rely on the accuracy of the grayscale values. The 

Figure 1. Flowchart of the proposed LHSP change detection method. The three steps, (A–C), are
described in the text. Step (A) generates a change vector, step (B) segments the change vector using the
proposed POTSU, and step (C) implements region growth to obtain the final change detection image.

In Figure 1, T1 and T2 are bitemporal HR RS images, which include four bands, namely,
blue (B), green (G), red (R), and near-infrared (NIR), respectively.

2.1. CV Generation by Local XCS-LBP Histogram Similarity

CV generation is a critical step in unsupervised change detection and directly affects
the detection results. Much research has combined spatial context information to generate
CVs. Still, this problem remains: spatial context information is directly extracted based
on the original and specific grayscale values in many methods, such as mean values,
extreme values, and key point values, which rely on the accuracy of the grayscale values.
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The limitation of the spectral domain in HR RS imagery may result in differences in the
spectral reflectance of the same ground target in images captured at different times. In
addition, there is also the phenomenon of “different spectrums for the same object and
the same spectrum for different objects” in one image. This spectral error affects the
reliability of spatial context information. Among algorithms used to extract spatial context
information, LBP is regarded as one of the best-performing texture descriptors [42]. LBP
represents spatial context information by comparing pixel grayscale values within a defined
neighborhood, avoiding the effect of uncertainty in specific pixel grayscale values to some
extent and having the advantage of being insensitive to changes in illumination. However,
LBP is sensitive to image noise [43] and produces more complex feature sets (i.e., the
histograms are too large) [44]. To tackle this problem, a variant of LBP, namely, XCS-
LBP [41], was proposed. A comparison showed [41] that XCS-LBP has more advantages
regarding insensitivity to noise, variations in illumination, and histogram size.

XCS-LBP comprises a binary code generated by comparing the grayscale value of the
central pixel with that of a specified neighboring pixel. However, the differences in XCS-
LBP values between bitemporal images cannot be used directly as the change magnitude,
and the histogram distance is therefore used. To the best of our knowledge, XCS-LBP is
being used for HR RS imagery change detection for the first time.

The steps to generate CV using the histogram distance of XCS-LBP are as follows:
Firstly, XCS-LBP with a neighborhood block of 3 × 3 pixels is used to extract spatial

context information for each band in bitemporal images to obtain the initial image features.
Secondly, a local block is selected to construct an XCS-LBP histogram. The block’s

radius should be somewhat larger than the co-registration error; otherwise, the effects of
this error are relatively significant. However, it should not be too large; otherwise, the
distinguishability of the central pixel will be reduced. The histogram is constructed in a
block with a radius of 2 pixels (i.e., a 5 × 5-pixel neighborhood block) in our study because
the average registration error can be controlled to within 1 pixel.

Thirdly, the difference in histograms for the same spatial location between the bitem-
poral images is calculated to generate the CV.

Histogram differences were calculated using the Euclidean distance (1) and the chi-
squared distance (2) [45] to compare the effects of the histogram distance metrics:

E_dis =
√

∑H
h=0

(
ρ1

h − ρ2
h
)2, (1)

C_dis =
H

∑
h=0

((ρ1
h − ρ2

h)
2
/(ρ1

h + ρ2
h)), (2)

where ρ1
h and ρ2

h represent the respective values in the hth column of the two histograms,
the value of H is 15 (i.e., bins is 16) in XCS-LBP (all histograms have the same minimum
value (0) and maximum value (15)). This way, all pixels are processed to generate one CV
for change detection.

Taking bitemporal HR RS images with four bands as an example, each temporal image
generates four XCS-LBP image features. Then, the values of the four XCS-LBP image
features within a 5 × 5 local block (i.e., 5 × 5 × 4 feature values) are counted to construct
a histogram. Finally, the differences in the histograms, pixel by pixel, between the two
temporal images are calculated to generate a CV.

2.2. Generation of Initial Change Detection Image by POTSU Segmentation

The Otsu method is commonly used in change detection for the segmentation of
CVs [46] and can rapidly obtain a reasonable threshold for bimodal histograms [47,48].
However, the effectiveness of segmentation by the Otsu method is not obvious when a
histogram does not exhibit a clear bimodal distribution [49]. Therefore, the Otsu method is
not always suitable for HR RS imagery segmentation.
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This paper proposes the POTSU segmentation method to replace single Otsu seg-
mentation. POTSU is a multiple and progressive Otsu segmentation method with a mask,
whereby the segmentation results are continuously refined. The segmentation process of
POTSU can be divided into two parts: progression and decision.

Progression: (1) CV is segmented by the Otsu method, and the segmentation result
is obtained with changed and unchanged classes. (2) The segmentation result is used to
replace the corresponding region in the merged result of the last progression (the merged
result in the first progression is the segmentation result itself) in a masked manner to obtain
the merged result of this progression. (3) Calculate the average interclass distance dj and
the average intraclass distance di for the two classes in the segmentation result of this
progression. For the first segmentation, ndj = dj and ndi = di; otherwise, ndj = dj/∥dj∥
and ndi = di/∥di∥. If ndi ≥ ndj, the changed class is extracted as a new CV in a masked
manner for the next progression. If ndi < ndj, the unchanged class is extracted as a new
CV in a masked manner for the next progression. It should be noted that distances are
calculated at POTSU using Euclidean distances. (4) Steps 1–3 serve as one progression, and
multiple progressions are implemented until the termination condition is reached. Here,
the termination condition is set to a minimum change area (Vmin) of 500 pixels.

Decision: (1) Calculate the norm of the average intraclass distance (nadi) and the
average interclass distance (nadj) for the merged results in each progression. (2) The merged
result corresponding to the maximum value of nadj − nadi is taken as the final result.

The pseudocode of POTSU is shown in Algorithm 1. SR and MR denote segmentation
results and merged results, respectively. η is the number of progressions. wc and wu
represent the changed and unchanged classes, respectively.

Algorithm 1. Pseudocode of POTSU

Input: CV from Section 2.1;

Step 1: Progression
While true
η = 1.

CV Otsu−−→ SR{wc, wu}.

When η = 1, MR{wc, wu} = SR{wc, wu}; otherwise, SR{wc, wu}
Mask−−−→ MR{wc, wu}.

SR{wc, wu}
Calculate−−−−−→ dj, di; When η = 1, ndj = dj, ndi = di; otherwise, ndj = dj/∥dj∥,

ndi = di/∥di∥.
When ndi ≥ ndj, CV = SR{wc}; otherwise, CV = SR{wu}.
η = η + 1.
Break when:
Vmin < 500 pixels.

loop
Step 2: Decision

MR{wc, wu}η
Calculate−−−−−→ (nadj, nadi)η , η = 1, 2, 3 · · ·

MR{wc, wu}η is CDI when (nadj − nadi)η is max.

Output: CDI;

Given that the number of changed pixels is typically significantly smaller than the
number of unchanged pixels in practical change detection, POTSU utilizes ndj and ndi to
determine which objects will be segmented in the subsequent progression, as follows:

(1) When ndi is greater than or equal to ndj, the distance between the two classes
is small, and the intraclass distance is large, indicating that the two classes are poorly
segmented. There are some unchanged pixels in the changed class, which increases the
intraclass distance and decreases the interclass distance between the two classes, so we
continue to segment the changed pixels.

(2) When ndi is smaller than ndj, the number of changed pixels may be considered
small and centrally distributed, and they are usually obvious changed pixels. However,
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some changed pixels with insignificant data features may be confused with unchanged
pixels, so the segmentation of unchanged pixels is continued.

In summary, the former is concerned with reducing the false detection rate, while the
latter is concerned with reducing the missed detection rate. Progressive segmentation is
continued until the termination condition is reached.

The selection of the merged result follows the principle that a smaller intraclass
distance and a larger interclass distance are better for classification. Moreover, the number
of pixels to be segmented in each progression is significantly reduced compared to the
previous progression because of masked segmentation, thus ensuring the timeliness of
POTSU. POTSU is validated in the discussion validity of POTSU segmentation.

2.3. Generation of Final Change Detection Image

The spectral information and spatial context information from the original bitemporal
images are combined in this step. The CDI from Section 2.2 is used as the seed (representing
spatial context information), and the sum of the change magnitudes (representing spectral
information) is segmented by a region growth method to obtain the final CDI.

The sum of the change magnitudes is represented by the sum change vector (SCV)
in (3). The region growth method uses the active contour model [50,51]. All calculations
are based on MATLAB R2020b with the default parameters as follows:

SCV(ij) =

√
∑L

l

(
T1

ij,l − T2
ij,l

)2
, (3)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Here, m and n represent the numbers of rows and columns
of the bitemporal images, respectively, and T1

ij,l and T2
ij,l denote the grayscale values of (i, j)

in band l for the respective bitemporal images.
The pseudocode of LHSP is shown in Algorithm 2.

Algorithm 2. Pseudocode of LHSP

Input: T1 and T2;

Step 1: Set parameters
Block size in XCS-LBP (BS1) = 3 × 3; block size for histogram construction (BS2) = 5 × 5.

Step 2: CV generation

T1 XCS−LBP−−−−−−→ LBPT1; T2 XCS−LBP−−−−−−→ LBPT2.

LBPT1
(i,j)

BS1,BS2,L−−−−−→ LOCALT1
(ij); LBPT2

(i,j)
BS1,BS2,L−−−−−→ LOCALT2

(ij)
Histograms HistT1

(ij) and HistT2
(ij) are constructed for LOCALT1

(ij) and LOCALT2
(ij).

Distance(HistT1
(ij), HistT2

(ij)) is calculated, from which a CV is generated by traversing
each pixel.
Step 3: POTSU segmentation

CV POTSU−−−−→ initial CDI.
Step 4: Combined spectral-spatial segmentation

The SCV is obtained by (3).
The initial CDI is used as the seed, and the SCV is segmented using the active contour

model to obtain the final CDI.

Output: Final CDI;

3. Experiments
3.1. Data Description

Four datasets representing multispectral RS images with differences in detection
difficulty were selected to validate the proposed method (Figure 2). These were named
A, B, C, and D, respectively. Dataset B was obtained from a region of Suzhou City, China,
and the other datasets were obtained from Nanjing City, China. All datasets included
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four bands: B, G, R, and NIR. The detection difficulty in datasets C and D is significantly
higher than in datasets A and B.
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Figure 2. True-color synthesis images and reference images (from left to right: dataset label, bitempo-
ral images, and reference images). (A–D) indicate the dataset labels.

Dataset A comprises WorldView-2 satellite images with a spatial resolution of 1.8 m.
The bitemporal images were captured in September 2013 and July 2015, respectively, and
have an image size of 450 × 300 pixels. The salient change event affecting the dataset is a
change from vegetation cover to building cover with a significant increase in building area,
which was used to verify the effectiveness of the proposed method for change detection in
general urban construction land.

Dataset B comprises SuperView-1 satellite images with a spatial resolution of 2.0 m.
The bitemporal images were captured in August 2020 and October 2021, respectively, and
have an image size of 450 × 300 pixels. The prominent change events are crop changes,
changes in bare land and vegetation, and some building changes. This dataset was used to
verify the effectiveness of the proposed method for detecting general changes.

Datasets C and D comprise TripleSat-2 satellite images with a spatial resolution of
3.2 m.

The bitemporal images in dataset C were captured in November 2016 and July 2017,
respectively, and have an image size of 400 × 440 pixels. The changes highlighted in this
dataset are changes in crops in agricultural areas and turnover of land type in aquaculture
waters, which are greatly influenced by the season and contain a large amount of pseudo-
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change information. These were used to verify the effectiveness of the proposed method in
removing pseudo-change information.

The bitemporal images in dataset D were captured in November 2017 and October
2018, respectively, and have an image size of 600 × 600 pixels. Numerous changes af-
fected the dataset, such as changes in agricultural areas, residential villages, and road
networks, which are more challenging to detect. This dataset was used to further validate
the effectiveness of the method proposed in this paper.

The preprocessing of images included image co-registration and radiation normal-
ization [52]. Image co-registration was performed using the Sentinel-2 images tool [53]
(http://step.esa.int/main/download/snap-download/ (accessed on 1 September 2021))
with an average registration error of 0.8 pixels. The relative radiation normalization method
was obtained from the literature [54].

The reference data were obtained by visual interpretation and a field survey (Figure 2).

3.2. Methods Used for Comparison and Accuracy Evaluation
3.2.1. Methods Used for Comparison

Seven change detection methods, namely, TCO [20,40], PCA-K-means [28], ASEA [35],
WCIM [36], DSFA [37], DCVA [38], and KPCA-MNet [39], were used to compare their
performance with that of the proposed method. Among these, the TCO was used to
compare the effectiveness of the proposed method with that of the traditional threshold
segmentation method. PCA-K-means, ASEA, and WCIM are methods based on spatial
context information. Whereas PCA-K-means is a classical method using spatial context
information and is often used for benchmark comparisons [55], ASEA and WCIM are
recently proposed methods using neighborhood information. DSFA, DCVA, and KPCA-
MNet are unsupervised deep-learning-based methods.

For a fair comparison, the value of nonoverlapping block size in PCA-K-means and
the constant β in WCIM were determined by our tuning (Figures 3 and 4) to exhibit the
optimal detection accuracy on each dataset. The parameters for other methods were kept
consistent with the original papers or publicly available codes.

DSFA, DCVA, and KPCA-MNet were implemented in Python 3.10 on a computer
with an Intel (R) Core (TM) i5-10300H CPU @ 2.50 GHz, 16.0 GB of RAM, and an NVIDIA
GeForce GTX 1650 graphics card. The other methods were executed in MATLAB R2020b
on a computer with a 3.70 GHz Intel Core i9-10900K CPU, 16.0 GB RAM, and an NVIDIA
GeForce RTX 2070 graphics card.
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3.2.2. Methods Used for Accuracy Evaluation

Four metrics, namely, false alarm (FA), missed alarm (MA), overall accuracy (OA), and
F1 score (F1), were used to quantitatively evaluate the accuracy of change detection. Of
these, FA represents the false detection rate, MA represents the missed detection rate, OA
is the overall accuracy, and F1 is an evaluation indicator that integrates the precision and
recall rate, as shown in (4)–(7):

FA = FP/(TN + FP), (4)

MA = FN/(TP + FN), (5)

OA = (TP + TN)/(TP + TN + FP + FN), (6)

F1 = (P × R)/(0.5 × (P + R)), (7)

where TP is true positive, i.e., the reference image and the prediction result are changed.
TN is true negative, i.e., the reference image and the prediction result are unchanged. FN is
false negative, i.e., the reference image is changed while the prediction result is unchanged. FP
is false positive, i.e., the reference image is unchanged while the prediction result is changed.
P = TP/(TP + FP) indicates precision rate. R = TP/(TP + FN) indicates the recall rate.

The smaller the values of FA and MA and the larger the values of OA and F1, the better
the detection effect.

3.3. Results

The histogram similarity in LHSP was calculated using the Euclidean distance and chi-
squared distance, and the detection results based on these two distances were represented
by LHSP-E and LHSP-C, respectively. In addition, the average value of LHSP-E and
LHSP-C was used for quantitative analysis to make comparisons easier.

3.3.1. Dataset A

The main types of land cover in dataset A are vegetation, bare land, concrete buildings,
sheds, and hardened roads. Factors causing difficulty in change detection include building
shadows due to the illumination of the images and radiation differences. In addition,
vehicles driving on the roads caused some interference with change detection.

Table 1 lists the values of the detection accuracy metrics, and Figure 5 shows the
change detection results.

As can be seen from Table 1, LHSP achieved the best values in three metrics, namely,
FA, OA, and F1. When compared with the TCO, the average result of the three unsupervised
change detection methods based on spatial context information (PCA-K-means, ASEA,
and WCIM, henceforth termed spatial-context-based approaches), and the average result
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of the three unsupervised deep-learning-based change detection methods (DSFA, DCVA,
and KPCA-MNet, henceforth termed deep-learning-based approaches), the value of FA
achieved by LHSP decreased by 2.19%, 2.11%, and 1.76%, respectively. Meanwhile, the OA
and F1 increased by 1.17% and 0.0220, 2.13% and 0.0520, 1.64% and 0.0396, respectively.
In terms of MA, the TCO achieved the best value, while the value achieved by LHSP is
slightly higher than the TCO by 3.02%, but 2.21% and 1.15% lower than that achieved by the
spatial-context-based approaches and the deep-learning-based approaches, respectively.

Table 1. Accuracy of different detection methods in dataset A (optimal results in bold).

Method FA (%) MA (%) OA (%) F1

TCO 3.32 16.72 94.04 0.8463

PCA-K-means 1.73 20.35 94.61 0.8533

ASEA 5.17 18.13 92.28 0.8068

WCIM 2.83 27.35 92.34 0.7889

DSFA 2.42 24.05 93.32 0.8174

DCVA 3.06 18.33 93.93 0.8413

KPCA-MNet 3.19 20.28 93.45 0.8273

LHSP-E 1.17 19.53 95.21 0.8688

LHSP-C 1.09 19.94 95.20 0.8678
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(c) ASEA, (d) WCIM, (e) DSFA, (f) DCVA, (g) KPCA-MNet, (h) LHSP-E, (i) LHSP-C, (j) reference
image. The boxes and numbers indicate the areas compared in the text.

According to Figure 5, the intuitive differences among the different methods are small.
The TCO and ASEA methods caused the creation of more false-detection pixels and specks,
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such as the false-detection pixels caused by illumination of the image in box 1, the false-
detection pixels caused by building shadows in box 2, and the specks caused by sporadic
differences in vegetation radiation in box 3. The PCA-K-means and WCIM methods
produced fewer false-detection pixels and specks but many missed-detection pixels, as in
box 4. The DSFA method exhibits many specks and has some missed-detection pixels, as
indicated in box 4. The DCVA method performs well in eliminating false-detection pixels
caused by building shadows (box 2) but still exhibits missed-detection pixels in detecting
changes at the detailed level. The performance of the KPCA-MNet method is similar to
that of DCVA, but it still has some false-detection pixels in box 2. The CDIs obtained by
LHSP show that our method effectively reduced the number of false-detection pixels and
specks (boxes 1–3) and are closer to the reference image (Figure 5j). All methods achieved
high detection accuracy in dataset A, but the LHSP method is the best.

3.3.2. Dataset B

The main land cover types in dataset B are vegetation, bare land, buildings, rivers,
and roads. Difficulty in change detection is mainly due to differences in surface radiation
caused by illumination of the images and differences in vegetation growth.

The values of the detection accuracy metrics are listed in Table 2, and the distribution
of the change regions is shown in Figure 6.

As shown in Table 2, similar to its performance on dataset A, LHSP also achieved the
best FA, OA, and F1 on dataset B. Specifically, the FA value is 3.23%, 2.15%, and 2.84% lower
than that achieved by the TCO, spatial-context-based approaches, and deep-learning-based
approaches, respectively. The values of OA and F1 are 1.77% and 0.0313 higher, 5.62% and
0.1542 higher, and 6.52% and 0.1729 higher, respectively, than those achieved by the above
methods. For MA, the TCO achieved the best value. The value achieved by LHSP is 3.63%
higher than that achieved by the TCO but 18.42% and 20.1% lower than that achieved by
the spatial-context-based and deep-learning-based approaches, respectively.

The CDIs obtained by LHSP are closer to the reference image (Figure 6j). The CDIs
obtained by the TCO, ASEA, and DSFA have more specks (box 2), and the TCO has obvious
false-detection areas due to crop growth (box 1). PCA-K-means and WCIM exhibit many
missed detections, such as the changes in vegetation and bare land in box 3 and the changes
in the pond and vegetation in box 4. Although DCVA and KPCA-MNet significantly
reduced the number of specks, they also led to a considerable increase in missed detections,
as evident in box 3 for DCVA and boxes 3–4 for KPCA-MNet. Similarly to dataset A, all
methods produced relatively good detection results because of the low detection difficulty
in this dataset. However, LHSP still effectively reduced the number of false-detection areas
and specks, reduced the missed detection rate, and produced better detection results than
the benchmark methods.

Table 2. Accuracy of different detection methods in dataset B (optimal results in bold).

Method FA (%) MA (%) OA (%) F1

TCO 5.22 10.97 93.55 0.8549

PCA-K-means 3.89 38.04 88.82 0.7028

ASEA 5.14 20.58 91.56 0.8007

WCIM 3.39 40.44 88.71 0.6924

DSFA 2.29 40.41 89.58 0.7093

DCVA 7.27 31.97 87.46 0.6983

KPCA-MNet 4.94 31.72 89.35 0.7323

LHSP-E 2.17 13.99 95.31 0.8867

LHSP-C 1.81 15.21 95.33 0.8856
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(c) ASEA, (d) WCIM, (e) DSFA, (f) DCVA, (g) KPCA-MNet, (h) LHSP-E, (i) LHSP-C, (j) reference
image. The boxes and numbers indicate the areas compared in the text.

3.3.3. Dataset C

The main land cover types in the bitemporal images in dataset C are farmland, aqua-
culture water, natural water, sheds, hardened roads, and bare land. Difficulty in change
detection in this dataset is mainly due to seasonal differences in crop growth and differences
in surface radiation caused by factors such as light conditions and soil moisture, as well as
the effect of suspended matter in aquaculture waters, and this dataset is highly susceptible
to false detection.

Table 3 lists the values of the detection accuracy metrics, and Figure 7 shows the
distribution of the changed areas.

Table 3. Accuracy of different detection methods in dataset C (optimal results in bold).

Method FA (%) MA (%) OA (%) F1

TCO 15.02 10.85 85.55 0.6256

PCA-K-means 8.15 42.50 87.20 0.5489

ASEA 17.75 22.49 81.61 0.5330

WCIM 5.13 35.42 90.77 0.6545

DSFA 7.13 33.32 89.32 0.6285

DCVA 5.93 46.60 88.56 0.5584

KPCA-MNet 9.03 27.33 88.49 0.6309

LHSP-E 7.39 18.18 91.15 0.7146

LHSP-C 2.79 25.85 94.09 0.7725
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detection pixels and specks, such as false-detection pixels due to suspended matter in aq-
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Figure 7. Change regions detected by different methods in dataset C. (a) TCO, (b) PCA-K-means,
(c) ASEA, (d) WCIM, (e) DSFA, (f) DCVA, (g) KPCA-MNet, (h) LHSP-E, (i) LHSP-C, (j) reference
image. The boxes and numbers indicate the areas compared in the text.

The overall detection accuracy in dataset C is lower than in datasets A and B. Specifi-
cally, the average value of F1 achieved by the proposed method and the seven benchmark
methods is 0.2057 and 0.1440 lower than in datasets A and B, respectively. The mean value
of FA is 6.04% and 4.69% higher than in datasets A and B, respectively.

The quantitative detection results for dataset C follow those for datasets A and B.
LHSP achieved the best FA, OA, and F1. When compared with TCO, spatial-context-based
approaches, and deep-learning-based approaches, in LHSP, the FA is 9.93%, 5.25%, and
2.27% lower; the OA is 7.07%, 6.09%, and 3.83% higher; and the F1 was 0.1180, 0.1648, and
0.1376 higher, respectively. For MA, the value achieved by LHSP is 11.17% higher than
that achieved by the TCO, but it is 11.46% and 13.74% lower than that achieved by the
spatial-context-based and deep-learning-based approaches, respectively.

As seen in Figure 7, LHSP achieved reductions of different magnitudes in both false-
detection pixels and specks, such as false-detection pixels due to suspended matter in
aquaculture water in box 1, false-detection pixels due to radiation differences from vegeta-
tion growing near the river in box 2, and specks due to seasonal climate changes in box
3. PCA-K-means produced more missed detection results in dataset C, such as in box 4.
The performance of DCVA is similar to its performance on dataset B; that is, despite its
significant reduction of specks, its CDI overall has many missed-detection pixels. The over-
all detection results of all methods are worse for dataset C than for datasets A and B. This
is because dataset C contains more pseudo-change information, making detection more
difficult. This conclusion can also be derived from comparing the quantitative detection
accuracy metrics in Tables 1–3. The detection results of LHSP are closest to the reference
image (Figure 7j).

3.3.4. Dataset D

Dataset D comprises images of a more complex area, which includes agricultural land,
roads, natural water, buildings, vegetation, aquaculture water, bare land, sheds, and other
land cover types. Compared with the previous three datasets, this dataset has more land
cover types and change scenarios, and it is also more difficult to detect changes.

Table 4 lists the values of the accuracy metrics, and Figure 8 shows the change regions.
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Table 4. Accuracy of different detection methods in dataset D (optimal results in bold).

Method FA (%) MA (%) OA (%) F1

TCO 20.49 6.57 80.25 0.3335

PCA-K-means 7.61 22.10 91.62 0.4960

ASEA 23.73 28.58 76.02 0.2396

WCIM 3.57 31.47 94.95 0.5895

DSFA 9.99 21.31 89.41 0.4402

DCVA 20.76 78.40 76.19 0.0876

KPCA-MNet 13.17 13.95 86.79 0.4080

LHSP-E 2.55 27.66 96.12 0.6634

LHSP-C 0.40 58.79 96.51 0.5552
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Following the detection difficulty, dataset D has lower values of F1 in comparison with
the previous three datasets. The average value of F1 achieved by the proposed method
and the seven benchmark methods is 0.4237. LHSP achieved a significant improvement
in accuracy over the seven benchmark methods. It achieved the best FA, OA, and F1.
Specifically, the value of FA is 19.02%, 10.16%, and 13.17% lower compared to that achieved
by the TCO, spatial-context-based, and deep-learning-based approaches, respectively.
The OA and F1 are 16.07% and 0.2758 higher, 8.79% and 0.1676 higher, and 12.19% and
0.2974 higher, respectively. The deep-learning-based approaches performed poorly on this
dataset because of the unsatisfactory detection results from the DCVA method. LHSP has
a higher MA value due to the excessive MA value achieved by LHSP-C, namely, 58.79%.
However, LHSP-C still performed better than the seven benchmark methods regarding
overall detection.

According to Figure 8, LHSP exhibits remarkable advantages: a reduction in false-
detection pixels and specks when compared with the change detection results of the TCO,
ASEA, and DSFA (boxes 1–3) and a reduction in the overall false detection rate when
compared with the change detection results of PCA-K-means and KPCA-MNet (box 1). The
CDI for WCIM is better, but there are still a few false-detection pixels (box 1). The CDI of
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DCVA has many false-detection and missed-detection pixels. LHSP still maintained higher
accuracy than the benchmark methods, although it also suffers from more missed-detection
pixels (box 4). The LHSP-E results are closest to the reference image (Figure 8j).

Compared to the seven benchmark methods, LHSP shows a greater improvement in
accuracy in datasets C and D than the improvement observed in datasets A and B. The
average value of F1 achieved by LHSP is 0.0935 higher than that achieved by the seven
benchmark methods in datasets A and B, while it is 0.1926 higher in datasets C and D.
LHSP exhibited more obvious advantages in terms of the accuracy of change detection in
HR RS imagery with a more complex landscape.

The experimental results showed that LHSP has higher detection accuracy than the
seven benchmark methods in all four datasets. The average difference in the four accuracy
metrics FA, MA, OA, and F1 between LHSP and the seven benchmark methods is −5.48%,
−2.97%, 5.95%, and 0.1430, respectively. Moreover, LHSP reduced the number of specks
and false-detection pixels to a certain extent.

4. Discussion

The LHSP method consists of a local XCS-LBP histogram similarity measure, the
proposed POTSU segmentation method, and the segmentation of the SCV using the active
contour model. The local XCS-LBP histogram similarity measure incorporates spatial
information into change detection. The POTSU segmentation method further reduces
the false detection rate in change detection in HR RS imagery. The SCV segmentation
using the active contour model improves detection accuracy by combining spectral and
spatial information.

Below, we further discuss and analyze the validity of the method. Finally, the runtime
is discussed and compared.

4.1. Validity of Local XCS-LBP Histogram Similarity

The SCV and local XCS-LBP histogram similarity were used as input features, respec-
tively. The initial results were obtained by segmentation using the Otsu method and were
then used as seeds in the active contour model to segment the SCV to produce the final
results. Figure 9 shows the accuracy of change detection.

No XCS-LBP in Figure 9 indicates SCV input, while LHSO-E and LHSO-C indicate
XCS-LBP input, where E and C indicate that the histogram similarity was calculated using
the Euclidean distance and chi-squared distance, respectively. The F1 values achieved
using XCS-LBP input in all datasets are higher than those achieved using SCV input, which
indicates the effectiveness of XCS-LBP in LHSP.
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A comparison of the detection results (Tables 1–4) of PCA-K-means, ASEA, WCIM,
and LHSO (Figure 9) on the four datasets shows that LHSO exhibits the highest detection
accuracy on all datasets except for dataset D, where it is lower than that of WCIM. The F1
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value achieved by LHSO in the four datasets is 0.0173, 0.0822, 0.0255, and −0.0491 higher,
respectively, than the highest F1 value achieved by PCA-K-means, ASEA, and WCIM.
This indicates that combining spatial context information from XCS-LBP with spectral
information in change detection is more effective when compared with PCA-K-means,
ASEA, and WCIM, which directly use spatial context information based on the original
grayscale values.

To verify the reasonableness of block size in XCS-LBP, 3 × 3, 5 × 5, · · · , and 19 × 19
were used as the sizes of the local blocks in XCS-LBP extraction. The mean values achieved
by LHSP-E and LHSP-C were compared, and the results are shown in Figure 10.
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Figure 10. F1 score of change detection using LHSP with different local block sizes in XCS-LBP.

As can be seen in Figure 10, LHSP is not sensitive to the block size in XCS-LBP. Datasets
A, B, C, and D achieved optimal F1 at 17 × 17, 3 × 3, 9 × 9, and 5 × 5, respectively. This is
affected by the image’s spatial resolution and the land cover. Although datasets A, C, and
D did not achieve the optimal F1 at 3 × 3, F1 is only 0.0024, 0.0009, and 0.0008 lower than
the optimal F1, respectively. The insensitivity of LHSP to block size in XCS-LBP is due to
the mechanism by which XCS-LBP expresses spatial information and the effect of regional
growth. For convenience, 3 × 3 is used as the block size in XCS-LBP for all four datasets.

Co-registration errors were considered when determining the range of the histogram
construction. Also, to verify the reasonableness of its size, 3 × 3, 5 × 5, · · · , and 11 × 11
were used as the sizes of the local blocks in the construction of the histogram in LHSP. The
mean values achieved by LHSP-E and LHSP-C were compared, and the results are shown
in Figure 11.

Figure 11 shows that the F1 value in all four datasets increases at first and then
decreases when the local block becomes larger, and the best F1 value is achieved at a block
size of 5 × 5. Therefore, this confirms the reasonability of choosing a block size of 5 × 5.

In addition, we performed change detection using LHSP with different bins (H) and
compared the detection accuracy to analyze the effect of H on the detection results, as
shown in Figure 12.

As shown in Figure 12, the F1 have slight variations with H in all four datasets. For
dataset A, the F1 continue to improve as H increases. For dataset C, the F1 show an increase
followed by a decrease. However, for dataset B and dataset D, the F1 fluctuate when H
is small and continue to improve. Overall, the F1 climbed gradually as H increased, thus
indicating that our histogram construction using 16 columns is effective.

Similarly, different LBP variants can affect the detection results. To validate the
effectiveness of XCS-LBP in LHSP, traditional LBP (TLBP) [56] and rotation-invariant LBP
(RLBP) [56,57] were used to replace XCS-LBP for change detection, respectively. The
comparison results are shown in Table 5.

The results show that XCS-LBP has lower F1 than RLBP in dataset C, but it achieves
the best F1 in datasets A, B, and D. Overall, XCS-LBP outperformed LBP and RLBP in LHSP.
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4.2. Validity of POTSU Segmentation

Three experiments were performed to verify the effectiveness of the proposed POTSU
method. In experiment 1, the SCV was the input image feature and was segmented directly
by the Otsu method and POTSU. The result is shown in Figure 13.
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SCV-O in Figure 13 denotes SCV segmentation by the Otsu method, while SCV-P
denotes SCV segmentation by the proposed POTSU method. The F1 values achieved by
POTSU are higher than those achieved by the Otsu method in datasets A, C, and D. The
differences are evident in the complex datasets C and D. The fact that the differences in the
value of F1 in datasets A and B are minor is because segmentation by the Otsu method can
also achieve good results for simple images. In general, POTSU is more suitable than the
Otsu method for segmentation in change detection in HR RS imagery, and the superiority
of POTSU in terms of accuracy is more obvious in complex HR RS data.

In experiment 2, POTSU was substituted with the Otsu method in LHSP (i.e., to give
LHSO) to verify the effectiveness of POTSU in LHSP. The result is shown in Figure 14.
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Figure 14. F1 score of LHSP and LHSO to detect change for each of the four datasets.

As seen in Figure 14, the differences in the value of F1 are minor for the simple
datasets A and B, whether the histogram similarity was measured using the Euclidean
or chi-squared distance. However, LHSP achieved better detection results in the more
complex datasets C and D.

In experiment 3, POTSU uses ndi and ndj to determine that the segmented objects in
the progression are validated. The SCV was the input image feature and was segmented
directly by the POTSU, and then the FA, MA, and F1 obtained from each progression were
analyzed, as shown in Figure 15.
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In Figure 15, the values of FA all decrease first and then gradually increase, and the
values of MA increase first and then decrease. This variation aligns with our explanation of
using ndi and ndj in POTSU to determine segmented objects. Specifically, Otsu usually has
a high false detection rate for complex HR data change detection (red line when the number
of progressions is 1). The false detection rate decreases sharply after POTSU continues
to segment the changed pixels from the last progression (red line when the number of
progressions is 2). Still, the missed detection rate increases dramatically simultaneously
(green line when the number of progressions is 2), so POTSU continues to judge the
segmented objects to gradually balance the false detection and missed detection until the
termination condition is reached. Finally, POTSU selects the final progressive result based
on the maximum difference between nadj and nadi of each progressive merge result.

In this experiment, the 5th, 4th, 3rd, and 2nd progressive results were selected as the
final results for datasets A, B, C, and D, respectively (small black box in Figure 15). It can
be observed that the small black box is overall in the moderate position of FA and MA,
thus avoiding too big or too small values of FA and MA. However, this is not the case for
dataset D. This is because the mask segmentation makes the accuracy obtained from each
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progression not continuous, so it is difficult to ensure that the result is optimal each time
(such as the final F1 of datasets B and D being suboptimal).

Nevertheless, POTSU effectively takes the optimal range of values (such that datasets
A and C achieve the optimal values while datasets B and D achieve the suboptimal values),
so POTSU has good accuracy improvement overall. It can also be seen that on the relatively
simple datasets A and B, the F1 does not improve significantly. Still, on the more complex
datasets C and D, the F1 of POTSU shows a significant improvement relative to Otsu.

The results of these three experiments show that the proposed POTSU method has
an advantage over the Otsu method in change detection in HR RS imagery, which is more
evident in the case of more complex HR RS imagery.

4.3. Validity of Combination of Spectral and Spatial Information

Three comparative experiments were conducted: (1) spectral information only; the
SCV was segmented directly, which is denoted as SCV-P; (2) spatial context information
only; the segmentation of the two CVs of the XCS-LBP features is denoted as XCS-LBP-E
and XCS-LBP-C, respectively; (3) spectral information and spatial context information were
combined; region growth was performed with the SCV based on experiment (2), which is
denoted as LHSP-E and LHSP-C, respectively. All the segmentations were implemented
using POTSU. The results are shown in Figure 16.

It can be seen from Figure 16 that the accuracy of change detection with spatial infor-
mation alone is low because of the lack of description of spectral-dimensional information
in the representation of pixel features. Similarly, the accuracy of change detection with
spectral information alone is relatively low because the description of spatial context infor-
mation is ignored. However, the value of F1 with spectral information alone is significantly
higher than that with spatial information alone. The proposed LSHP exhibits higher detec-
tion accuracy because of the combination of spectral and spatial information. Specifically,
it has a slight advantage over SCV-P in datasets A and B in terms of accuracy. This is
because simple change scenario information can also be well characterized using spectral
information alone. For dataset C, the proposed method has similar detection accuracy
to SCV-P, which is due to the superior performance of POTSU in dataset C (Figure 13).
However, for dataset D, the proposed method achieved a larger increase in the value of
F1, namely, 8.47%. This is because spectral information alone cannot represent changes in
various land cover types well for dataset D, which contains complex change scenarios. In
contrast, adding spatial information enhanced the performance in this respect. The initial
change detection implemented in LHSP using only spatial information gave a suitable seed
for the regional growth of SCV and showed good detection results.
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4.4. Runtime Analysis

The runtime is an important metric for evaluating the effectiveness of an algorithm.
Table 6 lists the runtimes of each method.

Table 6. Runtimes of different methods.

Method A (s) B (s) C (s) D (s)

TCO 0.08 0.08 0.09 0.12

PCA-K-means 1.21 1.23 1.73 4.54

ASEA 21.65 21.37 27.40 57.18

WCIM 6.85 6.53 8.33 16.32

DSFA 11.54 10.64 10.93 13.68

DCVA 8.86 10.16 10.94 20.14

KPCA-MNet 7.56 7.52 10.77 21.33

LHSP-E(POTSU) 13.58 (0.23) 14.45 (0.31) 18.44 (0.36) 35.69 (0.64)

LHSP-C(POTSU) 9.01 (0.24) 9.37 (0.25) 12.07 (0.34) 22.78 (0.58)

Table 6 shows that the average running speed of each method from fast to slow is
as follows: TCO > PCA-K-means > WCIM > DSFA > KPCA-MNet > DCVA > LHSP-C >
LHSP-E > ASEA. The TCO took the shortest time because it only required SCV calculation
and single threshold segmentation. The runtime of PCA-K-means is also short. This
is because PCA took less time since HR RS images used only included four bands and
K-means only performed two-class clustering. However, the missed detection rate of PCA-
K-means is more serious. The running time of WCIM is increased compared to TCO and
PCA-K-means methods because it took some time to calculate the weights of each band.
DSFA, KPCA-MNet, DCVA, and LHSP-C have minor differences in runtime. The time
consumed by LHSP is mainly dedicated to extracting XCS-LBP features. The time taken
for POTSU is very short (shown in parentheses in Table 6), though it took more time than
the TCO because more processing is required. LHSP-E is slightly more time-consuming
than LHSP-C because calculating Euclidean distances takes longer. ASEA is relatively
time-consuming, mainly because ASEA requires adaptive region generation for each pixel,
and the traversal is more time-consuming.

Overall, when compared with the runtimes of the benchmark methods, the time taken
by LHSP is acceptable, considering the improvement in detection accuracy.

5. Conclusions

This study developed an unsupervised method for detecting land cover changes in HR
RS imagery by combining spatial context information (expressed by the local XCS-LBP) with
spectral information (expressed by the SCV) and a POTSU threshold segmentation method.

The effectiveness of the proposed method was verified by a comparison with the
TCO, PCA-K-means, ASEA, WCIM, DSFA, DCVA, and KPCA-MNet based on four sets of
bitemporal HR RS images with different spatial resolutions and landscape complexities.

(1) The proposed method effectively reduced the number of false-detection pixels and
achieved higher detection accuracy than the benchmark methods. In the test datasets, the
mean F1 score achieved by the proposed method is 0.0955 higher than the highest mean F1
score achieved by the benchmark methods;

(2) Compared with the Otsu method, the proposed POTSU method exhibited better
segmentation performance in change detection in complex HR RS imagery;

(3) The proposed method is suitable for land cover and land use mapping. In addi-
tion, it has detection advantages for HR RS images with complex land cover and high
detection difficulty.
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In the future, we plan to work on (1) exploring methods to handle co-registration
errors based on XCS-LBP and (2) integrating the proposed POTSU with deep learning to
enhance detection accuracy further.
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