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Abstract: This article offers a comprehensive AI-centric review of deep learning in exploring land-
slides with remote-sensing techniques, breaking new ground beyond traditional methodologies. We
categorize deep learning tasks into five key frameworks—classification, detection, segmentation,
sequence, and the hybrid framework—and analyze their specific applications in landslide-related
tasks. Following the presented frameworks, we review state-or-art studies and provide clear insights
into the powerful capability of deep learning models for landslide detection, mapping, susceptibility
mapping, and displacement prediction. We then discuss current challenges and future research direc-
tions, emphasizing areas like model generalizability and advanced network architectures. Aimed
at serving both newcomers and experts on remote sensing and engineering geology, this review
highlights the potential of deep learning in advancing landslide risk management and preservation.

Keywords: deep learning; remote sensing; landslide detection; landslide mapping; landslide susceptibility
mapping; landslide displacement prediction

1. Introduction

Landslides, a critical global geohazard, present substantial risks to both local commu-
nities and natural environments [1]. Triggered by a combination of natural phenomena
like heavy rainfall, seismic activities, and human-induced factors such as deforestation
and construction, they lead to significant soil and rock displacement [2]. Their unpre-
dictable and widespread nature makes landslides a concern worldwide, with severe conse-
quences including loss of life, infrastructural damage, and lasting environmental harm [3].
This situation underscores the urgent need for advanced detecting, monitoring, predic-
tion and management methods to effectively tackle the complex challenges associated
with landslides.

Traditional methods in landslide analysis, including empirical, statistical, and physi-
cal modeling, have provided foundational insights [4]. However, these approaches have
notable limitations. Empirical methods, dependent on historical data, often fall short in pre-
dicting unexpected landslide events, particularly under changing climatic conditions [5,6].
Statistical models are useful for general trend analysis but face challenges in addressing
the nonlinear aspects of landslide triggers [7,8]. Physical models, while informative, tend
to oversimplify the complex real-world scenarios, which can hinder the accuracy of pre-
diction [9,10]. Moreover, these traditional methods are limited in their capacity to process
extensive datasets and adapt to the dynamic, changing nature of environmental condi-
tions [11]. With the increasing frequency and severity of landslides, exacerbated by climate
change and human activities, there is a growing necessity for more sophisticated, adapted,
and precise predictive tools.

The recent advancements in remote sensing technologies have significantly impacted
landslide analysis [12,13]. The availability of high-resolution satellite imagery allows for
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the detailed observation of Earth’s surface changes over time, which is crucial in detect-
ing early signs of landslides. Synthetic Aperture Radar (SAR) data facilitate this process
with their ability to assess surface textures and changes, regardless of weather conditions,
providing crucial information about slope stability and erosion [14]. Synthetic Aperture
Radar Interferometry (InSAR), with its ability to measure millimeter-level surface move-
ments, significantly contributes to landslide analysis by providing precise measurements
of ground deformation and early detection of potential landslide areas [15]. Additionally,
multispectral imagery, which collects data across various wavelengths, is useful for analyz-
ing soil composition and moisture content, both critical factors in determining landslide
susceptibility [16]. However, traditional methods have inherent drawbacks in harnessing
the full potential of these data sources. Their limited ability to process and interpret the
vast and complex datasets generated by modern remote sensing technologies highlights
the need for more sophisticated analytical tools [17].

Since 2010s, deep learning, a subset of artificial intelligence, is revolutionizing the
landslide analysis [18]. Its ability to process and analyze vast amounts of complex, multi-
dimensional data sets it apart from traditional methods. Deep learning algorithms can
identify intricate patterns in data that are often imperceptible to human analysts or con-
ventional analytical techniques [19]. This capability extends to various types of landslides,
such as rockfalls, debris slides, or complex movements, as long as these activities are
adequately represented in the observation data, which includes analyzing satellite im-
agery [20,21], weather patterns [22,23], and geological data to predict potential landslide oc-
currences [24,25]. Unlike traditional models, deep learning systems can continuously learn
and improve their predictive capabilities, adapting to new data and changing environmen-
tal conditions. This ability is pivotal for applications such as landslide detection, mapping,
susceptibility analysis, and displacement prediction. Comparative studies have consistently
demonstrated the superiority of deep learning over traditional models, making it an indis-
pensable tool in modern landslide risk assessment and mitigation strategies [26–28]. In this
article, we explore the main frameworks of deep learning applied in landslide studies with
remote sensing data, specifically in the tasks of landslide detection, mapping, susceptibility
analysis, and displacement prediction. Through these case studies, we aim to highlight the
potential of deep learning in landslide risk management, and indicate both challenges and
opportunities for future research.

The key contributions of this review include the following:

(1) We provide a detailed overview of deep learning, tracing its development from early
concepts to the latest advancements. This detailed overview establishes a robust
foundation in deep learning principles, crucial for understanding its applications in
landslide studies with remote sensing.

(2) We categorize deep learning tasks into five frameworks—classification, detection,
segmentation, sequence, and hybrid. This structure not only provides a clear under-
standing of the application of these methods in earth and environment studies but
also offers a novel perspective for readers, especially beneficial for remote-sensing
experts who are, however, new to AI.

(3) Our review stands out by the AI-centric approach in examining deep learning ap-
plications to landslides. Instead of a general task-based analysis, we scrutinize how
specific deep learning frameworks are adeptly applied to various landslide-related
tasks. This focused perspective provides insights into which frameworks are more
suitable for overcoming particular challenges in studying landslides.

(4) We discuss current challenges and highlight potential future research directions,
contributing to the ongoing evolution of applying deep learning to landslides.

This review is organized as follows: Section 2 provides an in-depth overview of deep
learning methodologies. Section 3 summarizes five prevalent deep learning frameworks
used in various fields. Section 4 reviews the latest studies on deep learning approaches for
studying landslides with remote sensing, illustrated corresponding to these frameworks.
Section 5 discusses the challenges and potential future directions in the field, exploring
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both the limitations and opportunities of current methods. Finally, Section 6 concludes the
paper, summarizing the main findings and insights.

2. Deep Learning: Methods, Models, Loss, Evaluation Metrics, Architectural Modules,
and Implementing Strategies
2.1. Methods
2.1.1. Framework of AI, ML, DL, and Learning Paradigms

In the evolution of artificial intelligence (AI), understanding the relationship between
its key components—machine learning (ML), deep learning (DL), and fundamental learning
paradigms—is crucial. AI, the overarching concept, encompasses the development of
intelligent systems that mimic tasks typically requiring human intelligence. Within AI lies
ML, which focuses on algorithms that learn from data to make predictions or decisions.
Deep learning, a specialized branch of ML, employs deep neural networks for analyzing
and learning from vast volumes of unstructured data, representing a more advanced stage
of machine learning [19].

Crucially, both ML and DL encompass three key learning paradigms: supervised,
unsupervised, and reinforcement learning, as shown in Figure 1. Each paradigm offers a
distinct approach for training algorithms to analyze and learn from data. Therefore, while
ML and DL primarily concentrate on the evolution of algorithms and data processing
techniques, these learning paradigms provide the specific frameworks within which these
technologies function and develop.
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2.1.2. Supervised Learning

Supervised learning, the most prevalent paradigm in ML, focuses on learning a latent
function based on labeled input–output pairs. It infers a function from labeled training
data, aiming to predict outcomes for unforeseen data. The typical supervised learning
algorithm is represented as

y = f(x; θ) (1)

where y and x represent the output and input, θ denotes the parameters of the model,
and f is the learned function. This paradigm is instrumental in fields like image and speech
recognition, where the desired output is known, and the model is trained to emulate this
mapping. In ML and DL, techniques such as linear regression, support vector machines
(SVM), and convolutional neural networks (CNN) are classic examples. The strength of
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supervised learning is its effectiveness for specific, well-defined problems, but its reliance
on extensive labeled datasets is a considerable limitation.

2.1.3. Unsupervised Learning

Different from supervised learning, unsupervised learning aims to identify patterns
in data without pre-assigned labels. Its primary goal is to model the underlying structure
or distribution of the data to gain deeper insights. Techniques in unsupervised learning
vary widely. For example, clustering and dimensionality reduction methods like K-means
and principal component analysis (PCA) are commonly used in ML for exploratory data
analysis. In DL, approaches such as autoencoders are employed for more complex tasks
like feature learning. Unsupervised learning is invaluable for discovering latent patterns in
datasets but also faces challenges due to the subjective nature of its results and the difficulty
in validating models without definitive labels.

2.1.4. Reinforcement Learning

Reinforcement learning is devised for training models to make decisions through
trial-and-error interactions with an environment. This paradigm involves an agent learning
to achieve a goal in a complex, uncertain environment by performing actions and observing
the actions to verify their effectiveness. The learning process is guided by rewards and
punishments, akin to how humans learn from real-world interactions [19]. Reinforcement
learning is particularly effective in complex decision-making environments, such as game-
play, autonomous vehicles, and resource management, but it has limitations in balancing
the trade-off between exploring new possibilities and exploiting known strategies, espe-
cially in scenarios with sparse or delayed rewards. The comparison of three learning
paradigms is shown in Table 1.

Table 1. Learning paradigm summarization.

Model Key Characteristic Advantages Limitations Application

Supervised
Learning

Requires labeled
datasets and direct
feedback on model

predictions

Effective in specific and
well-defined tasks

Depend on labeled data,
may not generalize well

beyond training data

Image Classification,
regression, detection,

segmentation

Unsupervised
Learning

No need for labeled
data, focuses on
data exploration

Discovering unknown
patterns in data, works
with unlabeled datasets

Less accurate outcomes,
hard to evaluate

Clustering,
dimensionality reduction,

anomaly detection

Reinforcement
Learning

Trial-and-error search,
delayed reward,
interaction with
environments

Effective in complex
and dynamic
environments

Requires a lot of data and
computational

resources, sensitive to
reward structure

Game playing,
autonomous vehicles,

robotics

2.2. Models
2.2.1. Introduction to Neural Network

A neural network [29], pivotal in machine learning, draws inspiration from the com-
plex biological neural networks in animal brains. At its most basic, a neural network, or
Artificial Neural Network (ANN), consists of interconnected nodes or units that mirror
the neurons in the brain. These are the simplest form of neural networks and are adapted
for processing and analyzing complex data structures, as shown in Figure 2a. The core
operation of an ANN is captured in the formula

y = f

(
n

∑
i=1

wixi + b

)
(2)
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where y represents the output, xi signifies the input features, wi refers to the weights
assigned to these features, b is a bias term, and f is the activation function. This formula is
akin to how neurons in the brain process inputs to produce an output.
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ANNs typically consist of a single layer that directly connects the input to the output,
which can limit their ability to handle highly complex tasks. To address this limitation,
the field of neural network research has evolved to develop more complex structures such
as the Multilayer Perceptron (MLP). An MLP expands upon the basic ANN structure by
introducing one or more hidden layers between the input and output layers, allowing the
network to learn more complex representations. Each layer in an MLP consists of nodes
that function similarly to the basic ANN, but with the added capability to perform more
sophisticated computations due to the deeper architecture, as illustrated in Figure 2b. Its
architecture can be expressed as

y = f(L)
(

. . . f(2)
(

f(1)
(

x(1)W(1) + b(1)
)

W(2) + b(2)
)

. . . W(L) + b(L)
)

(3)

where L denotes the number of layers, x(1) is the input, W(1) and b(L) represent the weights
and biases at layer L, and f(L) is the activation function for that layer. MLPs demonstrate the
capability to capture and represent complex, non-linear data patterns, marking a significant
advancement in neural network development.

This formula is akin to how neurons in the brain process inputs to produce an output.
Backpropagation, a key step in training neural networks, involves iteratively adjusting the
weights of neural networks based on the computed gradients of the loss function. This
process allows the network to learn and improve its performance with training. However,
during the backpropagation process, the gradients of the networks may become extremely
small, hindering the weight updates—particularly problematic in deeper networks, namely
the “vanishing gradient problem”.

Activation functions are essential in neural networks, which introduces non-linearity
and enables the network to represent complex data patterns beyond simple linear relation-
ships. Widely used activation functions include the following.

Sigmoid: σ(x) = 1
1+e−x . It is suitable for binary classification, yet susceptible to the

vanishing gradient problem, especially in deeper networks.
ReLU (Rectified Linear Unit): ReLU(x) = max(0, x). It is known for accelerating

convergence in deep networks and mitigating the vanishing gradient problem to some
extent. However, it introduces the “dying ReLU problem”, where neurons can become
inactive during training, leading to a complete loss of learning capability for those neurons.

Hyperbolic Tangent (tanh): tanh(x) = ex−e−x

ex+e−x . It projects outputs between −1 and 1,
but is still subject to vanishing gradients.
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2.2.2. Vision Models for Spatial Learning

Spatial learning is focused on understanding the layout, context, and interrelationships
within visual data, crucial for tasks like image recognition, object detection, and scene
comprehension. CNNs have revolutionized spatial learning, significantly altering the way
we interpret and analyze spatial patterns in images [30]. Their architecture consists of
convolutional layers, followed by pooling and fully connected layers, enabling the efficient
processing of grid-like data and extraction of vital features for various visual tasks, as
shown in Figure 3. The convolution operation is defined as

(S ∗ K)(i, j) = ∑
m

∑
n

S(m, n)K(i − m, j − n) (4)

where S represents the input image, K denotes the filters, and i, j are the coordinates in the
output feature map. This process involves sliding the filter kernel K over the input signal S,
multiplying corresponding elements, and summing these products to generate new values
in the output feature map.
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In the spatial feature learning, three tasks are predominant: image classification, object
detection, and image segmentation. The evolution of these tasks reflects a parallel and
interconnected development, influencing and progressing the others. Image classification,
an early focus in computer vision, has been fundamental in neural networks’ advancement
for image analysis. Initial models like LeNet [31] propelled the field, setting a benchmark
for neural networks in image classification. This task established the basis for pattern
recognition and feature extraction, influencing subsequent complex tasks. ResNet [32], a
groundbreaking work, proposed skip connection and residual block, which enables the
possibility of building deeper and more powerful networks. Advancements in image
classification have also benefited other spatial learning tasks, contributing to the overall
growth of the field.

Concurrently, object detection began to emerge as another significant area of focus.
Although it built on the principles established in image classification, such as recognizing
patterns and features, object detection introduced an additional challenge, i.e., locating and
identifying multiple objects within a single image. This task necessitates a deeper under-
standing of spatial relationships, leading to innovative networks like the R-CNN [33–35]
and the Yolo series [36–38]. Image segmentation, though seemingly more advanced, also
developed alongside classification and detection. This task involves dividing an image
into pixel-level segments, requiring detailed analysis and dense prediction. Representative
networks like Fully Convolutional Networks (FCNs) [39] and U-Net [40], which introduced
an encoder–decoder framework, paving a solid foundation in this field. The development
of these segmentation networks was influenced by the ongoing progress in both image
classification and object detection, showcasing the interdependency and parallel growth
among these vision tasks.

Vision models are instrumental in automating the analysis of remote sensing imagery
to detect, locate and map the key features of potential landslides. For instance, image
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classification models, proficient in identifying distinctive patterns associated with unstable
terrain, play an important role in comprehensive landslide feature analysis. Object detection
models, with their capability to swiftly pinpoint potential landslide features within large-
scale satellite images, offer invaluable advantages in enhancing the efficiency of locating
potential landslides. This rapid detection not only streamlines the mapping process but also
ensures a focused assessment of the spatial distribution to potential landslides. Moreover,
image segmentation models provide a detailed approach by accurately delineating the
boundaries of landslide-affected areas. By outlining distinct regions within the imagery,
these models enable quantitative measurements and change detection analysis, benefiting
a nuanced understanding of the landslide characteristics.

2.2.3. Sequence Models for Temporal Learning

Sequence data analysis has long been a crucial aspect of machine learning, with ap-
plications ranging from natural language processing and financial forecasting to speech
recognition. Over time, the field of sequence modeling has witnessed significant advance-
ments in unraveling the complexities of temporal data.

The initial breakthrough was the introduction of the Recurrent Neural Network
(RNN) [41]. RNNs brought in the concept of self-loops, enabling the retention and pro-
cessing of information over time steps, as shown in Figure 4a. They are expressed by
the formula

ht = σ(Whhht−1 + Wxhxt + bh) (5)

where ht is the hidden state at time t, xt is the input at time t, Whh and Wxh are weight
matrices, bh is the bias, and σ is the activation function. While RNNs are effective at
capturing short-term dependencies, they struggle with long-term sequences due to the
similar vanishing gradient problem as in the spatial learning, making it hard to retain
information over long periods.
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To overcome the RNN limitations, Long Short-Term Memory (LSTM) [42] networks
were introduced. LSTMs featured a more intricate architecture, incorporating memory cells
for selective information retention and forgetting, as shown in Figure 4b. LSTMs mitigated
the vanishing gradient issue and significantly enhanced long-term dependency handling
in sequence models. Another notable development is the Gated Recurrent Unit (GRU) [43],
designed to simplify the LSTM structure while preserving its advantages. GRUs combine
the forget and input gates into a single “update gate”, and merge the cell state and hidden
state, shown in Figure 4c. GRUs present a more streamlined and less complex alternative
to LSTMs.

Notably, the most significant paradigm shifts in sequence modeling emerged with
the introduction of the transformer model, as shown in Figure 4d. Represented in the
important paper “Attention Is All You Need” [44], transformers diverged from the tradi-
tional recurrence-based approaches entirely. Instead of relying on sequence recurrence,
a transformer model applies the self-attention mechanisms to process sequences. This
approach assigns varying degrees of significance to different parts of the input data, en-
abling the model to focus on relevant portions of the sequence for prediction. Transformers
demonstrate exceptional performance in various tasks, particularly excelling in handling
long sequences and parallelizing computations. However, they require substantial compu-
tational resources and large datasets.

In the context of landslide studies, sequence models are mainly used for the temporal
data analysis. In applications such as landslide susceptibility mapping, these models
leverage multi-source data, treating it as a sequential input that encompasses satellite
imagery, geological data, and other relevant information. Assimilating data from diverse
sources, they can capture intricate dependencies and patterns associated with landslides.
For instance, the satellite imagery allows for mapping specific topographical changes that
indicate potential landslide-prone areas. Geological data aid in discerning the ground
composition, enhancing the models’ ability to predict susceptibility. For the landslide
displacement prediction, sequence models excel their capabilities by training on historical
displacement series. By scrutinizing past displacement patterns, these models could
understand temporal evolutions of ground conditions. This learning process contributes to
the accuracy and reliability of predictions related to potential displacements.

2.2.4. Generative Models

The evolution of generative models in machine learning exemplifies the pursuit to
replicate and understand complex patterns in real-world data. This section introduces three
seminal generative models: Generative Adversarial Networks (GANs) [45], Variational
Autoencoders (VAEs) [46], and Diffusion Models [47], each representing a significant
advancement in AI and addressing unique data generation challenges.

Introduced by Ian Goodfellow et al. in 2014, GANs emerged as a response to the need
for sophisticated, high-quality data generation, particularly in image synthesis. They consist
of two neural networks: the generator, which aims to produce data indistinguishable from
real data, and the discriminator, tasked with differentiating between real and generated
data, as shown in Figure 5a. GANs have revolutionized realistic image generation but
face challenges like training instability and mode collapse, where the variety of outputs
generated is limited.

Variational Autoencoders (VAEs), proposed by Kingma and Welling in 2013, address
the challenge of understanding and encoding data distributions. Unlike GANs’ direct data
generation approach, VAEs learn the data distribution and sample from it. They consist of
an encoder, mapping input data to a latent space, and a decoder, reconstructing data from
this latent representation, as shown in Figure 5b. VAEs are especially useful in applications
that demand an understanding of latent data structures, such as semi-supervised learning,
although they tend to produce slightly blurred outputs.

Diffusion Models, the latest innovation in generative modeling, focus on creating
high-fidelity images through a unique, gradual process that transforms noise into a repre-
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sentation of the target data distribution. This process includes a forward phase of adding
noise and a reverse phase of removing noise to regenerate the data, as shown in Figure 5c.
While Diffusion Models excel in generating detailed and diverse outputs, their high com-
putational demands and extended training and generation times pose limitations to their
scalability and practical applications in some scenarios. A comparative analysis of three
types of learning models is shown in Table 2.
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Table 2. Comparative analysis of spatial, sequence, and generative models in deep learning.

Model Classic Networks Advantages Limitations Application

Vision Models
CNN architectures

(LeNet, VGG,
ResNet, GoogleNet)

Effective in handling
spatial hierarchies,

robust feature extraction

High computational
resources, overfitting in

deep networks

Image recognition,
object detection, image

segmentation

Sequence
Models

RNN, LSTM, GRU,
Transformer

Handles time-series data,
captures long-term

dependencies

Vanishing gradients in RNNs,
computational intensity in

LSTMs/GRUs, transformers
need large datasets

Natural Language
Processing, time series

data analysis

Generative
Models

GAN, VAE,
Diffusion model

High-quality data
generation, deep data

representations

Training instability, complexity
in model architecture

Image generation,
data augmentation,
anomaly detection

For landslide studies, generative models aim to addressing challenges related to data
scarcity and imbalances. Specifically, these models are mainly used for data augmentation,
where synthetic examples are generated to supplement existing datasets. This is particu-
larly valuable for landslide studies where obtaining a large and diverse dataset is often
challenging due to the infrequent occurrence of landslides and the diverse contributing
factors. In this case, generative models not only enhance the quantity of available data but
also improves the generalization capabilities of deep learning models, which is crucial for
developing models that can effectively identify, classify, and predict landslides activities in
regions with limited observations.

2.3. Loss and Optimizer

In machine learning, loss functions and optimizers are two essential components of
the training process. The loss function measures a model’s performance by quantifying
the error between its predictions and actual data, guiding the model towards accurate
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predictions. Optimizers are algorithms that aim to minimize this loss by adjusting the
model’s parameters. This dynamic interplay between loss functions and optimizers is what
drives the learning process of a model.

2.3.1. Loss

Loss functions vary based on different learning tasks. We will go over several com-
monly used loss functions in different scenarios. For classification tasks, which involve
categorizing inputs into distinct classes, cross-entropy (CE) loss [48] is commonly used:

CE = −∑
i

yilog(pi) (6)

where yi is the actual label and pi is the predicted probability. CE loss is particularly effective
in classification tasks as it penalizes incorrect classifications more significantly, driving the
model towards precise classification. However, its sensitivity to dataset imbalances can be
a challenge. In landslide studies, the CE loss is prevalent in landslide feature classification
tasks, where its purpose is to discern features extracted from sources like satellite imagery
or geological data, determining their association with landslides. It can be applied in both
object-level tasks, like landslide detection, and in pixel-level tasks like precise landslide
mapping. Moreover, it is also widely employed in determining the likelihood of the
occurrence of a landslide event, which often refers to landslide susceptibility mapping.

In regression tasks, which predict continuous values, mean squared error (MSE) and
Mean Absolute Error (MAE) are commonly used:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2, MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (7)

MSE highlights larger errors, while MAE provides a direct measure of error magni-
tude. Both are simple and interpretable, but may not fully capture complex real-world
data distributions.

For segmentation tasks, particularly in medical imaging, Dice Loss [49] is always
adopted for evaluating the overlap between predicted and true segmentation areas:

Dice = 1 − 2|X ∩ Y|
|X|+ |Y| (8)

where X and Y represent the predicted and actual segmentation areas, respectively. Dice
Loss effectively addresses the problem of class imbalance and emphasizes spatial accuracy.
In landslide studies, Dice Loss is often performed in the pixel-level classification task of
landslide mapping. This task involves precisely delineating the boundaries of landslide-
affected areas. Notably, Dice Loss is skilled of capturing fine-grained details at the pixel
level, offering a distinct advantage over CE loss in spatially accurate delineation. This
makes Dice Loss particularly suitable for tasks that demand intricate spatial analysis, such
as landslide mapping in satellite imagery.

In image generation tasks, where the perceptual quality of the output is paramount,
traditional regression losses may not be able to capture the nuanced aspects of image quality.
These losses often focus on pixel-level accuracy, which does not necessarily translate to
visually pleasing results. Therefore, structural similarity loss functions that better account
for perceptual differences are introduced in such applications, for example, the Structural
Similarity Index (SSIM) [50] and Peak Signal-to-Noise Ratio (PSNR) [51]. SSIM assesses
perceptual differences between similar images, and PSNR evaluates reconstruction or
compression quality. MSE is the mean-squared error between the reconstructed and
original image. In landslide studies, generative loss functions, such as SSIM and PSNR, can
be applied in tasks that involve the generation of synthetic remote-sensing images or maps.
These loss functions are valuable when the perceptual quality of the generated outputs
is highly considered. For instance, in scenarios where researchers seek to create realistic
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landslide occurrence maps or simulate potential landslide events, employing such loss
functions allows for a nuanced evaluation of the visual fidelity of the generated content.

2.3.2. Optimizer

The evolution of optimizers in machine learning has been characterized by a series of
innovations, each addressing specific challenges to enhance training efficiency and perfor-
mance. Stochastic Gradient Descent (SGD) [19], one of the earliest optimization algorithms,
forms the foundation of many subsequent developments. It updates model parameters
using the gradient of the loss function calculated from individual samples. While effective
in various scenarios, its simplicity can lead to slow convergence and oscillations.

To tackle the slow convergence and oscillations characteristic of SGD, the Momentum
method [19] was introduced. This method accelerates SGD by moving it along relevant
directions and reducing oscillations. Momentum achieves this by incorporating a velocity
component, which is influenced by past gradients, thus ensuring more consistent reduction
in the loss function.

Following Momentum, AdaGrad [52] was developed to address the uniform learning
rate issue in SGD. Unlike its predecessors, AdaGrad adjusts the learning rate for each
parameter individually, allowing for smaller updates for frequently occurring parameters
and larger updates for infrequent ones. This adaptability made AdaGrad particularly
suitable for datasets with sparse features.

RMSProp [53], an improvement on AdaGrad, was designed to perform better in non-
convex optimization problems, which are common in deep learning. It modifies AdaGrad’s
approach by using a moving average of squared gradients to normalize the gradient, thus
helping the algorithm recover from steep areas and continue the learning process efficiently.

The most recent significant development is the Adam [54] optimizer, which combines
the strengths of both Momentum and RMSProp. Adam maintains an exponentially de-
caying average of past squared gradients (like RMSProp) and an exponentially decaying
average of past gradients (like Momentum). This hybrid approach allows Adam to adjust
learning rates adaptively for each parameter, making it one of the most effective optimizers
in various machine learning scenarios.

2.4. Evaluation Metrics

Model evaluation metrics are essential in the evaluation of models’ prediction, provid-
ing insights into how well a model performs. Their evolution aligns with the development
of machine learning, transitioning from simple metrics like error rates to more sophisticated
ones. Before delving into specific metrics, it is important to introduce the confusion matrix,
particularly for classification tasks. The confusion matrix is a table used to describe the
performance of a classification model on a set of test data for which the true values are
known (see Table 3). For binary classification, it consists of four components:

TP (True Positives): correctly identified positive cases;
TN (True Negatives): correctly identified negative cases;
FP (False Positives): incorrectly identified positive cases;
FN (False Negatives): incorrectly identified negative cases.

where, T (True) indicates correct predictions, F (False) incorrect predictions, P (Positive)
the positive class, and N (Negative) the negative class.

Table 3. Binary classification confusion matrix.

Confusion Matrix
Actual Value

True False

Predicted Value
Positive TP FP

Negative TN FN
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In classification tasks in landslide applications, such as distinguishing loess landslides
from their similar surrounding environments, the fundamental objective is to assess the
model’s capability in accurately categorizing the data. Key metrics include Precision, Recall,
Accuracy, and the F1-score [19]. Each of these metrics was developed to address specific
aspects of a model’s performance in classification. For instance, precision measures the
proportion of true positive predictions in the positive class predictions. Recall focuses
on the model’s ability to identify all actual instance by measuring the proportion of true
positive predictions in all actual positive instances. The F1-score, combining Precision
and Recall, was introduced to provide a single metric that balances both. Accuracy calcu-
lates the proportion of correct predictions (both true positives and true negatives) out of
all predictions.

Precision = TP
TP+FP ; Recall = TP

TP+FN ;

F1 = 2 × Precision×Recall
Precision+Recall ; Accuracy = TP+TN

TP+TN+FP+FN

(9)

In addition to these metrics, for dense classification tasks such as image segmentation,
geometric metrics like the Intersection over Union (IoU) are widely used. This metric quan-
tifies the accuracy of segmentation by measuring the area overlap between the predicted
and true segments.

IoU =
Area of Overlap
Area of Union

; IoU =
TP

TP + FP + FN
(10)

Regression tasks, which involve predicting continuous outcomes, necessitate different
metrics. It is important to note that regression losses themselves can serve as metrics. These
include but are not limited to metrics like the root-mean-squared error (RMSE), Mean
Absolute Error (MAE), Full Reference Image Quality Assessment Metrics like the Structural
Similarity Index (SSIM) [50] and Peak Signal-to-Noise Ratio (PSNR) [51], and Feature-based
Image Quality Assessment Metrics like FID [55], each serving to quantify different aspects
of the prediction accuracy.

2.5. Architecture Modules in CNN

In CNN design, the architecture is not a singular entity but a complex assembly of
interconnected modules, each integral to the network’s functionality and performance. At
the core of this architectural framework are four primary components: the backbone, neck,
head, and functional blocks. These elements, each with distinct roles and functionalities,
contribute to the network’s capacity for processing and interpreting complex data, as shown
in Figure 6. An examination of these modules provides a comprehensive understanding of
the structure of contemporary CNNs. This analysis will focus on dissecting these internal
modules, elucidating their importance in forming the foundation of CNN architecture.

2.5.1. The Backbone: The Core of Feature Extraction

The backbone is the foundational module of a CNN architecture, primarily responsible
for feature extraction. These features are essential for the subsequent layers and modules,
which rely on them to make accurate predictions or classifications. The evolution of
backbones reflects a journey towards deeper and more intricate networks, aiming to
capture a wide range of features from the input data. Initially, the backbone module
was relatively simple. Early designs like LeNet [31] were effective for less complex tasks,
signifying the inception of feature extraction design. As the field developed, architectures
evolved into more sophisticated structures. Networks like VGG [56], ResNet [32], and
Inception [57] emerged, representing a significant leap in the backbone’s design. These
advanced structures were capable of capturing a broader spectrum of features from input
data, laying a robust foundation for subsequent processing stages.
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2.5.2. The Neck: Bridging and Refining Features

The neck module in CNN serves as a crucial link between the backbone and head
modules, playing a vital role in refining and reorganizing the extracted features. It is
instrumental in tasks requiring a detailed understanding of spatial relationships and
feature hierarchies, like object detection and segmentation, e.g., landslide detection and
mapping. The primary function of the neck is to enhance the network’s spatial awareness
by integrating and reorganizing features from various layers of the backbone, providing
comprehensive and contextually relevant features to the head module. This process ensures
the accuracy and reliability of the final output. Notable implementations of the neck module
include the Feature Pyramid Network (FPN) [58], Path Aggregation Network (PAN) [59],
and Spatial Pyramid Pooling (SPP) [60], known for their effectiveness and wide adoption.

2.5.3. The Head: Tailoring to Specific Tasks

The CNN’s head module is intricately designed to suit specific tasks like classification,
detection, or segmentation, varying based on spatial resolution and channel dimension
needs. For example, in classification tasks, the head module often includes fully connected
layers thanks to their effectiveness in summarizing and interpreting the features extracted
by previous layers, leading to a final prediction. This is essential for classifying images into
distinct categories. In detection tasks, region proposal networks (RPNs) [35] are used in the
head module for their proficiency in identifying and localizing various objects within an
image, crucial for tasks that require pinpointing specific items. Similarly, in segmentation
tasks, the head module might integrate convolutional layers designed to perform pixel-
wise classification, essential for delineating the precise boundaries of different objects in
the image. Such adaptability in design ensures that the module aligns with the unique
requirements of each task.

2.5.4. Functional Blocks: The Vanguard of Enhancement

The development of functional blocks like attention, Atrous Spatial Pyramid Pooling
(ASPP) [61], Squeeze-and-Excitation (SE) [62], and the Convolutional Block Attention
Module (CBAM) [63] represents the forefront of network architecture innovation. These
blocks can be integrated at various stages of the network to enhance overall performance.
For example, attention blocks focus on relevant features while suppressing less useful
ones. SPP blocks help the network achieve spatial invariance by pooling features at various
scales. SE blocks adaptively recalibrate channel-wise feature responses. CBAM blocks
combine channel and spatial attention mechanisms for a thorough feature refinement. The
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development of these blocks was driven by the need to address the limitations in CNNs
regarding feature representation and adaptability.

Understanding architecture modules, including the backbone, neck, head, and func-
tional blocks, is important for comprehending the design principles behind contemporary
CNNs. In landslide studies, classification, detection, and segmentation are essential. The
backbone, responsible for feature extraction, lays the groundwork by capturing essential in-
formation from remote-sensing imagery or geological data. Subsequently, the neck module
refines and organizes these features, enhancing the spatial awareness, which is crucial for
tasks like detecting and mapping the landslide-prone areas. Tailored to specific tasks, the
head module aligns with the unique requirements from landslide classification, detection,
or segmentation, offering adaptability to address the complexities of landslide features.
The integration of functional blocks further enhances overall performance, providing a
flexible approach to feature representation. As classical networks in deep learning may not
always meet the specific requirements of real landslide tasks, a deep understanding of these
modules empowers researchers to design networks tailored to practical landslide scenarios.

2.5.5. Implementing Strategies

In landslide research, effectively integrating deep learning requires a systematic ap-
proach tailored to the unique aspects of data. Initially, this involves choosing the right
model architecture to suit the particular type of landslide data being analyzed. CNNs are
typically preferred for analyzing spatial information in remote sensing images, thanks to
their ability to handle complex spatial details. When dealing with time-series data that
represent sequenced information associated with active landslides, models with recurrent
layers, such as RNNs or LSTMs, are more apt given their strength in temporal data analysis.
Researchers often employ robust frameworks like PyTorch, which offers extensive libraries
for building and experimenting with models efficiently, making it a popular choice for
developing and testing the networks.

Besides the model construction, effective management of the dataset is also important
to the success of these models. It typically involves dividing the data into three segments,
for example: 80% for training to establish learning patterns, 10% for validation to fine-
tune the model, and the remaining 10% for testing to evaluate the network performance
in an unbiased manner. Training deep learning models is an intricate process that goes
beyond feeding data into algorithms. It requires thoughtful choices about loss functions
and optimization algorithms, which are pivotal for guiding the learning process. Iterative
hyperparameter tuning is also essential to refine and enhance model performance. Integral
to avoiding overfitting are strategies like dropout and regularization; these not only prevent
the model from memorizing the training data but also bolster its ability to generalize to
new, unseen data.

The task of optimizing hyperparameters is particularly crucial and involves a careful
balance to find the most effective model settings. Techniques such as grid search, random
search, and Bayesian optimization are commonly used to explore the hyperparameter space.
Regular validation is a key part of this process, ensuring that the model remains accurate
and reliable. Early stopping is one such validation technique, which halts the training when
improvement plateaus, preventing the potential of overfitting and helping to maintain
the model’s ability to generalize [19]. By adhering to these outlined steps, researchers are
equipped to develop and deploy robust deep learning models using platforms such as
PyTorch. This systematic approach facilitates the navigation of the complexities involved
in landslide studies, thereby enhancing the accuracy and reliability of research outcomes.

3. Overview of Deep Learning Frameworks

In this chapter, we provide an overview of five prevalent deep learning frameworks,
each tailored for distinct tasks, including three spatial tasks—classification, detection,
and segmentation—a temporal task—sequence framework—and a spatial–temporal task—
hybrid framework. Each framework encompasses a range of representative models de-
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signed with specific architecture to meet unique requirements. Our focus is on reviewing
their development, summarizing the essence of these networks within each framework,
and highlighting their common structural and functional elements to offer a comprehensive
understanding of their application in various contexts.

3.1. Deep Learning Classification Framework: The Bedrock of Feature Identification

Classification is a fundamental and essential task in computer vision. In landslide
studies, classification tasks involve discerning features that are relevant to landslides,
which encompasses activities like landslide susceptibility mapping. Classification networks
typically encode the input into a 1 × 1 × N tensor, condensing spatial dimensions to a
single point. This representation enables the network to make high-level predictions, such
as identifying landslide presence or assessing the region susceptibility. Over years, these
architectures have significantly evolved, influencing advancements in related vision tasks
such as detection and segmentation, primarily through the shared utilization of backbone
for effective feature extraction. The architectural diagram of the classification framework is
shown in Figure 7.
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The evolution of classification networks in deep learning began with LeNet [31], a
groundbreaking CNN model that set the stage for neural network applications in visual
data processing. This evolution was propelled further by pivotal models like AlexNet,
which showcased the efficacy of CNNs in image classification tasks. Subsequently, VGG [56]
took a leap forward by exploring very deep architectures with small 3 × 3 convolutional
filters, which further enhanced the network’s performance. ResNet [32], another milestone,
innovatively addressed the vanishing gradient problem through its residual connections.
These foundational networks not only solidified the core principles of CNNs but also
markedly improved the capability to discern and categorize complex image patterns.

Simultaneously, exploration emerged to broaden network architectures. Models like
ResNext [64] utilized grouped convolutions to expand the network’s structure, enhanc-
ing its capacity without a substantial increase in computational demands. In parallel,
GoogleNet’s Inception modules [57] made strides in multi-scale feature extraction, showing
improved results over previous architectures. Concurrently, lightweight networks like
EfficientNet [65] and ShuffleNet [66] were proposed for working in resource-constrained
settings, such as on mobile devices. More recently, the Vision Transformer (ViT) [67] gained
huge attention, marking a transition in backbone architectures. Diverging from its pre-
decessors, ViT adopts the transformer architecture, commonly used in Natural Language
Processing (NLP), for image processing. This model has demonstrated notable results, par-
ticularly in data-rich environments, signifying a trend from traditional convolution-based
methods to attention-based feature extraction.

For classification networks, the main focus is on devising the backbone architecture
for effective feature extraction. This foundational work has facilitated their application in
other spatial tasks, such as detection and segmentation. Generally, the neck component in
these networks is integrated with the overall structure, smoothly transitioning from feature
extraction to classification. The head of these networks consists of fully connected layers,
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often ending in a SoftMax layer (Figure 7), which is responsible for projecting the extracted
features into a probability distribution across different classes. The output of these networks
corresponds to the number of predefined classes. In such frameworks, cross-entropy is a
commonly used loss function due to its efficacy in assessing classification accuracy.

3.2. Deep Learning Detection Framework: Balancing Localization and Identification

Object detection is a crucial task in computer vision, distinct from simple image
classification. In landslide studies, object detection is naturally involved in detecting and
locating specific objects or features relevant to landslides. This encompasses the detection
of potential landslides, precursor deformation, and other relevant elements within remote-
sensing images or geological data. Object detection involves identifying and localizing
multiple objects within an image, which requires a sophisticated design for its neck and
head modules to handle the complexity. Consequently, a variety of architectural styles,
such as two-stage, one-stage, anchor-free, and transformer-based detectors, have been
developed. Each of these architectures has its unique approach, with varying strengths and
methods to fulfill the requirements of object detection. The architectural diagram of the
detection framework is shown in Figure 8.
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The development of object detection frameworks has undergone significant advance-
ments, starting with the two-stage RCNN series [33–35], including RCNN, Fast RCNN, and
Faster RCNN. These frameworks focus on generating region proposals for potential objects
in an image and then classifying each region. While highly accurate, they are computation-
ally intensive due to the two-step process. Seeking to balance speed and accuracy, one-stage
detectors like the “Single Shot MultiBox Detector (SSD)” [68] and the “You Only Look Once
(YOLO)” series [36–38] emerged. These models streamline the detection process, directly
predicting object classes and locations in a single forward propagation of the network.
While offering faster detection speeds, they sometimes compromise on accuracy compared
to two-stage models, particularly in complex scenes or with small objects.

In parallel, efforts to transcend the constraints of traditional anchor-based approaches
have led to the rise of anchor-free methods like CenterNet [69] and CornerNet [70]. These
innovative techniques localize objects without depending on predefined anchor boxes, thus
simplifying the model and reducing computational load. Alongside this, the involvement of
transformer-based techniques, notably exemplified by DETR (Detection Transformer) [71],
has significantly altered the landscape of object detection. The DETR leverages the power
of transformers to improve object detection by effectively handling complex spatial rela-
tionships and long-range dependencies. This shift towards transformer-based methods
represents a major evolution in object detection, offering a new perspective on handling
spatial data complexities.

In the evolution of detection frameworks, two crucial components are the neck and
head. The neck, often incorporating structures like Feature Pyramid Networks (FPN) [58]
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and Path Aggregation Network (PAN) [59], fuses multi-scale features from various layers
of the backbone. This fusion is pivotal for detecting objects at different scales, merging vital
information for both object localization and classification. The head has a dual function:
localizing objects, typically via bounding box coordinates, and classifying them. To meet
these dual requirements, a composite loss function, usually a combination of localization
loss (such as Smooth L1) and classification loss (cross-entropy), is employed. This blended
loss is fundamental for object detection frameworks, ensuring precise object classification
and accurate spatial localization.

3.3. Deep Learning Segmentation Framework: The Intricacy of Pixel-Level Classification

The segmentation framework, characterized by pixel-wise classification, is inherently
more complex than the classification framework due to its need for detailed spatial analysis
at the pixel level. In landslide studies, segmentation is applied to delineate the precise
boundaries of landslide-affected areas, aiding in a detailed and accurate spatial analysis. It
is particularly useful for tasks such as landslide mapping, where the goal is to classify each
pixel within an image to accurately identify and map areas impacted by landslides. The
backbone in segmentation framework is also aimed at feature extraction, and commonly
has similar choices like ResNet and VGG that are used in classification networks. Of course,
these backbones might undergo slight modifications such as layer adjustments or block
addition, to fit the specific requirements of the practical task. Unlike detection frameworks,
the role of the neck in segmentation is not always distinct and it is often integrated within
the backbone. Notable examples include the Atrous Spatial Pyramid Pooling (ASPP) [61],
Pyramid Scene Parsing Network (PSPNet) [72] and Spatial Pyramid Pooling (SPP) [60],
which are designed to enhance multi-scale feature awareness, enabling an accurate dense
prediction. The architectural diagram of segmentation framework is shown in Figure 9.
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Distinguished from classification framework, segmentation networks aim for dense
predictions, mostly necessitating output dimensions matching the input resolution, often
represented as H × W × N, where H and W denote height and width, respectively. This
structure is ideal for pixel-level tasks like landslide mapping, as it provides detailed spatial
information. Therefore, after down-sampling via the backbone, it becomes crucial to up-
sample the features back to their original resolution, requiring the use of a decoder. The
evolution of decoders parallels the development of classic segmentation networks. This
began with the Fully Convolutional Network (FCN) [39], which introduced transposed
convolution layers for up-sampling, enabling end-to-end training and precise pixel-level
predictions. Enhancements followed with FCN variants like FCN-8s, which integrated
skip connections. These connections fused deep, coarse semantic information with shal-
low, fine appearance details, thereby augmenting spatial precision, particularly around
object boundaries.

This progression continued with the advent of U-Net [40], which introduced a sym-
metric encoder–decoder architecture, where the decoder progressively up-samples feature
maps while concatenating them with corresponding encoder feature maps, significantly
improving localization capability. Following this, the DeepLab series (v1–v3+) [73–75]
brought novel advancements. They introduced atrous (dilated) convolutions in both the
encoder and decoder stages and incorporated Atrous Spatial Pyramid Pooling (ASPP) in
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the encoder, alongside a new decoder design focused on refining segmentation outcomes
and edge clarity. Later developments, such as the Attention U-Net [76], expanded these
innovations by embedding attention mechanisms within the decoder. This integration
directed the model’s focus toward more relevant regions, and further enhanced precision
in segmentations across diverse scenarios. Most lately, transformer-based models [77]
have applied self-attention to capture long-range dependencies across the entire image,
providing a global context for segmentation. These advancements indicate a trend towards
networks that not only understand local features but also incorporate a wider image context,
leading to more accurate and detailed segmentation results.

In segmentation frameworks, the choice of loss function can vary depending on the
specific requirements of the task. Commonly used loss functions include pixel-wise cross-
entropy, which is effective for classifying each pixel individually. Additionally, geometric
loss functions like Dice Loss or IoU loss are employed to accurately capture the shapes
and overlaps of segmented areas [49]. These loss functions can be used individually or in
combination, depending on the need to balance pixel-level accuracy with the geometric
representation of segmentation results.

3.4. Deep Learning Sequence Framework: Contextual Data Modeling

Sequence data analyzing in deep learning represents a unique and challenging domain,
distinct from the realms of classification, detection, and segmentation. It focuses on the
temporal dynamics and dependencies within the contextual data, a critical aspect in a
wide range of applications. In landslide studies, sequence data comprise a diverse input
from multi-sources, including remote sensing, geo-environmental, meteorological, and
topographical data, etc. Additionally, it also involves time-series data, such as remote-
sensing images, and historical pointwise deformation measurements. This section delves
into the evolution of deep learning sequence frameworks, tracing their development from
initial models to the sophisticated networks we see today. The architectural diagram of
sequence framework is shown in Figure 10a.
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Being the initial representative work, Recurrent Neural Networks (RNNs) [41] provide
a fundamental approach to sequence processing by integrating memory elements into
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neural networks. However, RNNs have encountered limitations in managing long-term
dependencies, which led to the development of more advanced architectures. Long Short-
Term Memory (LSTM) [42] networks overcame these challenges by incorporating gates that
control information flow, thereby adeptly capturing extended dependencies in sequences.
Subsequently, Gated Recurrent Units (GRUs) [43] were introduced as a more efficient vari-
ant, delivering similar functionalities to LSTMs but with a less complex architecture, which
reduced computational requirements. A pivotal shift occurred with the involvement of the
transformer model [44], which moved away from reliance on recurrent mechanisms. Lever-
aging self-attention mechanisms, transformers are capable of processing entire sequences
in parallel, thus effectively capturing dependencies between sequence elements that are
widely separated by many positions, surpassing the capabilities of their predecessors. This
architecture has since become a foundational element, inspiring numerous subsequent
innovations in sequence modeling.

The recent advances in deep learning for sequence data, especially in Natural Lan-
guage Processing (NLP), have been characterized by employing transformer architecture
and extensive data training. This transition began with the development of ELMo (Embed-
dings from Language Models) [78]. Although ELMo does not use transformer architecture,
it laid the groundwork for creating deep, contextualized word representations. ELMo’s
bidirectional LSTM structure was instrumental in generating word embeddings that com-
prehensively capture semantic attributes from surrounding text, paving the way for the
later adoption of transformer-based models in NLP. This evolution was further propelled by
the development of BERT (Bidirectional Encoder Representations from Transformers) [79]
by Google. BERT, utilizing the transformer architecture, introduced an innovative bidi-
rectional training method. This approach allows the model to contextualize information
from both directions of a sentence, leading to a more nuanced understanding of language.
BERT’s effectiveness in tasks such as question answering and language inference is largely
due to this bidirectional processing, coupled with its training on extensive text datasets.
Simultaneously, OpenAI’s GPT (Generative Pretrained Transformer) series [80–83], particu-
larly GPT-4, showcased the extraordinary effectiveness of transformer-based models on
a large-scale language dataset. Focusing primarily on unsupervised learning and trained
on a diverse array of internet text, GPT models have demonstrated a remarkable ability to
generate coherent and contextually relevant text sequences. The success of the GPT series
has highlighted the capability of large transformer-based models to grasp and reproduce
the intricacies of human language, marking a significant milestone in the field of NLP.

3.5. Deep Learning Hybrid Framework and Transfer Learning

As reviewed in the previous sections, the spatial frameworks are skilled at extracting
and interpreting complex spatial patterns present in spatial data, adeptly handling tasks
such as classification, detection, and segmentation. In contrast, sequence frameworks excel
at processing and comprehending time-series data. Thus, combining these two frameworks
to foster a hybrid framework, we can perform more complex and advanced monitoring
and prediction tasks, which have the potential to enhance the accuracy and reliability of
predictive results, and to improve the overall understanding in landslide dynamics. The
architectural diagram of hybrid framework is shown in Figure 10b.

In such an integrated hybrid framework, the backbone of the spatial network primarily
extracts spatial features from observational data collected at each time point. These features
are then transformed into embeddings, configured to meet the sequence framework’s
input requirements. This process ensures that the spatial characteristics of the data are
captured comprehensively. Subsequently, these spatial embeddings are processed through a
sequence framework to learn the contextual relationships. This step is crucial for uncovering
latent connections and temporal patterns within the data. A variety of architectures, ranging
from traditional models like RNN and LSTM to advanced models such as BERT and GPT,
can be employed for this contextual learning. The choice of architecture depends on the
complexity of the task and the nature of the data. Once the temporal relationships are
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established, the processed features are then fed into the corresponding head of the spatial
framework. Here, the head can be selected corresponding to specific tasks at hand. For
instance, we can install the classical detection heads, like the YOLO series, to conduct a
landslide detection task, while for a landslide displacement prediction task, we typically
adopt classification heads with regression loss to implement. This modular approach,
separating the spatial framework into functional components like the backbone, neck,
and head, and integrating them with sequence frameworks, provides high flexibility and
convenience. It allows for the seamless assembly and reconfiguration of various network
structures to meet the specific needs of diverse real-world tasks.

Notably, training such a model effectively requires a strategic approach, and transfer
learning presents a viable solution. Initially, the spatial network can be trained using
data acquired at a single time point. Once this training is complete, the parameters of
the backbone and head will be frozen, and then they can be integrated with the chosen
sequence framework to train the sequence framework individually. Finally, we can fine-
tune the entire integrated system—both spatial and temporal components—to ensure
the optimal training performance. This innovative integration of spatial and temporal
frameworks offers an advanced tool for both real-time monitoring and predictive modeling.
A comparative analysis of five prevalent deep learning frameworks is shown in Table 4.

Table 4. Comparative analysis of deep learning frameworks.

Framework Backbone Neck Head Output Loss

Classification
Framework

CNN
(e.g., ResNet,

VGG)
Integrated Fully connected

layer Class numbers Cross-entropy

Detection
Framework

CNN
(e.g., ResNet, VGG FPN, PAN

RPN
(two-stage),

Direct Predict
(one-stage)

Box coordinates,
Class probs

Localization (e.g.,
L1/L2) + Classification

(Cross-entropy)

Segmentation
Framework

CNN
(e.g., ResNet,

VGG)

ASPP, Dilated
convolutions

Convolutional
layer

Per-pixel
class labels

Geometric (e.g.,
Dice, IoU),

Cross-entropy

Sequence
Framework

RNN (e.g., LSTM,
GRU), Transformer Not distinct Not distinct Variable (Time

series, Sequences) MSE, Cross-entropy

Hybrid
Framework

CNN +
RNN/Transformer

Application-
specific

Application-
specific

Application-
specific

Combined
spatial-temporal losses

4. Deep Learning Frameworks Application for Landslides
4.1. Landslides

Landslides are among the most common and destructive natural disasters in moun-
tainous areas, posing significant threats to human lives and properties. Alongside, they can
cause damages to critical infrastructures like roads, bridges, and power lines [84]. They
also lead to the destruction of vegetation, soil erosion, and land degradation. The frequency
and impact of landslides depend on complex environmental and triggering factors [85].
Environmental factors such as soil composition and geological features play a crucial role
in determining the possible locations of landslides. On the other hand, triggering factors
like climatic changes and seismic events are pivotal in initiating these events. The intricate
and nonlinear interplay of these factors challenges traditional methods for modeling their
physical mechanisms and predicting their development, which has prompted researchers
to pivot towards more effective, data-driven approaches [86]. Recent advancements in
deep learning have shown significant capabilities in extracting landslide-related informa-
tion from large datasets [87]. The amalgamation of deep learning with extensive remote
sensing from satellites and in situ sensors has equipped researchers with a powerful tool
for landslide research and prevention [88]. Efforts mainly can be divided into two aspects.
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The first aspect focuses on known landslides, in which researchers employ multi-
source data, including remote sensing data (SAR, optical, and multispectral sensors) and
geo-environmental data (such as geological, hydrological, meteorological, and topographi-
cal data.) to predict potential landslides and assess their risk levels. This process is known
as susceptibility mapping [89]. Another key effort is displacement prediction, which uses
historical data on landslide movement and related environmental factors to forecast their
future displacements [90]. Regarding the second aspect, scholars have aimed at address-
ing slow-moving landslides, and have developed algorithms for landslide detection and
mapping from remote sensing images, each serving distinct yet complementary purposes.
Landslide detection, taking an object perspective, uses algorithms to locate landslides and
approximate their areas with bounding boxes [91]. This method is particularly effective for
quickly identifying landslide locations in extensive surveys. In contrast, landslide mapping,
adopting a pixel-based approach through segmentation techniques, offers a more granular
analysis. It precisely defines the boundaries of each landslide at the pixel level, providing
vital details for comprehensive risk assessments and mitigation strategies [92]. General
data processing and the workflow using deep learning for landslide detection, mapping,
susceptibility mapping, and displacement prediction is shown in Figure 11.
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In the following section, we will investigate the various deep learning frameworks
suitable for each of four major tasks in landslide studies: landslide detection, mapping,
susceptibility mapping, and displacement prediction. For each task, we highlight specific
deep learning frameworks that are applicable and review related studies that have utilized
these frameworks. We aim to introduce a clear perspective on the selection of frameworks
for each task and provide insights into the latest achievements and performances of these
techniques in the context of landslide risk management.

4.2. Landslide Detection (Object-Based)

Deep learning has revolutionized the field of remote sensing, particularly in chal-
lenging tasks such as landslide detection. This section delves into landslide detection
using object-based deep learning approaches, e.g., a detection framework. Generally, a
detection framework includes two-stage, one-stage, anchor free, and transformer-based
detectors. A thorough review of the literature shows that most of its application in land-
slide detection is in the form of primary two-stage [33–35] and one-stage detectors [36–38],
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while anchor-free and transformer-based detectors are less common. This could be due to
anchor-free detectors [69,70] and transformers [71] being new and not as widely applied.
Here, we will explore the latest developments and applications in these technologies for
landslide detection.

Two-stage detection networks typically involve a region proposal network (RPN) for
generating candidate bounding boxes and then refine and classify these regions in a second
stage, leading to potentially higher accuracy but slower inference times. Representative
networks include RCNN, Fast RCNN, and Faster R-CNN [33–35]. Applied them into
landslide detection, Guan et al. (2023) [93] used an improved Faster R-CNN to detect
slope failures and landslides in the Huangdao District of Qingdao in China, where they
introduced a multi-scale feature enhancement module into Faster R-CNN to enhance
the network’s perception of different scales of landslides. The experiments showed that
the improved model outperformed the traditional version, with an AP of 90.68%, F1-
score of 0.94, recall of 90.68%, and precision of 98.17%. The authors applied it to detect
geological hazards of slope failure in Huangdao District, and it only missed two landslides,
demonstrating a high detection accuracy. To improve the accuracy of landslide detection
in satellite images, Tanatipuknon et al. (2021) [94] combined two object detection models
based on Faster R-CNN with a classification decision tree (DT). In detail, the first Faster
R-CNN was trained on true color (RGB) images, and the other was trained with grayscale
DEMs. The results from both models were employed by a DT to generate bounding boxes
around landslide areas. Compared to those using either RGB or DEMs, this integrated
approach showed improved performance in various evaluation metrics, demonstrating its
effectiveness in landslide detection.

Due to the large difference in the landslide scale and the important characteristics of
the landslide’s shallow layer, Zhang et al. (2022) [95] modified the original Faster R-CNN by
incorporating the Feature Pyramid Network (FPN) with ResNet50. This integration aimed
to address the challenges posed by the varying scales and shallow layer characteristics of
landslides. Validated with a public landslide inventory from Bijie City, Guizhou, China, the
modified model demonstrated a significant improvement in accuracy (87.10%) compared
to that of VGG16 (70.20%), which indicates a promising method for future research. The
InSAR technique has immense potential for detecting active landslides by its unique
advantage in measuring subtle ground deformation. However, the operational application
of InSAR for landslide detection in a wide area is still hindered by the high labor and time
costs for the visual interpretation and manual editing of the InSAR-derived velocity maps.
Aiming at this obstacle, Cai et al. (2023) [96] developed a method combining InSAR and
a CNN, specifically using an improved Faster RCNN with attended ResNet-34 and FPN.
Applied in Guizhou province, China, this approach successfully identified over 1600 active
landslides from a substantial number of Sentinel-1 and PALSAR-2 images, demonstrating
high precision and recall in various test areas. This method shows significant promise in
efficiently updating landslide inventories and aiding in disaster prevention. To quickly
detect landslide hazards for a timely emergency rescue, Yang et al. (2022) [97] proposed an
enhanced Faster R-CNN for landslide detection. Specifically, this method has several aims,
including image quality improvement, batch size elimination using group normalization,
multiscale feature fusion with a Feature Pyramid Network, and employing a deep residual
shrinkage network as the backbone to extract complex spatial features. Experimental
results indicate a notable improvement in accuracy and average precision compared to
the standard Faster R-CNN and other one-stage models, such as YOLOv4 and SSD, which
proves the model’s effectiveness in landslide detection.

Different from two-stage detectors, one-stage detection networks directly predict
bounding boxes and class scores in a single step using predefined anchor boxes, which
makes them faster, simpler, and suitable for real-time applications. Representative networks
include the YOLO series [36–38], SSD [68], and RetinaNet [98]. For their application in
landslide detection, Fu et al. (2022) [99] presented a novel method for detecting slow-
moving landslides from stacked phase-gradient maps, aiming at overcoming the limitations
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of phase unwrapping errors and atmospheric effects. In detail, they developed a burst-
based, phase-gradient stacking algorithm to sum up phase gradients in short-temporal-
baseline interferograms, then trained an Attention-YOLOv3 network with manually labeled
landslides on the stacked phase gradient maps to achieve a quick and automatic detection.
Applying this method to an area of approximately 180,000 km2 in southwestern China,
they identified 3366 slow-moving landslides. By comparing these results with optical
imagery and previously published landslide data for the region, their method proved to
be precise and efficient in automatic detection across large areas. Notably, it unveiled
about 10 additional counties with high landslide density, beyond the known high-risk
areas, emphasizing the need for increased geohazard attention in these locations. This
finding demonstrates the potential of their method for nation-wide slow-moving landslide
detection, offering a crucial tool for improved geohazard monitoring and risk management.
Regarding the need of an open, large, and widely recognized landslide dataset, Wang et al.
(2021) [100] created a landslide dataset through open satellite image data, in which the
landslide boundary was marked by professional engineering geologists. Building upon
the foundational YOLOv5, they innovatively integrated Adaptively Spatial Feature Fusion
(ASFF) and the Convolutional Block Attention Module (CBAM) to enrich the model’s
capability to assimilate multi-scale feature information. This enhancement yielded a 1.64%
improvement in model performance. Traditional field survey, while reliable for small-
scale investigations, proves inadequate for large areas due to its cost and labor intensity.
To cope with this limitation, an innovative approach [101] was proposed to detect and
monitor these hazards in China’s high-mountain areas. The researchers firstly tested
the feasibility of using SBAS-InSAR with Sentinel-1A data for landslide detection in the
Yunnan–Myanmar border region. Subsequently, they employed YOLOv3 with Gaofen-2
images for further analysis. Applied in Fugong County, Yunnan Province, results showed
that most landslides identified by manual interpretation were detected by SBAS-InSAR as
true positives, accounting for 68.75% of the total references. This indicates that the majority
of these were active during the study period and posed potential threats to the surrounding
areas, underscoring the importance of such advanced detection methods for public and
local authority awareness.

Two-stage detectors, though accurate, tend to be slower, whereas one-stage detectors
offer faster detection but at a cost to accuracy. To concur this, an improved one-stage
detection model [102], YOLO-SA, for use in emergency rescue and evaluation decision-
making with high-spatial-resolution remote sensing images on mobile and embedded
equipment, was proposed. In this study, two enhancements were presented, including
adopting group convolution, ghost bottleneck modules to reduce parameters, and inte-
grating an attention mechanism for improving accuracy. Tested in Qiaojia and Ludian
counties, Yunnan, China, YOLO-SA outperformed various advanced models in terms of
parameter efficiency, accuracy, and speed, which confirms its effectiveness in potential
landslide detection in near-real time. Another challenge poses itself that in some scenarios,
remote-sensing satellites may not be able to timeously obtain the image from the disaster
areas due to the orbital cycle and weather impacts. Addressing this limitation, Yang et al.
(2022) [103] utilized UAV images from the Nepal earthquake-affected area of Zhangmu Port
and the transfer learning strategy to use their detection model, which aims to overcome
the shortage of sufficient training data. Comparative analysis revealed that this approach
surpassed the detection performance of the SSD model, offering an effective solution for
quick and accurate landslide detection.

No matter whether a two-stage or one-stage detector, each actually possess unique
strengths and limitations in the context of landslide detection. Researchers have established
a comparative analysis of multiple classical detectors, providing valuable insights into
their efficacy in the same task. For example, Wu et al. (2022) [104] tested representative
algorithms like Faster R-CNN, YOLOv3, and SSD on a substantial landslide remote sens-
ing dataset. Technical advantages and functional characteristics of each algorithm were
thoroughly compared and analyzed. Their results demonstrated that while the Faster
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R-CNN algorithm offers higher accuracy, YOLOv3 and SSD are more suited for timely
monitoring and practical applications due to their faster detection speeds. Similarly, Zhang
et al. (2022) [105] constructed a comprehensive dataset using Google Earth imagery. They
applied and evaluated the performance of various detectors including YOLOV5, Faster
RCNN, EfficientNet, SSD, and a modified YOLOV5 embedded with CBAM and Ghost
modules. The findings indicated that SSD was highly effective in detecting scenarios where
only one landslide existed within an image. On the other hand, the modified YOLOV5
demonstrated proficiency in identifying scenarios with multiple landslide events in an
image, which strikes a balance between detection capabilities and model complexity. Detect-
ing loess landslides has always been challenging due to their similarity to the surrounding
environment in optical images. To tackle this, Ju et al. (2022) [106] employed different
deep learning methods for detecting loess landslides from Google Earth images. They
established a database with 6111 interpreted landslides from three areas in Gansu Province,
China. They evaluated three detection networks, including RetinaNet, YOLO v3, and
Mask R-CNN. Their results showed that the detection accuracy is positively correlated to
landslide areas; namely, larger landslides can be identified more accurately. Among the
tested models, the Mask R-CNN demonstrated the highest accuracy, with an F1-score of
55.31%, which proves the viability of object detection methods in automated loess landslide
detection from satellite imagery. A summary of case studies of landslide detection is shown
in Table 5.

Table 5. Summary of case studies of landslide detection.

Study Area Data Used Model Evaluated Metric and Result (%) Reference

Huangdao
District,

QingDao, China

Orthographic Remote
Sensing Image

Improved Faster
RCNN

AP (90.68), F1-score opt (94),
Recall opt (90.68),

Precision opt (98.17)

Guan et al.
(2023) [93]

Bijie City,
Guizhou, China

TripleSat
Image,

Grayscale DEM

Faster R-CNN + DT
Tree

AP (86), F1-score avg (79),
Recall avg (77),

Accuracy avg (97)

Tanatipuknon
et al. (2021) [94]

Guangzhou, China Sentinel-1 and
PALSAR-2 image

Faster RCNN +
ResNet-34 + FPN

AP (63.90), F1-score opt (91.40),
Recall opt (91.49),

Precision opt (91.33)

Cai et al.
(2023) [96]

Southwestern China Sentinel-1
YOLO-Tiny, YOLO-v3,

Improved YOLO-v3
(best)

AP (75), F1-score opt (90.82),
Recall opt (87),

Precision opt (95)

Fu et al. (2022)
[99]

Sichuan, China Optical Image YOLO-v5 + ASFF +
CBAM

AP (74.01), F1-score opt (77.30),
Recall opt (76.21),

Precision opt (78.42)

Wang et al.
(2021) [100]

Fugong County,
Yunnan, China

Sentinel-1 and
Gaofen-2 image

SBAS-InSAR +
YOLOv3

MAP 50 (99.17),
MAP 50:95 (73.50)

Guo et al.
(2022) [101]

Qiaojia and Ludian
counties, Yunnan,

China
Optical Image

Faster RCNN, SSD,
YOLO-v4, YOLO-SA

(best)
AP (94.08) with FPS (42 f/s) Cheng et al.

(2021) [102]

Zhangmu Port,
Tibet, China UAV Image SSD, SSD +

Transfer Learning (best)
AP (95.10), F1-score avg (84),

Recall avg (90)
Yang et al.

(2022) [103]
opt: the optimal result during the experiment; avg: the average result across the confidence threshold from 0 to 1.

4.3. Landslide Mapping (Pixel-Level)

Landslide mapping is a critical task for disaster management and mitigation. The
complexity and variability of landslides make this task challenging for traditional methods.
By treating landslide mapping as a pixel-level segmentation task, deep learning, with its
advanced segmentation frameworks, offers a powerful solution. These frameworks can
precisely and quickly delineate landslide-prone areas, improving the capability of emergent



Remote Sens. 2024, 16, 1344 25 of 47

responses [107]. Here, we explore the latest achievement of landslide mapping using deep
learning segmentation frameworks, highlighting how they transform our ability to identify
and manage these natural hazards.

Being a successful and classical segmentation network, UNet [40] and its variants have
been widely applied in landslide mapping. For example, Bragagnolo et al. (2021) [108]
employed UNet to identify landslide scars using Landsat-8 satellite data in a region of Nepal.
The experimental results showed the superior accuracy of UNet over compared methods
in terms of recall (74%), precision (61%) and the F1-Score (67%). This indicates the potential
of UNet in dynamic mapping systems for landslide scar mapping. To accurately extract
landslides from high-resolution remote sensing images, a modified version of UNet, named
L-UNet, [109] was developed. This model enhanced the original UNet by incorporating a
multi-scale feature-fusion (MFF) module, a residual attention block, and a data-dependent
upsampling (DUpsampling) block. When applied to the northern mountainous area of
Huizhou City, Anhui, China, the L-UNet demonstrated superior performance over the
baseline UNet, with an increased precision (4.15%), recall (2.65%), mIoU (4.82%), and
F1-Score (3.37%), proving its capability in accurately and efficiently extracting landslides
from remote sensing images. InSAR is an effective tool for active landslide recognition.
However, its interpretation highly relies on expert experience, which is time-consuming
and subjective. To bridge this gap, Chen et al. (2022) [110] developed a Deep Residual
Shrinkage UNet (DRs-UNet) for mapping landslides from SAR interferograms, or InSAR-
derived velocity maps. The proposed network, enhancing the standard U-Net with a
Residual Shrinkage Building Unit (RSBU), significantly reduced the noise level of InSAR
images and improved feature extraction. Compared to established models like UNet and
SegNet, DRs-UNet demonstrated superior performance, achieving a higher F1-Score and
an impressive IoU over 90%. Tested at a landslide-prone area in Zhongxinrong County,
the quantitative evaluation results showed that the DRs-UNet can effectively recognize
potential landslide hazards from InSAR imagery.

In addition to classical UNet architectures, researchers also explored a state-of-the-
art transformer-based network [44] for landslide mapping. For instance, Huang et al.
(2023) [111] indicated that current deep learning approaches face a challenge of a long infer-
ring time, which is inefficient for disaster prevention and post-disaster rescue. To show this
limitation, they developed a novel Distilled Swin-Transformer (DST) for landslide recog-
nition. When tested in Zigui County, Hubei, China, the DST model achieved the highest
performance in various evaluation metrics compared to ResNet50, Swin-Transformer, and
the DeiT model. Meanwhile, DST also demonstrated an optimal computational cost, with
the lowest FLOPs, making it highly suitable for rapid landslide recognition in post-disaster
efforts. Can we integrate transformers into a CNN to improve the model’s capability for
landslide mapping? Yang et al. (2022) [112] explored this possibility by integrating a
transformer with the ResUNet, in which a spatial and channel attention module is added
to the decoder for reducing the noise in feature maps. Training with small datasets, this
model was expected to capture the global context feature and recognize these landslides.
Applying this integrated method to Bijie region and Iburi earthquake-induced landslides,
the model not only outperformed the standard ResUNet, achieving a higher mIoU and
F1-score, but also detected a significant number of landslide incidents, which is useful for
improving the accuracy and reliability of landslide emergency rescue operations. Similarly,
Wang et al. (2022) [113] introduced a Separable Channel Attention Network (SCANet) for
landslide mapping. The SCANet employs a Poolformer encoder and a Separable Channel
Attention Feature Pyramid Network (SCA-FPN) decoder. The Poolformer, leveraging
transformer architecture, captures global semantic information, and the SCA-FPN enhances
multi-scale semantic fusion and precise pixel-level prediction. The experiment showed that
the SCANet surpassed the traditional network ResNet50-Unet, achieving a higher mIoU
(1.95%), although with fewer parameters.

To attain optimal results in landslide mapping, conducting comparative experiments
across various segmentation models is a promising approach. Researchers have explored
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the efficacy of different deep learning models to determine which offers the best perfor-
mance for their specific task. A notable example [87] is the study by Ghorbanzadeh et al.
(2022), where they created the Landslide4Sense benchmark dataset, a comprehensive collec-
tion of 3799 image patches combining data from Sentinel-2 and ALOS PALSAR. The team
assessed eleven advanced segmentation models, including U-Net, ResUNet, and others,
on this dataset. This research underscores the importance of selecting the right model
and fine-tuning parameters for optimal application in real-world scenarios. Similarly, to
address the pressing need for quick and effective landslide mapping in disaster rescues,
Yang et al. (2022) [114] compared three detection models, including U-Net, DeepLabv3+,
and PSPNet, each evaluated with different backbone networks for determining the most
effective model for landslide recognition. The experiment revealed that the PSPNet with
the ResNet50 backbone achieved the highest accuracy in terms of the mIoU (91.18%). Using
optical remote sensing images, Du et al. (2021) [115] evaluated six segmentation models,
FCN, UNet, PSPNet, Global Convolutional Network (GCN), DeepLav3, and DeepLabv3+,
on a new open-source landslide dataset. Their results showed that GCN and DeepLabv3
are most suitable for this problem scenario, with the highest mIoU and pixel accuracy.
These studies highlight that the effectiveness of a model can vary across different datasets
and scenarios, which emphasizes the importance of conducting experiments to select the
appropriate model for practical tasks.

In addition to employing these established segmentation networks, scholars also de-
vised their own networks for meeting the specific requirement of the task at hand. For
example, mapping ancient landslides from high-resolution remote sensing images (HRSIs)
poses significant challenges due to their transformed morphology over time and resem-
blance to surroundings. Addressing these challenges, a novel Iterative Classification and
Semantic Segmentation Network (ICSSN) [116] was proposed. This network improves
classification at both the object and pixel levels by iteratively enhancing the shared feature
extraction module. It incorporates an object-level and sub-object-level contrastive learning
method to extract crucial features, especially those at landslide boundaries. The ICSSN,
tested on real-world landslide data, showed substantial improvements in classification and
segmentation accuracy, outperforming baseline models in various performance metrics.
Developing an effective landslide mapping system using high-resolution images is a crucial
task for emergency response. However, most of existing methods rely on remote-sensing
data with specific spatial resolution, making multi-scale landslide detection difficult in
operational applications. To solve this, Yu et al. (2022) [117] proposed a new hierarchical
deconvolution network for landslide mapping. This network enhances feature learning
by using deconvolution operations and a hierarchical structure, which allows for a better
synthesis of landslide features at a higher spatial resolution. Additionally, an attention
module is incorporated to improve the quality of detected multiscale landslide features. In
practical applications, the model was evaluated over areas in Haiti, Taiwan, and Zhouqu
that recently experienced landslides, it shows significant improvements over six widely
used frameworks, with a higher F1-Score (21%) and IoU (10%), demonstrating its robust-
ness and potential for deployment in diverse geological settings for landslide mapping
and management.

Another limitation for the current learning-based method in landslide mapping is
a lack of sufficient training samples. To tackle this problem, Yi et al. (2020) [118] pre-
sented a novel approach using single-temporal RapidEye satellite images. It involves
three main steps: the automatic generation of training samples with data preprocessing
and augmentation, constructing a cascaded deep learning network named LandsNet to
learn landslide features, and optimizing identified landslide maps with morphological
processing. Comparative experiments in two earthquake-affected regions showed that
this approach generated the best F1-Score (86.89%), which was about 7% and 8% higher
than that obtained by ResUNet and DeepUNet, demonstrating its potential in emergency
response and natural disaster management. To cope with the challenge of identifying
old landslides, which are often visually obscured due to long-term surface processes,
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Liu et al. (2023) [119] developed a feature-fusion-based segmentation network, FFS-Net,
which uniquely combines texture and shape features from HRSIs and terrain features
from DEM. It employs a multiscale channel attention module for feature balancing and a
transposed convolution layers for image resolution restoration. Applied to the open-source
dataset, FFS-Net demonstrated a superior performance compared to existing models U-Net
and DeepLabV3+, showing higher metrics in the mIoU, F1 score, and pixel accuracy. A
summary of case studies of landslide mapping is shown in Table 6.

Table 6. Summary of case studies of landslide mapping.

Study Area Data Used Model Evaluated Metric and Result (%) Reference

Huizhou City,
Anhui, China Google Earth Image UNet, L-UNet (best) MIoU (75.18), F1-score (85.97),

Recall (83.54), Precision (88.54)
Dong et al.
(2022) [109]

Zhongxinrong
County, China

Sentinel-1, DEM,
Slope, Curvature

UNet, SegNet,
DRs-UNet (best)

IoU (93.48), F1-score (96.08),
Recall (96.12), Precision (96.07)

Chen et al.
(2022) [110]

Zigui County,
Hubei, China

Landsat-8, Landslide
Influencing Factors

ResNet50, Swin-
Transformer, DeiT,

DST (best)

OA (98.17), F1-score (98.16),
Recall (98.16),

Precision (98.16), Kappa (97.66)

Huang et al.
(2023) [111]

Bijie City,
Guizhou, China TripleSat Image ResUNet, Transformer +

ResUNet (best)
MIoU (87.91), F1-score (87.73),
Recall (88.23), Precision (87.24)

Yang et al.
(2022) [112]

Loess Plateau,
China Opticial Image ResUNet50, SCANet (best) OA (96.02), F1-score (90.91),

Recall (90.83), Precision (90.98)
Wang et al.
(2022) [113]

Bijie City,
Guizhou, China TripleSat Image U-Net, DeepLabv3+, PSPNet +

ResNet50 (best)
MIoU (91.18), Recall (96.90),

Precision (93.76)
Yang et al.

(2022) [114]

Yaan-Lushan,
Sichuan, China

RapidEye Satellite
Image ResUNet, UNet, LandsNet (best)

OA (99.53), F1-score (77.26),
Recall (78.29),

Precision (76.26), Kappa (77.03)

Yi et al.
(2020) [118]

Loess Plateau and
Bijie Dataset

Opticial Image,
TripleSat Image

U-Net, DeepLabV3+,
FFS-Net (best)

OA (92), MIoU (67),
F1-score (59.60)

Liu et al.
(2023) [119]

4.4. Landslide Susceptibility Mapping

Landslide Susceptibility Mapping (LSM) is a critical step for disaster mitigation and
risk management, focusing on assessing the likelihood of landslides in a region under
specific geo-environmental conditions [120]. Despite its importance, the complex nature of
landslide formation makes the creation of accurate and reliable LSMs a challenging task. In
recent years, the rapid development of deep learning has significantly facilitated the field of
LSM. Upon reviewing the latest advancements, we have found that deep learning methods
in LSM can be broadly categorized into three frameworks: a classification framework,
sequence framework, and hybrid framework. Each of these frameworks leverages unique
technique to address specific challenges of LSM. Here, we delve into how these frameworks
have been applied in LSM.

Classification Framework (CNNs, Transformer-based): Classification framework uti-
lizes CNNs and transformer-based networks to process multiple geospatial factors and
make predictions. Each factor, such as rainfall, slope, and elevation, is treated as a distinct
channel in an input tensor. Here, these networks are used for extracting spatial features
from inputs and identifying patterns that signify landslide-prone areas. After that, these
features are typically fed into a classification head to make a prediction for landslide
susceptibility map. The advantage of this framework is its capability of capturing the
spatial interconnections among various factors, allowing for a comprehensive analysis of
landslide susceptibility.

For example, many machine-learning and statistical methods for post-earthquake
LSM often overlook the spatial structure of influencing factors. To address this, Chen et al.
(2020) [121] developed a CNN model for post-earthquake LSM. The model incorporated
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multiple inputs including pre-earthquake Landsat TM images and various influencing
factors such as DEM, slope, and lithology. When applied to the 2008 Wenchuan earthquake
area, the model demonstrated high validation accuracy (precision: 77%, recall: 90%, and
F1-Score: 83%), outperforming the results of traditional logistic regression and support
vector machine (SVM) models. This approach underscores the effectiveness of considering
the environmental influence of a pixel and its surroundings in LSM. Jiang et al. (2023) [122]
compared the performance of CNN and conventional machine learning methods in land-
slide susceptibility assessment. Focusing on the Hongxi River Basin area, 11 conditioning
factors were considered to build the models. The study found that the CNN achieved a
higher accuracy (86.41%) and AUC (0.9249) compared to six other machine-learning meth-
ods. The authors indicated that while all models successfully identified most landslides,
CNN showed a stronger capability in recognizing landslide cluster regions, attributed to
its convolution operation that considers environmental information.

Besides CNNs, transformer-based models are also widely explored in LSM. Distin-
guished by the self-attention mechanisms and ability to handle multisource inputs, trans-
former offers a significant advancement over traditional methods. For example, Wang et al.
(2023) [123] developed a comprehensive evaluation system for landslide susceptibility using
12 key influencing factors, such as slope and elevation. They implemented a transformer
model, enhanced with a self-attention mechanism and a forward propagation network, and
trained it using diverse data sources. Conducted in Jiuzhaigou County, Sichuan, China,
their results revealed that this transformer-based model surpassed the performance of
traditional models such as random forest, SVM, and logistic regression, achieving a notable
accuracy of 86.89%. This result underscores the model’s enhanced capability in predicting
landslide susceptibility, showcasing its superiority over conventional methods. Bao et al.
(2022) [124] tackled the limitations of traditional CNNs, which predominantly focus on
local information due to their fixed convolutional kernels. To address this, they proposed a
novel LSM approach that integrates the Vision Transformer (ViT) and Swin Transformer,
which enables a more comprehensive understanding of global spatial information. The
experimental results demonstrated the Swin Transformer’s superior accuracy and the ViT
model’s high consistency with real-world conditions, proving their strong generalization
capabilities compared to traditional CNN and machine learning methods. Additionally,
combining transformer with machine learning models also generated promising results
for LSM. Zhou et al. (2023) [125] developed an innovative model that combines a Feature
Fusion Transformer (FFTR) with various machine learning classifiers, such as Random
Forests, XGBoost, and others, to enhance LSM along the Karakoram Highway in Xinjiang,
China. The FFTR effectively integrated spatial information from multiple landslide condi-
tioning factors, which were then analyzed using these classifiers. The combined FFTR-RF
model exhibited outstanding performance, excelling in several key metrics like accuracy,
precision, recall, and the F1-Score. This approach not only improved LSM accuracy but also
provided valuable insights for developing early warning systems and landslide mitigation
strategies in this region.

Sequence framework (RNN Series): the sequence framework, including RNNs [41]
and their variants like LSTM [42] and GRU [43], is typically known for handling sequence
and time-series data. However, in LSM, these frameworks are typically employed to process
multiple geospatial factors, but not necessarily in a time-dependent manner. They focus
on understanding the intricate relationships between different influencing factors, such as
geological conditions, rainfall intensity, human activities, etc. By processing these factors,
they can predict areas susceptible to landslides, highlighting the influence of each factor in
the occurrence of landslides.

Studies by Mutlu et al. (2019), Wang et al. (2020) and Yi et al. (2022) [126–128] have
demonstrated the strong capabilities of RNNs in this area. For example, Mutlu et al. (2019)
focused on the assessment of landslide susceptibility in Turkey’s Buyukkoy catchment
area, employing RNNs to predict future landslide events based on past occurrences. Their
results illustrated implemented RNN achieved a high estimation capability for landslide
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susceptibility. In Yongxin County, Jiangxi, China, Wang et al. (2020) conducted a compara-
tive analysis to the application of a standard RNN and its variants, including LSTM, GRU,
and Simple Recurrent Unit (SRU) for LSM. Utilizing data from 364 historical landslide
locations and 16 influencing factors, the effectiveness of these RNN-based methods was val-
idated through various metrics. Their findings revealed that high susceptibility areas were
concentrated in specific regions of Yongxin County, and all RNN models demonstrated
strong predictive performance, suggesting their applicability in landslide risk management.
On the Qingchuan County, Sichuan, China, Yi et al. (2022) evaluated the effectiveness of
three classical neural networks: an Artificial Neural Network (ANN), 1D CNN, and RNN.
This research highlighted the superior performance of the RNN in both qualitative and
quantitative aspects, in comparison to other models, which suggests the potential of RNNs
in enhancing landslide susceptibility predictions.

In the Kush–Himalayan region along the China–Nepal Highway, Xiao et al. (2018) [129]
adopted data-driven algorithms for LSM. Incorporating various factors such as elevation,
vegetation, and precipitation, they evaluated the result of four machine learning models:
Decision Tree (DT), SVM, ANN, and LSTM. The study demonstrated that LSTM excels
notably due to its ability to effectively manage time series data with extended temporal
dependencies. This highlights the importance of considering dynamic geological and
environmental factors in landslide risk assessments. Another study conducted by Ji et al.
(2023) [130] indicated that the selection of non-landslide samples plays a significant role in
the LSM using deep learning methods. In the research within Xinhui District, China, they
utilized information value analysis to refine sample selection for RNN models, including
the Simple Recurrent Unit (SRU) and standard RNN. Their methodology, which focused
on the strategic prioritization of factors influencing landslides, significantly enhanced the
predictive accuracy of the models. Among four tested models, RNN and SRU with and
without optimized sample selection, they found that the RNN with optimized selection
emerged as the most effective method, achieving superior results in the AUC and other key
metrics, which underscores the importance of careful sample selection in enhancing LSM
model performance.

Hybrid Framework (spatial temporal): The hybrid approach combines the advantages
of spatial and temporal networks. In this framework, spatial network, like CNNs, are
first used to process the input data, extracting relevant features from various geospatial
factors. These extracted features are then fed into the temporal network, like RNNs, for
analyzing the relationships and dependencies between these features to predict landslide
susceptibility. This combination harnesses the spatial feature extraction strength of CNNs
and the sequence modeling prowess of RNNs, making the hybrid framework particularly
effective in handling complex LSM tasks.

The simplest configuration of a hybrid model is two basic units’ combination (CNN
and RNN). For instance, Li et al. (2021) [131] presented a hybrid framework for LSM
in the Three Gorges Reservoir (TGR) area. Specifically, they created a spatial database
incorporating 20 landslide conditioning factors and 196 landslide polygons, and constructed
an ensemble model integrated with CNN and RNN. Applying this framework into practice,
this framework presented superior predictive capability with various metrics compared to
standalone CNN, RNN, and logistic regression models in landslide disaster management.
Traditional machine learning methods for LSM often rely on fully connected layers to
select influence factors, which can limit feature extraction efficiency. To overcome this, a
novel CNN-LSTM [132] model with an attention mechanism was proposed. This model
aims to avoid the complex optimization of input factors while achieving the same or even
better prediction accuracy. Validated with historical landslide data from Kerala, India, the
experimental results demonstrated that proposed model significantly outperforms existing
methods like independent CNN and LSTM in terms of prediction accuracy.

In addition to regular geospatial factors, Yuan et al. (2022) [133] indicates that incor-
porating InSAR data can benefit landslide susceptibility analysis thanks to its capability
of mapping surface deformation. In detail, their approach comprises two key stages:
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firstly, it extracts landslide predisposing factors from various sources including InSAR
data; secondly, it constructs a hybrid model combining CNN with RNN variants, including
CNN-LSTM, CNN-GRU, and CNN-SRU. Evaluated using various metrics, this method
achieved a higher performance than other CNN-Machine Leaning based models, and
the results were more precise than when using the same methods without considering
InSAR deformation features. To tackle the challenge of comprehensive landslide hazard
assessment on a national scale, this study [134] developed a novel deep learning method for
LSM. Specifically, this approach integrated three hybrid networks (CNN-SRU, CNN-LSTM,
and CNN-GRU) for landslide susceptibility analysis, and a spatiotemporal transformer
for temporal probability prediction. Subsequently, to address geographical regional differ-
ences, the results were further refined using a landslide hazard formula that employs the
FR method to calculate weights for landslide spatiotemporal probability in different areas.
Validated across the United States, this method shows excellent performance compared
with existing works, which proves its practical significance for national-scale landslide haz-
ard assessment. Viewing landslides as multi-dimensional objects, Wang et al. (2021) [135]
introduced an AI-powered, object-based method for performing LSM. This approach uses
historical data to define landslide objects and integrates geo-environmental data to organize
samples. Evaluated with six algorithms in a Hong Kong, experimental results showed that
BiLSTM-RNN and CNN-LSTM presented superior performance compared with the other
AI models. This object-based approach significantly outperformed traditional methods
and produced Hong Kong’s first AI-based, territory-wide landslide susceptibility map. A
summary of case studies of landslide susceptibility mapping is shown in Table 7.

Table 7. Summary of case studies of landslide susceptibility mapping.

Study Area Data Used Model Evaluated Metric and Result (%) Reference

Wenchuan County,
Sichuan, China

Landsat Image, DEM,
Slope, and Lithology LR, SVM, CNN (best) F1-score (83), Recall

(90), Precision (77)
Chen et al.

(2020) [121]

Pingwu County,
Sichuan, China

Lithology, Elevation, Slope,
Aspect, Roughness, NDVI,

Curvature, and Land Cover

MLP, RF, DT, GBDT,
Adaboost, Naive-Bayes,

CNN (best)

Accuracy (86.41),
AUC (92.49)

Jiang et al.
(2023) [122]

Jiuzhaigou County,
Sichuan, China

Elevation, Slope, Lithology,
Seismic Intensity, Land Use,

and Annual Rainfall, etc.

RF, SVM, LR,
Transformer (best)

Accuracy (86.89),
AUC (91.50)

Wang et al.
(2023)
[123]

China-Nepal Highway,
Kush-Himalayan,

China

DEM, Geologic Maps, High
Resolution Optical Image,
and Meteorological Data

BPNN, SVM, DT,
LSTM (best)

Accuracy: BPNN (62),
SVM (72.9), DT (60.4),

LSTM (81.2)

Xiao et al.
(2018) [129]

Three Gorges Reservoir
(TGR), China

Altitude, Aspect, Slope,
Curvature, Land Use, NDVI,
Rainfall and Lithology, etc.

CNN, RNN,
CNN + RNN (best)

OA (86), F1-score
(86.98), Recall (93.62),

Precision (81.22)

Li et al.
(2021) [131]

Shuicheng County,
Guizhou, China

InSAR, Topography,
Geomorphology, Geology,

and Hydrology, etc.

CNN-LSTM, CNN-SVM,
CNN-SRU, CNN-GRU

(best), CNN-RF, CNN-LR

AUC (98.40), ACC
(93.70), MCC (87.50),

Kappa (87.40)

Yuan et al.
(2022) [133]

4.5. Landslide Displacement Prediction

Landslide displacement prediction is an essential aspect of geohazard analysis focused
on forecasting the movement and behavior of landslides [136]. This task is challenging due
to the complex and dynamic nature of landslide phenomena. However, the deep learning
method, with its ability to analyze complex and nonlinear patterns, provides a promising
solution. In this field, two primary deep learning frameworks are utilized: the sequence
framework and the hybrid framework. The sequence framework excels in capturing
temporal dynamics of landslide movements, while the hybrid framework integrates both
spatial features and temporal patterns for a comprehensive analysis. In the following
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section, we will delve into recent advancements in these frameworks, highlighting how
they contribute to accurate and efficient landslide displacement predictions.

Sequence framework (RNN Series): This framework utilizes sequence networks,
such as RNN, LSTM, and GRU, to model the evolution of landslides and predict their
future movement trend. These networks are trained on historical landslide data, including
various geospatial and environmental factors. These factors often include rainfall intensity,
geological conditions, slope stability data, and other relevant variables. The strength of this
framework lies in its ability to model the temporal dynamics and nonlinear relationships
inherent in these factors, providing a robust mechanism for accurate prediction of future
landslide activities.

Among various models, RNNs stand out for their simplicity and efficacy in predicting
sequence data, making them suitable for forecasting landslide deformation. Recently,
Chen et al. (2015) [137] utilized a RNN to predict Hubei Baishuihe landslide displacement.
Adopting the Levenberg–Marquardt algorithm and a genetic algorithm for model training,
the experiments demonstrated that RNN significantly outperforms the feedforward neural
network with a higher prediction accuracy, which establishes the RNN’s effectiveness
and feasibility for landslide displacement prediction. To model the complex, nonlinear
component of landslide displacements, Zhang et al. (2022) [138] employed a GRU to analyze
the Jiuxianping landslide in China. The GRU’s dynamic properties enabled it to effectively
capture periodic variations in displacement, offering a more accurate prediction than static
models such as an Artificial Neural Network, random forest, and multivariate adaptive
regression splines (MARS). The success of the GRU model in this context demonstrates its
potential as a valuable tool for early warning systems for landslide displacement prediction.
To find out the suitable model for landslide deformation prediction, Xi et al. (2023) [139]
conducted a comprehensive comparison of eleven machine learning models, focusing on
their ability to predict slope deformation using time-series data from the Huanglianshu
landslide. The study highlighted the superiority of the LSTM model, particularly when
enhanced with an attention mechanism and a transformer module. This configuration
delivered the highest accuracy in predictions, underscoring the transformer module’s
effectiveness in dealing with nonlinear landslide displacements influenced by a variety of
factors. The findings provide valuable insights into selecting the most suitable models for
early landslide warning systems.

Contemporary research mainly focuses on static models for landslide displacement
prediction. However, influenced by geological and environmental factors, the dynamic,
nonlinear, and unstable nature of landslide deformation poses significant challenges in
the displacement prediction. To enhance the accuracy of prediction, a prevalent approach
involves decomposing the displacement into trend and periodic components, and modeling
each component independently. This method allows for a nuanced capture of landslide
characteristics by separating these components. Typically, statistical and empirical models
are utilized to assess the trend component, while deep learning networks are applied for
periodic component modeling. For example, in their respective studies on landslide dis-
placement prediction, Yang et al. (2019), Zhang et al. (2021), and Xie et al. (2019). [140–142]
each adopted dynamic models that specifically focus on decomposing landslide displace-
ment into trend and periodic components. The approach of Yang et al. (2019) in the TGR
region employed time series analysis and LSTM, effectively modeling the periodic dis-
placement influenced by environmental factors. The LSTM model was validated on two
TGR landslides, showing superior performance over the static SVM model. Zhang et al.
(2021) also targeted the TGR region with a method integrating GRU and time series analy-
sis, where the trend component was modeled using a cubic polynomial and the periodic
component with GRU. This method significantly enhanced prediction accuracy compared
to static models. Similarly, Xie et al. (2019) approached Laowuji landslide prediction by
incorporating factors like geological conditions into their model, using empirical mode de-
composition for the trend and LSTM for the periodic component, which highlights LSTM’s
capability in capturing landslide dynamics. To sum up, these studies collectively emphasize
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the importance of dynamic modeling in accurately predicting landslide displacements in
complex and variable environments.

Hybrid framework (spatial temporal): The hybrid framework merges the spatial
analysis capabilities of CNNs with the temporal data processing strengths of RNNs, making
it highly effective for landslide displacement prediction. In this approach, spatial networks
extract and analyze spatial features from time series grid data, identifying key patterns in
factors such as geological conditions and environmental changes. These extracted features
are then input into temporal networks, like RNN, LSTM and GRUs, which are adept at
understanding temporal sequences and trends. This integration allows for a thorough
analysis of both the spatial and temporal aspects of landslide dynamics, leading to more
accurate and comprehensive displacement predictions.

When modeling displacements, traditional models have always overlooked the aspect
of random displacement. To solve this problem, Lin et al. (2023) [143] introduced a hybrid
CNN-BiLSTM model to enhance the displacement prediction. Specifically, they proposed a
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
method for the landslide displacement decomposition, and adopted the Grey Relational
Analysis–Maximal Information Coefficient (GRA-MIC) calculation for selecting key factors.
This hybrid model is adept at capturing both the temporal and spatial characteristics of
data, thereby enhancing the accuracy of landslide displacement prediction. In the Baishuihe
landslide area within the TGR Area, the author implemented the CNN-BiLSTM model to
predict landslide displacement. This area, with its complex terrain and substantial landslide
risk, provided a critical testing ground for the model’s capabilities. Comparative analysis
with seven models under four distinct input scenarios shows that the CNN–BiLSTM
model is more effective than the single model in predicting landslide displacement, which
holds potential for early landslide warning, benefiting the geological and land use policy
decision-making process in such high-risk areas.

Currently, more and more deep learning models have been applied in landslide dis-
placement prediction; thus, a comprehensive comparison to their effect is urgently needed.
Nava et al. (2023) [144] evaluated seven deep learning methods for their effectiveness in
forecasting landslide displacement, focusing on various landslides with different geograph-
ical contexts. The models include multi-layer perception (MLP), LSTM, GRU, 1D CNN,
2xLSTM, bidirectional LSTM, and a hybrid model Conv-LSTM. The results revealed that
different models have varying effectiveness rates in predicting landslide displacement. The
MLP, GRU, and LSTM models consistently provided reliable predictions across different
landslide scenarios. Specifically, the Conv-LSTM model showed superior performance in
predicting the highly seasonal Baishuihe landslide. Interestingly, the study highlighted that
the MLP model excelled in forecasting higher displacement peaks, while LSTM and GRU
were more adept at modeling lower displacement peaks. These findings suggest the impor-
tance of selecting the appropriate deep learning model based on the specific characteristics
of the landslide. Considering the dynamic, nonlinear, and unstable nature of landslides,
Li et al. (2023) [145] proposed a dynamic model based on CNN-LSTM for landslide dis-
placement prediction. This model decomposes displacements into trend, periodic, and
random components, with a least square quintic polynomial function modeling the trend
and CNN-LSTM predicting the periodic and random displacements. Tested on the Bazimen
landslide in TGR, the model showed higher accuracy and stability than the LSTM, GRU,
and neural networks, significantly reducing errors in periodic displacement prediction.

While temporal dependencies in landslide displacement have been extensively studied,
the exploration of spatial dependencies remains limited due to the significant variations
in the spatial structures of landslides. To address this, a novel Graph Convolutional GRU
Network (GC-GRU-N) [146] has been developed. The model employs graph convolutions
with weighted adjacency matrices to capture spatial dependencies in landslide structures;
then, these features were fed to GRU for temporal dependency learning. Applied to two
landslides in the TGR, GC-GRU-N demonstrated superior performance over comparative
models. The inclusion of external factors in attribute augmentation notably enhanced the
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prediction accuracy. In a similar approach, Kuang et al. (2022) [147] introduced a novel
landslide prediction model employing graph neural networks to tackle the challenge of
capturing complex spatial deformations and their interdependencies across various areas.
The model integrates graph convolutions, which aggregate spatial correlations among
different monitoring sites, and a locally historical transformer network for dynamic spatial–
temporal analysis. Through extensive real-world data experiments, the model demonstrates
superior performance over existing methods that solely rely on time-series data, both in
prediction accuracy and interpretability. To analyze the complex interactions of spatial and
temporal factors in landslide displacement, Yang et al. (2023) [148] introduced an innovative
model that effectively combines a CNN and a LSTM network. The model employs the
Maximal Information Coefficient (MIC) for analyzing spatial–temporal correlations in GNSS
data. Enhanced with spatial–temporal attention mechanisms, this model was applied to
the Outang landslide in the TGR Area. The results indicate that the proposed model is
highly effective in predicting displacements consistently across all six monitoring points.
In contrast, other models, while showing strong performance at certain individual stations,
do not maintain this level of accuracy on all the locations. A summary of case studies of
landslide displacement prediction is shown in Table 8.

Table 8. Summary of case studies of landslide displacement prediction.

Study Area Data Used Model Evaluated Metric and Result Reference

Jiuxianping Landslide,
Yunyang County, China

Historical
Displacement, Rainfall,

Reservoir Level

ANN, RF, MARS,
GRU (best)

MAPE (0.002), RMSE (2.169),
R2 (99.90%), Bias

Factor (1.001)

Zhang et al.
(2022) [138]

Baishuihe landslide,
TGR, China

Historical
Displacement, Rainfall,

Reservoir Level

CNN-BiLSTM (best),
CNN-RNN, CNN-LSTM,

CNN-GRU, etc.

MAE (1.789), RMSE (2.206),
MAPE (0.078), R2 (99.84%)

Lin et al.
(2023) [143]

Shuping landslide,
TGR, China

Historical
Displacement, Rainfall,

Reservoir Level

GC-GRU-N (best), T-GCN,
LSTM, MLR, SVR, etc.

MAE (6.123), MASE (0.353),
RMSE (8.321),

Jiang et al.
(2022) [146]

Houziyan Dam, Danba
County, Sichuan, China

Historical
Displacement

LandGNN (best), LSTM,
GRU, SVR, DCRNN, etc.

MAE (0.106), RMSE (0.132),
ACC (0.892), R2 (34.80%)

Kuang et al.
(2022) [147]

Outang landslide,
TGR, China

Historical
Displacement, Rainfall,

Reservoir Level

LSTM, CNN-LSTM,
Attention CNN-

LSTM (best)

MAE (0.99), RMSE (1.18),
MAPE (0.33), R2 (99.89%)

Yang et al.
(2023) [148]

5. Challenges and Opportunities

This section includes the challenges and emerging opportunities of utilizing deep
learning in landslide studies mostly with remote sensing imagery. We will discuss the
main obstacles that currently limit progress and consider how they might be addressed.
Additionally, we will spotlight promising research areas within deep learning that show
potential in addressing landslide scientific and engineering problems.

5.1. Challenges
5.1.1. Label Acquisition

A significant challenge of applying deep learning methods for landslides is how to
acquire a large number of high-quality labels. This challenge is a key obstacle across various
tasks, as good and sufficient labels are fundamental for the effective training of all the
supervised learning models. For landslide detection and mapping, labels mostly come from
manually labeled data from remote sensing images, on which experts annotate landslide
features or areas. For LSM, labels often originate from a combination of historical landslide
inventory data, terrain attributes, and land cover data, which are used to identify areas
prone to landslides. As for landslide displacement prediction, labels can indeed come
from various sources, including time-series analysis of satellite imagery, and ground-based
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monitoring data such as GPS or inclinometer measurements, as well as historical records of
landslide movement or deformation captured through field surveys.

Given the complex nature and none-linear dynamic of landslides, it still lacks a well-
organized label database for landslide studies. The historical landslide records are often
faced with issues of completeness and accuracy, particularly in remote or less monitored
regions where comprehensive data collection is challenging, leading to significant gaps
in records [149]. Additionally, a considerable portion of these records are derived from
manual labeling on remote-sensing images facilitated by field surveys. This manual process,
while crucial, is time-intensive and geographically limited, typically confined to areas that
are easily accessible [150]. This limitation in data collection poses a challenge in obtaining a
thorough and accurate dataset for landslide analysis.

Furthermore, the dynamic nature of environmental factors also poses a challenge
to label’s accuracy. The susceptibility of certain areas to landslides can rapidly change
due to environmental fluctuations [151]. Therefore, in the process of training models,
particularly when utilizing multi-source data, researchers must be vigilant about the time
of data acquisition. This ensures that the labels used are consistent with the conditions at
the time of data collection. In addition, landslide displacement prediction relies heavily on
precise, continuous historical data, typically sourced from advanced techniques like GPS
or InSAR [152]. However, the cost and technological demands of these methods can be
substantial. For example, monitoring slow-moving landslides requires continuous data
collection over a decadal time scale, which can be challenging to sustain.

Finally, the process of acquiring high-quality labels for landslide analysis necessitates
an interdisciplinary approach, integrating knowledge from geology, hydrology, and mete-
orology. This requirement adds more complexity, as understanding phenomena like the
hydrological triggers of landslides extends beyond standard geological expertise. More-
over, data privacy and accessibility issues also cause challenges, in which restrictions on
accessing detailed land surveys or satellite imagery prevents the availability of crucial
information needed for comprehensive analysis.

These factors collectively underscore the complexities and resource demands with
label acquisition in landslide analysis using supervised learning, emphasizing the need for
cross-disciplinary collaboration and advanced data gathering techniques.

5.1.2. Model Generalizability

Model generalizability poses another challenge in applying deep learning techniques
to landslide studies. This difficulty arises primarily from two aspects: data-related chal-
lenges and model training issues. These factors contribute to the complexity of ensuring
that a trained model performs effectively in real-world scenarios.

Data-related challenges: Externally, the variability in geographical and environmental
conditions, along with changing climate and land use patterns, result in the complexity of
observations [153]. Each region has its unique characteristics influencing landslide behavior,
making it challenging for a model trained on one region to perform accurately in another
region. This complexity comes from spatial and temporal heterogeneity. Landslides are
influenced by a various of factors that change over time and vary across different locations.
For example, a model trained on data from a region experiencing frequent heavy rainfall
might not predict landslide displacement accurately in an area with a drier climate. This
heterogeneity requires models to be adaptable to a wide range of environmental conditions,
or only applicable regionally. Additionally, scalability to different areas is also a challenge.
Models that are effective in small, controlled study areas often face difficulties when scaled
up to larger regions [154]. This is because larger areas exhibit a greater variety of geological
and climatic conditions, which complicates the task for a single model to comprehensively
capture and understand all these diverse nuances.

To mitigate these challenges, incorporating multi-source data can be highly benefi-
cial [155]. By integrating diverse data sources such as geological surveys, and hydrological
and land-use data, the model gains a more comprehensive view of the influencing factors.
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These broader data help the model adapt to different environmental conditions and im-
prove its predictive accuracy across various regions. For the scalability problem, it can be
mitigated by implementing some scalable machine learning algorithms. These algorithms
were designed to adjust their complexity in accordance with the geographical scope of
the data [156]. Such approaches improve the performance of a model in both small- and
large-scale regions.

Model training issues: Overfitting is a common issue of deep learning methods, which
makes the model fail to generalize to new, unseen data [19]. This issue manifests in two
primary ways. Firstly, overfitting can occur when the model is over-tuned to the nuances
of the training data, making it less effective at handling new data. This is often a technical
issue that can be mitigated through regularization, where the model is tested on various
subsets of the data to ensure its ability to generalize.

Secondly, overfitting arises when the training data are not diverse enough, leading
the model to learn patterns that are not universally applicable. To address this, domain
adaptation techniques can be employed. These techniques involve adjusting the model
to perform better in a new domain that it was not originally trained on, enhancing its
adaptability to different scenarios. Additionally, ensemble learning can be another powerful
strategy to improve generalizability [157]. This approach involves combining multiple
models, each potentially excelling in different aspects of data interpretation.

In summary, the challenges of model generalizability are multifaceted for applying
deep learning for landslide studies. While data-related challenges, such as spatial, temporal
heterogeneity and scalability, may be complex to address, strategies like incorporating
multi-source data, domain adaptation, and ensemble learning offer effective ways to
enhance the adaptability and accuracy of these models.

5.1.3. Multi-Source Data Integration

How to intergrade multi-source data poses a challenge to landslide studies, especially
when leveraging learning-based techniques. In this task, achieving reliable predictions
requires researchers to adopt data from various sources to train their models. These include
satellite imagery, aerial photography, ground-based sensors, historical landslide records,
geological surveys, and meteorological data [158], etc. Each data source offers unique
insights, such as terrain stability, weather patterns, and historical landslide occurrences,
etc. However, processing these varied data to make them suitable for model training is a
complex task.

The first challenge is handling different data format and structure. Data from different
sources often come in various formats and structures. Integrating them into a format suit-
able for deep learning models requires a deep understanding of related fields. For example,
radar remote sensing data record the amplitude and phases of microwaves reflected from
the surface, processing and understanding them require specialized knowledge in radar sig-
nal. Similarly, geological surveys might provide data in textual reports or tabular formats,
which necessitates different processing techniques. Therefore, a mature and versatile data
pre-processing system is urgently needed to help standardize and streamline this process.

Another challenge is ensuring spatial and temporal alignment. This involves aligning
data from different sources to the same geographical locations and time frames [159]. For
example, consider integrating historical landslide records with recent satellite imagery.
These historical records provide valuable insights into past landslide occurrences, but
aligning them with current satellite images can be complex due to changes in landscape over
time and differences in geographical coordinates. Temporal alignment adds another layer of
complexity. Satellite imagery captures land conditions on the acquisition dates, but aligning
this with events from the past, which may have occurred in a different landscape. To address
these challenges, techniques such as georeferencing for accurately mapping historical data
onto satellite images, and advanced algorithms for data interpolation to reconcile time
frame differences, are essential [160]. These techniques ensure that the integrated data
accurately reflect both past and current conditions for effective landslide prediction.
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Finally, developing a practical and efficient data fusion algorithm remains difficult.
Most current approaches treat data from various sources as individual channels within a
high-dimensional tensor, then feeding it into the model as a whole. For instance, meteoro-
logical data, such as rainfall intensity, and geological data, like soil type, differ significantly
in both their nature and scale. Merely stacking these diverse data as layers in a tensor may
hinder a deep learning model to effectively discern the intricate relationships among these
variables. Thus, a more reasonable strategy might entail developing model architectures
with specialized components, each specifically designed to handle the unique attributes of
individual data sources. This tailored approach could significantly enhance the model’s
ability to interpret and learn from multi-source data.

5.1.4. Model Interpretability

The interpretability of the deep learning models is not just an academic concern
but a practical necessity for landslide studies. Given the high-risk nature of landslides,
decisions can have significant safety and economic implications, gaining insights into the
interpretability of a model and understanding how it arrives at its predictions is vital. The
challenge in model interpretability arises primarily from the inherent complexity of deep
learning algorithms. These models process information in ways that are not always intuitive
to humans, making it difficult to trace how input data lead to specific predictions [161].
In practical applications, the rationale behind a model’s prediction is as crucial as the
prediction itself. For example, if a deep learning model identifies a high risk of landslide in
a specific area, decision-makers must understand the basis of this prediction. Is it due to
recent rainfall patterns, geological instability, or a combination of both factors? Such deep
insight is invaluable for informed decision-making, ensuring that responses are not only
swift but also precisely targeted to address the specific contributing factors.

To address these challenges, several methods are being developed and employed.
Visualization techniques that expose layers and activations within CNNs can offer insights
into what the network is focusing on [162]. For instance, identifying those certain filters
in the network are particularly responsive to changes in topography can be crucial for
understanding model focus areas. These tools bridge the gap between complex model
outputs and feasible strategies.

In real-world scenarios, interpretability tools like SHapley Additive exPlanations
(SHAP) have been employed to clarify model predictions [163]. In landslide susceptibility
mapping, SHAP values can indicate the importance of various input features, enhancing
the understanding of model outputs. Beyond SHAP, interpretability in deep learning
models can be enhanced by employing a variety of techniques such as Local Interpretable
Model-Agnostic Explanations (LIME) [164], Class Activation Mapping (CAM) [165], and
Gradient-weighted Class Activation Mapping (Grad-CAM) [166]. LIME aids interpretabil-
ity by approximating the model locally to highlight the contribution of each feature to
the prediction, proving useful to understand the model’s decisions for specific instances.
CAM offers a visualization method to discern which regions of the input significantly
impact predictions in CNNs. By generating a heatmap of class activations, researchers
can visualize which features are most influential in classification results. Furthering this
visualization technique, Grad-CAM utilizes the gradient information flowing into the final
convolutional layer to create a localization map that indicates critical image regions for
predictions. This approach is especially helpful for providing visual explanations of CNN
decision-making processes in landslide risk assessment.

The applicability of these methods in the landslide studies has been substantiated by
several examples. A study [167] utilizing the SHAP-XGBoost framework demonstrated
how SHAP values can elucidate the influence of various regional factors on landslide
susceptibility, highlighting the spatial heterogeneity in the contributions of different factors.
This analytical capability is integral for crafting landslide mitigation strategies. In another
instance [168], deep learning models like Resnet-50 and VGG-19, coupled with Grad-CAM
and Score-CAM, have been effectively employed for landslide detection in Turkey’s Gün-
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doğdu area. The visualization techniques offered by Grad-CAM and Score-CAM provided
crucial insights into the imaged regions most indicative of landslides, confirming the mod-
els’ accuracy and enhancing the trustworthiness of the detection systems. Furthermore, a
novel method [169] combining CAM with a cycle generative adversarial network (cycle-
GAN) was proposed to overcome the challenge of extensive data labeling for landslide
segmentation in remote sensing images. Using image-level annotations, CAM identified
approximate landslide zones, which were then refined by cycleGAN, significantly reducing
manual annotation work and yielding better mIoU scores, thus validating the potential of
weakly supervised learning in this application.

In addition, attention mechanisms in deep learning offer another approach for in-
creasing interpretability [170]. In a landslide prediction model, these mechanisms could
highlight regions in an input image that most influences the model’s prediction. This fea-
ture not only aids in model interpretability but also assists in validating the accuracy and
relevance of the model focus. The balance between model complexity and interpretability
is a critical consideration. More complex models might offer higher accuracy, but their
opaque nature can be a significant drawback for interpretation. In some cases, a slightly less
accurate but more interpretable model, such as a decision tree, might be preferable. These
simpler models can sometimes be used in conjunction with neural networks, providing
both high-accuracy predictions and a more understandable decision path [171]. Ultimately,
the goal in leveraging deep learning for landslides is to create models that are not only
accurate but also transparent and understandable.

5.1.5. Computational Demands

The utilization of computational resources for training deep learning models in land-
slide research is influenced by several key factors. The complexity of the model, often
quantified by Floating Point Operations (FLOPs), is a primary determinant, because models
with more parameters require computational power. Additionally, the scale of the dataset
and the difficulty of training—reflected in the model’s convergence behavior and the time
it takes to train—significantly impact the number of computational resources needed.

Training resource-intensive models, such as large language models (LLMs) like GPT
or BERT, demands a substantial investment in computational power, typically necessi-
tating industry-scale hardware clusters rather than the resources commonly available in
university labs. For instance, training an LLM can consume thousands of GPU days, re-
quiring considerable energy usage and financial cost. However, training such models from
scratch is often impractical for individual research groups due to the exorbitant costs and
computational requirements

In light of these constraints, future research directions point towards two viable ap-
proaches. One practical strategy is to fine-tune publicly available pre-trained LLMs to
specific tasks within the landslide domain. This method avoids the extensive computational
effort of training a model from scratch, saving resources while maintaining the model’s
advanced features. By fine-tuning locally custom datasets, researchers can adapt these pow-
erful models to their specific needs without the prohibitive expense of full model training.

Another direction is to explore a wider array of AI techniques beyond LLMs. Tradi-
tional deep learning models, although have much fewer parameters, sometimes can be
entirely adequate for certain landslide-related tasks. These models can often be trained
effectively using local GPU resources, which are more accessible to research institutions.
For example, a YOLO model [99] trained on a dataset containing thousands of annotated
satellite images of landslide occurrences can effectively identify vulnerable areas with high
precision, demonstrating the feasibility of employing more resource-efficient models in
landslide research. By embracing these adaptive strategies, researchers can effectively
navigate the computational challenges posed by advanced AI models.
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5.2. Opportunities
5.2.1. Physical Informed Neural Network for Reliable Modeling

The integration of Physics-Informed Neural Networks (PINNs) into deep learning for
understanding landslide mechanisms is an emerging area that promises to revolutionize
how we approach this complex challenge. PINNs are particularly compelling because they
blend the rigor of physical laws with the adaptability of machine learning, creating models
that are not only data-informed but also physically grounded [172].

The greatest potential of PINN is their ability to incorporate established physical
principles directly into neural network architectures. This integration is crucial, especially
in a field like landslide displacement prediction, where understanding the underlying
physical processes is as important as the data themselves. In this situation, a PINN designed
for landslide prediction could inherently understand slope stability principles, ensuring
that its predictions are aligned with geotechnical realities. In addition, this approach
significantly enhances the accuracy and reliability of predictions. Traditional machine
learning models, reliant solely on data patterns, can occasionally produce results that
are physically implausible. Meanwhile, PINNs may ensure that predictions adhere to
fundamental laws of physics.

Another critical advantage of PINNs is their efficiency in limited observations. Landslide-
related data can often be limited or inconsistent, particularly in less accessible regions.
PINNs can offset this limitation by leveraging physical laws to make informed predictions,
even in the face of sparse data. This ability makes them especially useful in regions where
traditional data collection is challenging or where historical data are lacking. Moreover,
the generalizability of PINNs across different geological and environmental conditions
is a significant asset. The physical laws that PINNs integrate are universal, allowing
these models to adapt to new areas with minimal retraining. This generalizability is
valuable for landslide prediction efforts, which often need to be tailored to diverse and
changing landscapes.

Looking ahead, the future research of PINNs for landslides is rich with possibilities.
Key among these is enhancing the integration of complex geophysical dynamics into
PINNs. This involves embedding detailed representations of landslide processes, such as
soil erosion and water infiltration, directly into neural network models. Such advancements
would enable a more precise simulation of landslide triggers and behaviors Additionally,
adapting PINNs to account for the impacts of climate change also presents a vital research
avenue. Integrating climate models into PINNs could provide insights into how shifting
weather patterns and extreme events might influence landslide occurrences, crucial for
long-term mitigation and planning.

5.2.2. Large Pretrained Models for Landslides

In deep learning, the remarkable success of large models in fields like computer vision
(CV) and natural language processing (NLP) has revealed an astonishing development.
Models such as the GPT [82] and BERT [79] demonstrate a unique phenomenon known as
“emergent behavior”. This is characterized by their ability to identify complex patterns and
gain insights from massive datasets, which extend well beyond the scope of their initial
programming. Emergent behavior arises from the models’ extensive and diverse training,
enabling them to learn and apply knowledge in unforeseen or novel contexts. It is this
capacity that has made them incredibly effective in fields like CV and NLP, where they
can understand nuances in language or identify intricate patterns in images that were not
explicitly included in their training.

Translating this concept to the field of landslide studies, there is a significant oppor-
tunity waiting to be explored. Data related to landslides are rich, encompassing diverse
types such as satellite imagery, historical weather patterns, geological data (pointwise and
maps) and text reports [173]. However, the application of large and advanced machine
learning models in this area is still untapped. The potential applications of these models
can be various. For instance, a large model trained on extensive landslide-related datasets
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could identify subtle correlations and predictors, potentially unveiling new insights into
landslide triggers and susceptibilities. This approach could lead to more accurate and
nuanced predictions, factoring in a broad spectrum of environmental and climatic variables.

Additionally, developing hybrid large models for spatial and temporal data analysis
also represents a promising avenue. Such a model, proficient in both processing and
learning from these distinct data types, could provide a holistic understanding of landslide
risks. This approach would effectively merge real-time environmental monitoring with
the analysis of historical data, offering a more comprehensive perspective on potential
landslide threats. Furthermore, landslide research currently relies mainly on traditional
sequence models like RNNs, LSTMs, or GRUs for temporal data analysis. However, the
opportunity to utilize more advanced, large pretrained models, similar to GPT or BERT,
has yet to be fully explored. These sophisticated models have the potential to bring a
new level of depth to the analysis of temporal data, such as weather patterns, time-series
displacement and historical landslide incidents, potentially surpassing the capabilities of
existing models.

5.2.3. Contrastive Learning for Advanced Data Analysis

Contrastive learning (CL), an advanced technique in unsupervised learning, it captures
key features of datasets by contrasting positive (similar) pairs against negative (dissimilar)
pairs, making it ideal for exploring large, unlabeled datasets common in environment
studies [174].

A critical application of CL lies in the development of pre-trained large models for
landslide-related tasks. Traditionally, the bottleneck in creating such models has been
the scarcity of labeled data. CL, however, circumvents this by effectively utilizing the
vast quantities of available unlabeled data. By training on these extensive datasets, a
CL-based model can develop a deep understanding of the features and patterns inherent to
landslide data. This pre-training phase equips the model with a comprehensive knowledge
base, which can then be fine-tuned for specific tasks like landslide mapping, detection, etc.
CL-based models save considerable time in downstream task training and enhances the
performance thanks to the advanced initial understanding.

In landslide studies, the integration of diverse data types is essential for accurate
analysis and prediction [175]. CL can be applied to enhance this multi-source data fusion
process. Through its distinct methodology, CL adeptly contrasts features from various
data sources, enabling it to effectively pinpoint crucial information within each dataset.
This approach is instrumental in synthesizing a comprehensive view from disparate data
types, such as remote sensing imagery, geological surveys, and meteorological data. For
example, consider the fusion of satellite imagery with geological survey data. Satellite
imagery provides a broad, top-down view of a region, capturing details about vegetation,
terrain structure, and surface moisture. Geological data, on the other hand, offers in-depth
insights into the soil composition, rock types, and underground structures of the same
region. CL can be applied to contrast these different datasets, identifying areas where
the information overlaps or complements each other. This might involve distinguishing
terrain features visible in satellite imagery that correlate with geological findings, such as
identifying areas of loose soil or potential fault lines that are prone to landslides.

Furthermore, CL is also suitable for analyzing homogeneous data sources over time,
such as time-series satellite images, to detect landscape changes [176]. This approach
is critical in change detection, where CL models contrast images from different periods
to identify terrain alterations indicative of landslides. For example, a CL model might
analyze two sets of satellite images of the same region taken years apart. By contrasting
these images, it can pinpoint areas where the landscape has changed, such as shifts in
soil patterns or vegetation cover, which could signal a potential landslide. This method
is particularly valuable for early warning systems. It enables the detection of subtle
changes in the landscape that precede landslides, like minor shifts in terrain, providing
crucial information for preemptive measures. Additionally, in a long-term context, this
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application of CL allows for the continuous monitoring of a region, contributing to a
deeper understanding of how landscapes evolve over time and how environmental factors
influence these changes.

6. Conclusions

In this work, we conducted a comprehensive review of deep learning frameworks
applied in landslide studies. Initially, we provided an in-depth introduction to fundamental
deep learning concepts, covering methods, models, loss functions, evaluation metrics, and
architectural modules, to establish the basic knowledge of deep learning. Following this, we
summarized five key deep learning frameworks, encompassing three spatial frameworks
(classification, detection, and segmentation), one temporal framework (sequence), and one
hybrid spatial–temporal framework, which collectively address a broad range of tasks in
landslides studies.

We then showcased the latest landslide studies applying these frameworks, reviewing
four critical areas: landslide detection, mapping, susceptibility mapping, and displacement
prediction. Each task was discussed in relation to the corresponding frameworks. This
categorization aids readers in understanding the most suitable frameworks for various
tasks, enhancing their grasp of applications applying these frameworks.

Our analysis revealed that deep learning has been extensively applied in landslide
studies, especially in detection tasks using two-stage and one-stage networks. However,
the exploration of advanced networks like transformer-based DERT remains uncharted. In
landslide mapping, segmentation networks have successfully achieved precise, pixel-level
landslide mapping. We observed that in landslide susceptibility mapping, sequence and
hybrid frameworks outperform traditional classification frameworks, effectively indicating
high risk areas. Similarly, for predicting landslide displacement, sequence and hybrid
frameworks have demonstrated superior capabilities in capturing historical data and
making accurate predictions, surpassing conventional methods.

Finally, we discussed the challenges and future opportunities in this field. Key chal-
lenges include label acquisition, model generalizability, multi-source data fusion, and
model interpretability. Looking ahead, we identified promising research areas such as
physically informed neural networks, large pretrained models, and contrastive learning,
each holding great potential for future exploration.
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