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Abstract: Geothermal resources are efficient, clean, and renewable energy sources. Using high-resolution
images captured by remote sensing satellites for temperature retrieval and searching for geothermal
anomaly areas is an efficient method. However, obtaining land surface temperature retrieval images
requires multiple steps of calculation, which can result in a great loss of image information and
resolution. Therefore, the super-resolution reconstruction of LST retrieval images is currently a
challenge in geothermal resource exploration. Although the current super-resolution methods for
LST retrieval images can appropriately restore image quality, the overall restoration of the surface
temperature information in the region is still not ideal. We propose a cross-scale reference image
super-resolution model based on a diffusion model using deep learning technology. First, we propose
the Pre-Super-Resolution Network (PreNet), which can improve both indices and the visual effect
of images. Second, to reduce the white noise in the super-resolution images, we propose the Cross-
Scale Reference Image Attention Mechanism (CSRIAM). The introduction of this mechanism greatly
reduces noise in the images and improves the overall image quality. Compared to previous methods,
we improved both experimental indices such as Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM), etc., and vision quality, and optimized the recovery of geothermal anomalies.
Through our experimental results, we found that the CS-Diffusion model has a very strong ability
to restore the image quality of the LST retrieval. After restoring its image quality, we can make a
positive contribution to subsequent geothermal resource exploration.

Keywords: deep learning; diffusion model; LST retrieval; super-resolution

1. Introduction

The exploration of geothermal resources is currently an important demand for energy
departments in various countries. Due to the renewable and clean nature of geothermal
resources, the demand for exploring geothermal resources is increasing year by year.
At present, the development methods of geothermal resources such as [1,2] still rely on
geological exploration, expert evaluation, on-site inspections, and other means, which
require high costs. Exploring geothermal anomalies in ground areas through satellite
remote sensing images is an extremely efficient means. The satellite remote sensing images
captured by the current Landsat satellite series are widely used. The Operational Land
Imager (OLI), Thermal Mapper (TM), and Thermal Infrared Sensor (TIRS) carried by the
Landsat series satellites can return radiation values from multiple bands in the captured
area. These radiation values can be used to calculate LST retrieval images of the captured
area. In addition to exploring geothermal resources, the Landsat series satellites have also
played an important role in other work. The application of Landsat series satellites in tasks
such as agricultural monitoring and urban heat island effects analysis was demonstrated
in [3–6]. In [7], Guo et al. used Landsat8 satellite images to monitor the water quality in the
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waters of Shenzhen, China. In [8], Habib et al. proposed a system with automatic image
processing and parameter calculation modules, which can calculate the water consumption
of crops in the water consumption model pixel by pixel. In [9], Gemitzi et al. performed
LST on the northeastern region of Greece, and a threshold-based algorithm was developed
to search for existing or potential geothermal reservoirs in the image. In [10], Chou et al.
introduced Long Short-Term Memory (LSTM) for predicting changes in Earth’s climate
over time, demonstrating the application of machine learning techniques in time-sensitive
tasks. In recent years, Hyperspectral images have widely been used [11,12].

Land surface temperature retrieval is mainly based on the surface thermal radiation
observed by the thermal infrared sensor. After subtracting the atmospheric influence,
the surface thermal radiant intensity can be obtained, and then the surface temperature can
be obtained through thermal radiant intensity conversion. However, the use of LST images
for geothermal resource exploration requires images with high resolution. Because remote
sensing images are limited by sensor parameters, the natural environment, and other
factors, they often carry certain noise and information loss, which will make the image
fuzzy and thus affect the use of images. The purpose of image super-resolution is to
improve the overall image quality and recover the lost information. At present, the main
challenges of image super-resolution are excessive smoothness, excessive sharpening and
the difficulty in eliminating noise in pursuit of a high index. The objective of this paper is
to improve image quality while reducing sharpening and noise so as to facilitate further
exploration of geothermal areas.

The super-resolution task of this article is aimed at LST retrieval images. The goal
is to restore the image quality, that is, to restore the low-resolution image that has lost
information to its initial state (high-resolution) through mathematical modeling. Since LST
images require multiple operations of infrared band satellite remote sensing images and
other reasons, such as flight altitude, size of instantaneous field of view (IFOV), and so on,
the information in the images will be lost greatly during the operation process, resulting
in a decrease in the resolution of the images, which will cause difficulties for subsequent
searches for geothermal anomaly areas. We conducted indices and vision effects testing on
the proposed model and compared it with the previous CNN models. The experimental
results show that the proposed model outperformed the previous CNN models in terms of
experimental indices and visual effects.

Image super-resolution is an important task in recent years, which has received
widespread attention in the field of computer vision and has been widely applied in various
tasks [13,14]. The past single-image super-resolution methods were mainly based on pixel
adjacent area interpolation methods, such as Gaussian process regression [15], random
forest [16], and the method for restoring image quality through interpolation—Bicubic
interpolation. These methods are based on the information of the image itself to restore
the image. Although these operations can appropriately restore the image quality, there
is still a great loss of information that cannot be restored when processing temperature
retrieval images.

The super-resolution method based on deep learning technology is now widely used.
In [17], Wang et al. summarized the application of deep learning theory in today’s super-
resolution tasks. Nowadays, there are two super-resolution methods that have aroused
widespread interest among researchers: single-image super-resolution (SISR) and reference-
based image super-resolution (RefSR). For SISR, in the Super-Resolution Convolutional
Neural Network (SRCNN) [18], Dong et al. set a precedent for the application of deep
learning in image super-resolution, which improved the performance of image super-
resolution compared to traditional methods, such as Bicubic. In the Super-Resolution
Generative Adversarial Network (SRGAN) [19], Christian et al. introduced the concept
of GAN [20] into the task of super-resolution of a single image, making the restoration
effect of details in the high-frequency part of the image better. In Enhanced-SRGAN
(ESRGAN) [21], Wang et al. introduced the Residual-in-Residual Dense Block (RRDB)
based on SRGAN, which improves the super-resolution restoration effect of a single image.
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In SR3 [22], Chitwan et al. used the diffusion model to complete the SISR, which spliced
the low-resolution image upsampled to the target resolution with the high-resolution
image added with noise and used it as a conditional input for super-resolution. In [23],
Moser et al. discussed the latest applications of diffusion models in the field of super-
resolution. In [24,25], the authors explained the application of super-resolution technology
in the field of remote sensing. These methods make it difficult to restore low-resolution
images well in situations where there is a significant loss of image information. We
conducted metric testing on the proposed model and compared it with previous CNN
models. The experimental results show that our proposed new model outperforms the
previous CNN model in terms of experimental indices and visual effects.

And reference-based image super-resolution can reduce the impact of information
loss in low-resolution images on super-resolution work. In [26], Zhang et al. introduced a
neural texture transfer module into super-resolution based on reference image IRe f , solving
the problem of difficulty in improving the super-resolution performance in SISR tasks.
In [27], Yang et al. first introduced the attention mechanism [28] into super-resolution tasks,
improving the performance of image super-resolution tasks based on reference images.
At present, the super-resolution of remote sensing images is mainly based on SRCNN [18]
and SRGAN [19], such as CycleCNN [29] and Edge-Enhanced-SRGAN (EESRGAN) [30].
Although these methods can effectively perform super-resolution reconstruction on remote
sensing images, there is still a large amount of lost information that cannot be restored
when processing temperature retrieval images.

However, LST images have a high demand for image information restoration. With
previous methods, due to the lack of image preprocessing, directly performing super-
resolution processing on images does not perform well. The significant loss of image
information leads to many visual problems in super-resolution images, such as the loss
of high-frequency information and the loss of image brightness. Therefore, introducing
reference image information is crucial.

The current super-resolution methods of LST images such as [31] mainly improved the
resolution by modeling the probability distribution of the image and analyzing and fusing
the spectrum. The effect achieved by these methods is similar to Bicubic interpolation.
Although the reconstructed image and Ground Truth’s indices can reach a considerable
level, the overall image quality and high-frequency details of the image are still largely lost.
In addition, in the process of super-resolution, the previous diffusion model method, due
to the lack of reference information in the denoising network, leads to poor indices and
visual effects of the image super-resolution task, and the loss information of the image still
cannot be recovered.

To address these issues, we proposed the Cross-Scale Diffusion (CS-Diffusion) method,
which combines the advantages of super-resolution based on reference images and enables
the network to learn features of reference images at different scales. Image super-resolution
based on reference images can extract features from high-resolution reference images
and be used to improve image quality. Our CS-Diffusion method introduces cross-scale
reference images. First, due to the limitations of the Bicubic method itself, it is unable to
perform good information recovery on low-resolution images. Therefore, we introduced
Pre-Super-Resolution Net (PreNet), which can preliminarily restore the quality of the LR
image. Based on the SR3 [22], we replaced its conditional input (Low-resolution image
with Bicubic interpolation to target resolution) in the SR3 method with the output of our
PreNet, whose inputs are low-resolution images; after that, we concatenated it with high-
resolution images with noise. We used the same dataset to train PreNet to have the ability
of pre-super-resolution. Finally, after the training of the diffusion model, we found that
the super-resolution effect of LST retrieval images was greatly improved. Meanwhile,
we proposed the Cross-Scale Reference Image Attention Mechanism, which could fuse
the downsampled feature image and the high-resolution reference image, and reduce
the information loss caused by the downsampling process. After the introduction of this
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mechanism, the noise of the super-resolution image was greatly reduced, and the recovery
effect on geothermal anomaly points was greatly improved.

The main contributions of this article are as follows:
1. We proposed a network PreNet, which takes a low-resolution image as its input,

and its output is used as the conditional input of the diffusion model. This method
enhanced the effect of image reconstruction, resulting in an improvement in indices.

2. In response to the problem of information loss in U-Net downsampling, we pro-
posed the Cross-Scale Reference Image Attention Mechanism to provide high-resolution
reference features for the U-Net feature maps, greatly enhancing the information recovery
ability of denoising networks.

In the next section, we introduce the proposed cross-scale diffusion method. PreNet
is discussed in Section 2.1. The main structure of the denoising network is discussed
in Section 2.2. The structure of the Cross-Scale Reference Image Attention Mechanism is
discussed in Section 2.2.4.

Figure 1 shows the overall framework of our CS-Diffusion method, using two types of
logic for training and testing.
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Figure 1. The structure of Cross-Scale Diffusion. When training, we use the bicubic method to
interpolate low-resolution images to the target resolution as shown by the blue line. During testing,
we use PreNet for pre-super-resolution of low-resolution images to the target resolution as shown by
the orange line.

2. Methodology
2.1. Pre-Super-Resolution Network
2.1.1. The Structure of Pre-Super-Resolution Network

Our method aims to improve the super-resolution ability of the conditional diffusion
model by improving the image quality of the conditional input of the diffusion model. We
used PreNet to achieve the task of improving conditional input. The Pre-Super-Resolution
Network (PreNet) takes the low-resolution image from Bicubic interpolation to the target
resolution as the input, and outputs a pre-super-resolution image. Inspired by SRCNN [18]
and VGG [32], we found that convolutional neural networks have strong performance in
pre-reconstructing images. In addition, deep convolutional neural networks can extract
features. Based on the above, we designed a PreNet as a convolutional neural network for
image pre-reconstruction.

2.1.2. Loss Function

We take the Mean Squared Error (MSE) as the loss function of the PreNet network,
and the IOUT is the output of PreNet:
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IOUT = P(ILR), (1)

where P() and IOUT represent the PreNet network and its output image. ILR represents the
low-resolution image. The loss function used is MSE:

LPrenet =
W

∑
x=1

H

∑
y=1

(IOUT
x,y − IHR

x,y )2. (2)

The meaning of LPrenet is to subtract the output of the network pixel by pixel from the
original image and take its sum of squares. MSE is the most widely used optimization target
in the field of image super-resolution [33], and many SOTA (State-Of-The-Art) methods
use this loss function [34]. By optimizing the loss function, we can obtain a convolutional
neural network, namely PreNet, which can pre-reconstruct images. Through this network,
we can properly recover the information of low-resolution images with great information
loss, to prepare for subsequent super-resolution work.

We found that PreNet can improve the quality of Bicubic interpolation images. There-
fore, compared with the image using Bicubic interpolation directly for the target resolution,
improving the quality of IOUT is simpler for the network. When training the denois-
ing network, we still use the Bicubic interpolation image as the conditional input of our
denoising network.

The training algorithm for PreNet is shown in Algorithm 1. We make the output of
PreNet and IHR the MSE loss function and perform gradient descent so that the network
can obtain the ability to recover the image quality initially.

Algorithm 1 Training PreNet

1: for:
2: IOUT = P(ILR)
3: Take a gradient descent step on: ∇θ∥P(ILR)− IHR∥2
4: until converged
5: end for

2.2. Cross-Scale Diffusion
2.2.1. Denoising Diffusion Probabilistic Models

The Denoising Diffusion Probabilistic Model (DDPM) [35] has achieved great success
in fields such as data generation and medical image segmentation [36], and its performance
also has great potential in the field of image super-resolution.

DDPM is divided into a forward process and backward process. For raw data,
x0 ∼ q(x0), which includes T diffusion processes. Each step adds Gaussian noise to the
data xt−1 in the previous step according to the following equation:

xt =
√

αtxt−1 +
√

1 − αtε, (3)

where αt is a constant determined by t, and ε is Gaussian white noise with standard normal
distribution satisfying ε ∼ N(0, I).

The above equation can be equivalently expressed as:

q(xt|xt−1) = N(xt;
√

1 − βtxt−1, βt I), (4)

where βt is the variance used for each step, and βt ∈ (0, 1), βt = 1 − αt. Obviously,
the diffusion process is a Markov process:

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1). (5)
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The schematic diagram of the forward process and backward process is shown in
Figure 2, where p represents the conditional probability distribution of the backward
process, and q represents the conditional probability distribution of the forward diffusion
process, which is known. Our goal is to train a network that can simulate p and use it to
recover images from noise (i.e., backward process).

0
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x

• • •

1 0
( | )q x x
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( | )
t t

p x x
 −

0 1
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Figure 2. Forward and reverse processes of diffusion, where x0 is the original image, xT is the
Gaussian white noise with standard normal distribution.

2.2.2. Conditional Diffusion Model

Inspired by SR3 [22], we use the conditional diffusion model for super-resolution
of the conditional input, and we form an image pair

{
ILR
i , IHR(noisy)

i

}
, where IHR(noisy)

represents the HR image with noise, and its meaning is as follows:

IHR(noisy)
t =

√
σt IHR +

√
1 − σtε, (6)

similar to βt in DDPM, σt = ∏T
t=1 αi is the variance of noise, and ε ∼ N(0, I) is the noise of

standard normal distribution. To train a denoising network Dθ , we need to add noise to
IHR according to the above equation. In order to train the network Dθ , we use the following
loss function:

Loss = ∥Dθ(ILR,
√

σt IHR
t +

√
1 − σtε, IRe f , σt)− ε∥2, (7)

where the input to the denoising network Dθ consists of the low-resolution image ILR,
the noised high-resolution image, the variance of the noise added, and the reference image.
Our aim is to train a denoising network Dθ so that the output always remains Gaussian
white noise ε ∼ N(0, I) when the input changes. The training process of our denoising
model is shown in Algorithm 2:

Algorithm 2 Training denoising network.

1: for:
2: σ ∼ p(σ)
3: ε ∼ N(0, I)
4: Take a gradient descent step on:

∇θ∥Dθ(ILR,
√

σt IHR
t +

√
1 − σtε, IRe f , σt)− ε∥2

5: end for

For a batch of training data, we select a variance σt related to iteration round t, and add
noise to IHR for training in the form of affine transformation, i.e., Equation (6) according
to this variance. We need to make the output of the denoising network Dθ approach
ε ∼ N(0, I) so that the noise can be completely separated from the noisy IHR(noisy)

t . We

perform a single iteration to denoise a batch of IHR(noisy)
t for each training session.

After we obtain the trained denoising network Dθ , we can simulate the backward
propagation conditional probability distribution of the Markov chain, which is related to
the iteration round t. We discuss the network structure of Dθ in Section 2.2.3.

The denoising network Dθ can learn the distribution characteristics of the training data
during the training process and then complete the image super-resolution reconstruction
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in the reverse process. In the reverse process, we obtain the output ε through the denoising
network Dθ as shown in the following equation:

Dθ(ILR, IHR(noisy)
t , IRe f , σt) = ε, (8)

and the input of the denoising network includes low-resolution images ILR, noisy high-
resolution images IHR(noisy)

t , reference images IRe f , and noise variance σt.
The reverse process is a Markov process, so the probability distribution between

adjacent iteration rounds has the following properties:

pθ(IHR(noisy)
0:T |ILR) = pθ(IHR(noisy)

T )
T

∏
t=1

p(IHR(noisy)
t−1 |IHR(noisy)

t , ILR), (9)

where IHR(noisy)
0:T represents a noisy high-resolution image with any number of iterations,

and during training, IHR(noisy)
T represents pure noise, which will form a conditional input

with ILR to infer the number of adjacent iterations. In the process of testing, that is,
the super-resolution process, as the number of iterations increases, the denoising network
gradually recovers the noisy high-resolution image from the noise.

According to Equations (6) and (8), it can be inferred that:

IHR =
1√
σt
(IHR(noisy)

t −
√

1 − σtDθ(ILR, IHR(noisy)
t , IRe f , σt)). (10)

But we cannot directly obtain high-resolution image IHR using this equation be-
cause our denoising model Dθ can only solve the noise ε ∼ N(0, I) of one iteration at a time.
Therefore, when performing the super-resolution reconstruction of the reverse process, we
need to perform a complete T-iterations reverse process.

For each iteration, we can deduce the equation of the reverse process of adjacent
iteration rounds according to the Markov property, i.e., Equation (9):

IHR(noisy)
t−1 =

1√
αt
(IHR(noisy)

t − 1 − αt√
1 − σt

Dθ(IOUT , IHR(noisy)
t , IRe f , σt)) +

√
1 − αtε, (11)

when t = 0, we can obtain the super-resolution reconstructed image ISR. As shown in
Equation (11), we replaced ILR with IOUT for the super-resolution.

The algorithm for super-resolution reconstruction is shown in Algorithm 3. We first
sampled noise of the same resolution as the image from standard Gaussian noise and used
it as a conditional input. After T iterations, IHR (with ILR as the probability distribution
reference) was recovered step by step from the noise, which also means that we obtained
the super-resolution image ISR.

Algorithm 3 Super-resolution.

1: IHR(noisy)
T ∼ N(0, I):

2: for t = T : 1:
3: ε ∼ N(0, I) if t > 1,else ε = 0
4: IHR(noisy)

t−1 =
1√
αt
(IHR(noisy)

t − 1−αt√
1−σt

Dθ(IOUT , IHR(noisy)
t , IRe f , σt))

+
√

1 − αtε

5: end for
6: return IHR(noisy)

0 (ISR)
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2.2.3. Structure of Denoising Network

We used U-Net [37] as the backbone of the denoising model, which can increase the
feature space dimension of images. Because the conditional probability distribution of the
reverse process is very complex, a large number of high-dimensional features are required.
The U-Net structure we use is shown in Figure 3:

ResNetBlock

*N
Group_Norm Sigmoid Conv

 

DownSample UpSample

 

Num_Features 64

128

256

512

1024 1024

512

256

128

64 Num_Features

REFI

(6 )Noise HR

t
I I Channels

1
(3 )HR

t
I Channels

−

Figure 3. The structure of the denoising network, where the depth of U-Net is (1, 2, 4, 8, 16).

Dθ is based on the U-Net structure and is stimulated by ResNet [38]. The U-Net
network introduces residual blocks, which can eliminate the problem of experimental
degradation caused by deepening the network structure.

Each residual block of U-Net is represented by the Group Norm, Sigmoid, and Conv,
after performing N residual blocks on the feature map, downsampling is performed,
and so on.

For U-Net, although the feature maps were concatenated with the same dimensional
upsampling feature maps before downsampling, the problem of downsampling informa-
tion loss still exists. To address this issue, we introduced the Cross-Scale Reference Image
Attention Mechanism in the denoising network, which reduces the impact of downsam-
pling information loss and enhances the network’s ability to recover images. The denoising
network structure is shown in Figure 3 when the attention mechanism size is set to half the
target resolution.

The specific content of Cross-Scale Reference Image Attention Mechanism is discussed
in Section 2.2.4.

2.2.4. Cross-Scale Reference Image Attention Mechanism

The purpose of super-resolution reconstruction work is to increase the information
content of the image, and the U-Net network structure has a significant impact on the
super-resolution reconstruction work due to the significant information loss during down-
sampling. In response to the information loss caused by downsampling, we creatively
introduced a cross-scale reference image attention mechanism as shown in Figure 3: we
used the downsampling feature map in U-Net as the query of the attention mechanism



Remote Sens. 2024, 16, 1356 9 of 24

to query high-resolution reference images (feature maps), and used the reference image
feature map as the key and value of the attention mechanism.

The Cross-Scale Reference Image Attention Mechanism can fuse the feature map
information of high-resolution reference images into the corresponding dimension feature
map of U-Net, introduce reference information into the network, and enable the denoising
network Dθ to learn. The introduction of the attention mechanism of the cross-scale
reference image reduces the impact of information loss caused by the downsampling of
denoising network Dθ , and makes the super-resolution reconstruction of the diffusion
model work better.

As shown in Figure 4, Input_Features obtains a query matrix (as shown in Equation (12))
through the WQ network. The reference image is first dimensionally adjusted through
1 × 1 convolution, and then the key and value matrices are obtained through the WK,V

network (as shown in Equation (13)). Finally, the Q, K, and V matrices are used for attention
mechanism calculations to obtain corresponding values (as shown in Equation (14)), which
are then fed into the network.

Figure 4. The structure of the Cross-Scale Reference Image Attention Mechanism, where Input
Features is the feature maps obtained from U-Net downsampling, and IREF is the feature maps
obtained from the reference image through convolutional layers.

Q = ConvWQ(Input_Features), (12)

by transforming the input features into dimensions and using them as a query matrix,
preparations are made for the subsequent calculation of attention mechanisms:

K, V = ConvWK,V (Conv1×1(IRe f )), (13)

we extracted the key and value matrices of the reference image features to obtain high-
resolution reference image features and used them for attention value calculation with the
query matrix, thereby enabling the attention mechanism part of the network to learn the
ability to fuse high-resolution features:

Attention = So f tmax(
QKT

√
Num_Channels

)V, (14)
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where the final calculated attention value will be multiplied by the input features and
integrated into the output features. In this way, we can reduce the impact of information
loss caused by U-Net downsampling on super-resolution tasks.

Through experiments, it was found that after the introduction of the Cross-Scale
Reference Image Attention Mechanism, the overall image quality and indicators of the
reconstructed image were significantly improved.

3. Experimental Results And Discussions:
3.1. Dataset Preparation

The commonly used image super-resolution datasets currently include COCO [39],
CUFED5 [40], and ImageNet [41]. These datasets are composed of a large number of
high-resolution images, which can be a good source of data for super-resolution tasks.
However, for the super-resolution reconstruction task of LST images, the above datasets
cannot effectively represent the characteristics of such images. Therefore, we used satellite
remote sensing images to create SAT (Satellite And Temperature) datasets. In Figure 5, we
present some images from the SAT dataset:

Figure 5. Partial images in SAT dataset. This image shows the training set image, with a size of
96 × 96.

The data used in this article are all from the Landsat8 satellite. Its OLI land imager
consists of 9 bands with a spatial resolution of 30 m. The thermal infrared sensor TIRS
consists of two separate thermal infrared bands with a resolution of 100 m. The wave-
length ranges of the two thermal infrared bands are Band10 (10.60∼11.19 µm) and Band11
(11.50∼12.51 µm). The thermal infrared band can record the amount of thermal radiation
released from the ground and its diffusion range. Table 1 lists the specific information of
the remote sensing image data we used, including region names, Data IDs, center longitude
and latitude, and image capture times.

Table 1. Remote sensing image information.

Region Data ID Latitude/Longitude Time

Er Yuan LC81310422020336LGN00 25.9924N/100.3694E 1 December 2020
Mi Du LC81310432020352LGN00 24.5528N/100.0121E 17 December 2020

Lan Cang LC81310452020336LGN00 21.6176N/99.3279E 1 December 2020
Ning Er LC81300442019342LGN00 23.1067N/101.2267E 8 December 2019

We used ENVI 5.3 to perform temperature retrieval on the original remote sensing
images. Firstly, we used Landsat8 data for radiometric calibration. Then, we performed OLI
(Operational Land Imager) atmospheric correction to eliminate the influence of atmospheric
and lighting factors on ground reflection; NDVI (Normalized Difference Vegetation Index)
calculation to detect vegetation growth status, vegetation coverage, and eliminate some
radiation errors; and surface specific radiance calculation to obtain the temporal information
of land surface. Finally, we calculated the blackbody radiance to obtain the land surface
temperature image.

Our SAT dataset comes from four typical geothermal resource concentration areas
in Eryuan, Midu, Lancang, and Ning’er, Yunnan Province, China, with a total of four
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high-resolution remote sensing images. The download path for images is http://www.
gscloud.cn/. We selected satellite remote sensing images with cloud cover of less than
5% for temperature retrieval, which can minimize the impact of weather factors on the
experimental results. After retrieval of the land surface temperature using the ENVI
platform, they were cut into 96 × 96 patches, including 14,976 IHR and 14,976 IRe f . We
used 182 sheets 224 × 224 patches as our test set to conduct comparative experimental tests
on the performance of various models. Before sending the image into the network, we
normalized it to facilitate network processing.

3.2. Training Details and Parameters Setting

The hardware platform we used is Intel Core i9-13900K + NVIDIA GeForce RTX 4090.
The software platform is Python 3.10.11 + PyTorch 2.0.1 + CUDA 11.8 + CUDNN 8.2.1.
The test indices for the comparative experiment are Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM) [42], Learned Perceptual Image Patch Similarity (LPIPS) [43],
and Frechet Inception Distance score (FID) [44], and the vision effects were taken as the
reference indicator.

The formula for Peak Signal-to-Noise Ratio(PSNR) is as follows:

PSNR = 20 × log10(
MAXI√

MSE
), (15)

where MAXI is the maximum pixel value of the image, and MSE is defined as follows:

MSE =
1

H × W

W−1

∑
x=0

H−1

∑
y=0

[I(x, y)− T(x, y)]2, (16)

where H and W represent the height and width of the image, I(x, y) represents the pixel
value of the test image, and T(x, y) represents the pixel value of the target image.

Structural Similarity (SSIM) is an indicator that measures the similarity between two
images and satisfies SSIM ∈ [0, 1], which is defined as follows:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ, (17)

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c2
, (18)

c(x, y) =
2σxy + c2

σ2
x + σ2

y + c2
, (19)

s(x, y) =
σxy + c3

σxσy + c3
, (20)

where l(x, y) represents the comparison of image brightness, c(x, y) represents the com-
parison of the image contrast, s(x, y) represents the comparison of the image structure, µ
represents the mean, σ represents the standard deviation, σxy represents the covariance,
c1, c2, c3 are constants, preventing the denominator from being 0, and α, β, γ are usually
taken as 1.

The formula of Learned Perceptual Image Patch Similarity (LPIPS) is as follows:

LPIPS(x, y) = ∑
l

1
HlWl

∑
h,w

||ωl ⊙ (x̂l
hw − ŷl

0hw)||2, (21)

where l means the layer of the feature map, ωl means the neural network used to calculate
the indicator, x̂l

hw means the pixels of SR, and ŷl
0hw means the pixels of HR.

The formula of the Frechet Inception Distance score (FID) is as follows:

FID(x, y) = ||µx − µy||2 + Tr(σx + σy −
√

σxσy), (22)

http://www.gscloud.cn/
http://www.gscloud.cn/
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where Tr means the trace of the matrix.
We used 182 images for super-resolution testing on each model, with each image size

of 224 × 224. The corresponding low-resolution images were downsampled to different
resolutions—8×: (28 × 28), 4×: (56 × 56)—and the average PSNR, SSIM, LPIPS, and FID
were taken as the final indices for each model.

We selected the parameters according to the common diffusion model training details.
In order to converge to the optimal network parameters, we set a lower learning rate and a
higher training epochs, and the details of the experimental parameters are as follows.

The number of iterations of the diffusion model was set to T = 2000, and the size of
the Cross-Scale Reference Image Attention Mechanism was set to 48 (training) and 112
(testing).

The number of residual blocks N corresponding to each feature of U-Net was set to 3,
and the number of channels in U-Net was set to [64, 128, 256, 512, 1024]. The Batchsize was
set to 16, we used the Adam optimizer, and the initial learning rate was 0.0001. The model
converged after 600,000 iterations (300 epochs) of training on our dataset.

In addition, we also trained 300 epochs when training other models, and used the
same dataset for training and testing. We selected Bicubic, SRCNN [18], SRGAN [19],
ESRGAN [21], RCAN [45], HAT [46], and BebyGAN [47] as the comparative experimental
models for SISR; TTSR [27] as the comparative experimental model based on reference
image IRe f ; and SR3 [22], IDM [48], and SRDiff [49] as the diffusion-based comparative
experimental models.

3.3. Benchmark Comparison and Ablation

We trained each model using the SAT dataset, performed 4× and 8× super-resolution,
and tested the super-resolution visual effect of the model. The indices results of the
comparative experiment are shown in Table 2, and the comparison of the experimental
effects is shown in Figure 6. We found that although the model based on CNN can achieve
higher PSNR and SSIM [42], and the model based on GAN [20] and Diffusion [35] can
achieve higher LPIPS [43] and FID [44], it can be found from the experimental results in
Figure 6 that high indices are not equivalent to excellent super-resolution visual effects,
and the overall appearance of the image is also an important indicator. It can be observed
that methods based on MSE optimization often lack high-frequency details of images, while
methods based on generative adversarial networks are limited by interpolation methods,
leading to block phenomena in images.

In the ablation experiment, we selected the SR3 [22] method as the baseline. According
to the experimental comparison results, we demonstrated that introducing PreNet during
testing can improve indices and visual effects compared to the SR3 method, which means
our CS-Diffusion method (SR3 + PreNet) can greatly improve the super-resolution per-
formance. The introduction of CSRIAM further improves the indices and eliminates the
problem of white noise in the image. The specific visual effect can be seen in Figure 7.

In Table 3 and Figure 7, we demonstrate the progress of our CS-Diffusion method
based on the SR3 method. We found that the SR3 method will leave a portion of white
noise on the reconstructed image, which is reflected in the form of white noise on the image.
Although the addition of PreNet’s CS-Diffusion will, to some extent, solve this problem,
there will still be some white noise present. After adding the Cross-Scale Reference Image
Attention Mechanism, we effectively solved the problem of white noise on the image,
resulting in an overall improvement in the quality of the reconstructed image and a more
complete recovery of some geothermal anomalous areas.

According to the comparative test results, we found that our method can achieve
the optimal effect in all comparison models on PSNR, SSIM and LPIPS, and can also be
very close to the optimal performance on FID. Our method combines the advantages of
reference-based super-resolution and diffusion models: excellent restoration of image
quality, while reducing the excessive smoothing and over-sharpening of images. On this
basis, noise removal in visual effects can be achieved (as shown in Figure 6).
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Ground TruthSRCNN SRGAN ESRGAN TTSR

SR3 CS-Diffusion
CS-Diffusion 

with Attention

HAT BebyGAN

RCAN SRDiff IDM Ground Truth

Figure 6. Comparison of experimental effects: 4× super-resolution. The selection of the red box on
different images is the same, and we enlarged it to compare the visual details of the image.

Ground TruthSR3 CS-Diffusion
CS-Diffusion

(with attention)

Figure 7. Comparison of model based on diffusion: 4× super-resolution. The selection of the red box
on different images is the same, and we enlarged it to compare the visual details of the image.
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Table 2. Comparison of experimental indices: 4× and 8× super-resolution, where the best perfor-
mance results are highlighted in bold font.

Scale 4× 8×
Method PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
Bicubic 30.45 0.8367 0.3104 122.56 27.29 0.6928 0.5091 159.83
SRCNN 32.02 0.8656 0.2865 87.35 27.68 0.7163 0.4723 132.34
SRGAN 30.07 0.8741 0.2168 47.71 26.55 0.7221 0.3027 50.88

ESRGAN 28.99 0.8138 0.3576 191.44 23.98 0.6862 0.5233 200.91
RCAN 32.60 0.8741 0.2575 79.51 26.89 0.7224 0.4587 121.91
HAT 29.04 0.8551 0.3271 103.97 25.04 0.8014 0.3637 178.57

BebyGAN 27.66 0.8411 0.2639 98.03 27.42 0.7353 0.3456 55.99
TTSR 29.08 0.8133 0.3009 103.79 × × × ×
SR3 30.34 0.8409 0.2385 39.87 27.15 0.6982 0.3019 53.26
IDM 30.93 0.8478 0.2196 44.32 27.28 0.6921 0.3327 51.29

SRDiff 30.59 0.8411 0.2055 45.98 26.11 0.7122 0.3429 67.32
CS-Diffusion 31.78 0.8707 0.2326 62.71 28.07 0.7371 0.2927 64.29

CS-Diffusion with Attention 33.02 0.8890 0.1696 44.86 28.33 0.7483 0.2731 52.28

Table 3. The ablation indices comparison: 4× super-resolution, where the best performance results
are highlighted in bold font.

Indices
Method

SR3 CS-Diffusion CS-Diffusion (Attn)

PSNR↑ 30.15 32.01 32.93
SSIM↑ 0.8379 0.8716 0.8798
LPIPS↓ 0.2412 0.2197 0.1685

FID↓ 40.29 63.34 45.03

3.4. Parameter Comparison Experiment

To explore the effects of network depth, number of iterations, and noise schedule on ex-
perimental results, we conducted multiple comparative experiments using the CS-Diffusion
method. We found that the PSNR and SSIM can reflect whether the model converges. So
we chose these two indices as the symbol of the rate of convergence. When conducting
comparative experimental tests, our PSNR and SSIM were obtained by calculating the
mean of the indices from the first three 224 × 224 images in the test set.

In the comparative experiment of network depth, we adopted three U-Net network
depths: [1, 2, 4], [1, 2, 4, 8], [1, 2, 4, 8, 16]. The comparative experimental indices are shown in
Table 4.

Table 4. Indices comparison of the depth of networks: 4× super-resolution, where the best perfor-
mance results are highlighted in bold font.

Indices
Depth

[1, 2, 4] [1, 2, 4, 8] [1, 2, 4, 8, 16]

PSNR↑ 32.65 32.71 32.89
SSIM↑ 0.8839 0.8850 0.8867
LPIPS↓ 0.1889 0.1893 0.1732

FID↓ 44.21 43.29 42.33

We found that with the increase in network depth, i.e., network parameters, there was
a certain improvement in experimental indices. The network converges fastest at the depth
of 512, but the optimal indices in the experiment are best at the depth of 1024. The rate of
convergence of PSNR and SSIM is shown in Figures 8 and 9. The comparison of visual
effects is shown in Figure 10.
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Figure 8. Rate of convergence of PSNR under different network depths.

Figure 9. Rate of convergence of SSIM under different network depth.

We found that when the network depth was [1, 2, 4, 8], the rate of convergence of the
PSNR index was the fastest, and it could finally converge to an effect similar to the network
depth [1, 2, 4, 8, 16]. It is difficult for the human eye to see the difference in the visual
effect comparison. Therefore, when applying the CS-Diffusion model, we can sacrifice the
metrics appropriately in exchange for training a model that is easier to converge and has
smaller network parameters.

The rate of convergence of the SSIM index is similar to that of the PSNR index.
Although we can improve the SSIM index with the increase in the network depth, there
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will not be much change in the visual effect. Therefore, we believe that the network depth
of the CS-Diffusion model is the most cost-effective choice [1, 2, 4, 8].

[1, 2, 4] [1, 2, 4, 8] [1, 2, 4, 8, 16] Ground Truth

Figure 10. Comparison of visual effects of different network depths: 4× super-resolution. The selec-
tion of the red box on different images is the same, and we enlarged it to compare the visual details
of the image.

For the comparative experiment of iteration times, we adopted T = 500, 1000, 1500,
and 2000 iteration times to compare the experimental indices and visual effects. The com-
parative experimental indices are shown in Table 5.

Table 5. Indices comparison of iteration times: 4× super-resolution, where the best performance
results are highlighted in bold font.

Indices
Iteration

500 1000 1500 2000

PSNR↑ 32.10 32.57 32.38 32.92
SSIM↑ 0.8750 0.8824 0.8854 0.8878
LPIPS↓ 0.2011 0.1929 0.1733 0.1678

FID↓ 49.98 52.22 47.94 43.53

According to the experimental comparison, it can be seen that as the number of
iterations increases, the experimental indices show a certain improvement. The rate of
convergence of PSNR and SSIM is shown in Figures 11 and 12. The comparison of the
visual effects is shown in Figure 13. But as T grows, the time consumed by the testing
process will increase significantly.

We found that when the number of iterations T is too small (i.e., T = 500), the PSNR
and SSIM metrics cannot converge to good results. We believe that this is due to the small
number of iterations, which leads to the inability to completely remove noise from the
image. When the number of iterations is 1000, the rate of convergence and final convergence
effect of both PSNR and SSIM indexes are better than those of other iterations. Therefore, we
believe that T = 1000 is a good choice for the iteration number T of the CS-Diffusion method.
As T increases as shown in Figure 13, the visual effect of the comparative experiment also
improves, and the noise in the reconstructed image is reduced accordingly.
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Figure 11. Rate of convergence of PSNR under different iterations.

Figure 12. Rate of convergence of SSIM under different iterations.

We selected three different noise schedules for comparative experiments. The relation-
ship between linear variance σt and iteration rounds t is as follows:

σt = [
Linear_end − Linear_start

T
× t]Tt=1, (23)

where T is the number of iterations; Linear_start and Linear_end refer to the lower and
upper bounds of σt; Linear_Start > 0; and Linear_end < 1.
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Ground TruthT=2000T=1500T=1000T=500

Figure 13. Comparison of visual effects of different iterations. 4× super-resolution. The selection
of the red box on different images is the same, and we enlarged it to compare the visual details of
the image.

The relationship between constant variance σt and iteration round t is as follows:

σt = C, (24)

where C is a constant, and C ∈ [0, 1].
The relationship between cosine variance σt and iteration number t is as follows:

σt = [cos(
T − t
T + c

× π

2
)]Tt=1, (25)

where c is a constant and its function is to prevent the denominator from being 0, which
can lead to calculation errors.

The comparative experimental indices are shown in Table 6.

Table 6. Indices comparison of noise types: 4× super-resolution, where the best performance results
are highlighted in bold font.

Indices
Noise

Constant Cosine Linear

PSNR↑ 32.67 32.57 32.38
SSIM↑ 0.8838 0.8824 0.8854
LPIPS↓ 0.1910 0.1713 0.1782

FID↓ 47.01 55.79 44.28

We found that in the comparative experiment, the three types of noise showed little
difference in experimental indices. Although both experimental indices were not optimal
under cosine noise, there was no significant difference in the visual effect compared to
the other two types of noise. The rate of convergence of PSNR and SSIM are shown in
Figures 14 and 15. The comparison of visual effects is shown in Figure 16.

We found that in terms of the comparison of the rate of convergence of the experimental
indices when using constant noise, the rate of convergence of the PSNR and SSIM indices
is the fastest and can achieve a good final convergence effect. Therefore, we believe that the
optimal noise selection for the CS-Diffusion method is constant noise.

Through comparative experiments on visual effects, we found that selecting the type
of noise has little impact on the visual effects. Therefore, when training the CS-Diffusion
model, we can give priority to the constant noise with a faster rate of convergence.
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Figure 14. Rate of convergence of PSNR under different types of noise.

Figure 15. Rate of convergence of SSIM under different types of noise.

Through the above experiments, it can be found that we can adjust the experimental
results by selecting different network parameters and the type of noise used during training.
Different network parameters also have a significant impact on the super-resolution time.
We also found that as the number of iterations T increases, the super-resolution effect
improves. However, when T increases to a certain extent, the effect no longer shows a
significant improvement but instead increases the time cost of super-resolution. At the
same time, we found that as the depth of the network increases, the experimental effect
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will also improve but only within a certain range. Beyond this range, it will cause a sharp
increase in the time cost of training and testing. In Section 3.5, a comparative experiment
is conducted on the super-resolution time consumption between our model and other
existing models.

Linear Constant Cosine Ground Truth

Figure 16. Comparison of visual effects of different noise: 4× Super-Resolution. The selection of the
red box on different images is the same, and we enlarged it to compare the visual details of the image.

3.5. Algorithm Time Consumption

Algorithms based on diffusion models are often time-consuming; this is due to the
limitations of the diffusion model itself. In super-resolution tasks, the diffusion model needs
to undergo T iterations to obtain SR images. Therefore, compared to the number of network
parameters, the size of T is a direct factor affecting the algorithm’s time consumption. Our
CS-Diffusion method can ensure the super-resolution effect while reducing T. Compared
to SR3, we are able to reduce T to 300 without affecting the quality of SR images, greatly
reducing the algorithm time consumption. We tested the time (in minutes) required for each
model to perform 4× and 8× super-resolution on 182 images of size 224 × 224 in our test set.
In Table 7, we show the time consumption of different models. We found that the models
based on diffusion cost more time than the models based on CNN, but they can achieve
better visual and indicator effects when dealing with time-insensitive super-resolution
tasks, while methods based on diffusion models can achieve better results.

Table 7. Time consumption comparison of different models.

Scale

Time (min)↓ Method
SRCNN SRGAN RCAN HAT TTSR SR3 IDM SRDiff CS-Diffusion (Attn)

4× 0.9 1.4 1.1 0.8 9.3 145.7 127.9 57.3 100.5
8× 0.9 1.9 1.3 0.9 × 135.4 121.9 69.1 100.9

4. Conclusions

We proposed a CS-Diffusion model for the super-resolution of LST retrieval images.
Different from single image super-resolution (SISR), this model can fuse the high-resolution
features of the reference image, and use this part of the features for the super-resolution
of low-resolution images. Among them, the Pre-Super-Resolution Network (PreNet) can
improve the quality of Bicubic interpolation images. Through the optimization PreNet, we
can obtain high-quality low-resolution images. This process improves the image quality
of conditional input images of the diffusion model, thus improving the image quality of
the final super-resolution images. The Cross-Scale Reference Image Attention Mechanism
was proposed to address the issues of noise and geothermal anomaly recovery in super-
resolution images. After introducing this mechanism, we successfully applied the texture
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features of high-resolution reference images to super-resolution tasks, and the indices and
image quality of the super-resolution test were greatly improved. In Figure 17 we show
more visual effects of the comparison experiment.

Ground TruthSRCNN SRGAN ESRGAN TTSR

SR3 CS-Diffusion
CS-Diffusion 

with Attention

HAT BebyGAN

RCAN SRDiff IDM Ground Truth

Ground TruthSRCNN SRGAN ESRGAN TTSR

SR3 CS-Diffusion
CS-Diffusion 

with Attention

HAT BebyGAN

RCAN SRDiff IDM Ground Truth

Figure 17. Comparison of experimental effects: 4× super-resolution. The selection of the red box on
different images is the same, and we enlarged it to compare the visual details of the image.
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The model proposed in this article still has certain limitations, such as the slow speed
of the image super-resolution reconstruction. This is because the denoising network we
used uses a larger network width and has a higher dimension of feature space, which
has significant limitations when dealing with time-sensitive super-resolution work. Mean-
while, the large number of parameters of the model is also a problem, as they require
more computing power and occupy more resources during model training. And for the
super-resolution of the large image, its occupied memory will increase exponentially. In sub-
sequent work, the effect of super-resolution can be maintained while reducing the number
of network parameters. Moreover, compared to deep learning-based methods, the con-
venience of traditional methods (such as no need for training, short time consumption,
and low computational power requirements) is still irreplaceable.

In addition, further research can be conducted on the reconstruction of missing infor-
mation in the image, optimizing the recovery of geothermal anomaly areas, and enhancing
the generalization of the network structure.
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