
 
 

 
 

 
Remote Sens. 2024, 16, 1334. https://doi.org/10.3390/rs16081334 www.mdpi.com/journal/remotesensing 

Article 

Enhancing Sea Level Rise Estimation and Uncertainty  
Assessment from Satellite Altimetry through Spatiotemporal 
Noise Modeling 
Jiahui Huang 1, Xiaoxing He 1,*, Jean-Philippe Montillet 2, Machiel Simon Bos 3 and Shunqiang Hu 4 

1 School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology,  
Ganzhou 341000, China; hjh@mail.jxust.edu.cn 

2 Institute Dom Luiz, University of Beira Interior, 6201-001 Covilhã, Portugal; jpmontillet@segal.ubi.pt 
3 TeroMovigo Company, 3030-199 Coimbra, Portugal; machielbos@pm.me 
4 Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal 

University, Nanchang 330022, China; husq@jxnu.edu.cn 
* Correspondence: xxh@jxust.edu.cn 

Abstract: The expected acceleration in sea level rise (SLR) throughout this century poses significant 
threats to coastal cities and low-lying regions. Since the early 1990s, high-precision multi-mission 
satellite altimetry (SA) has enabled the routine measurement of sea levels, providing a continuous 
30-year record from which the mean sea level rise (global and regional) and its variability can be 
computed. The latest reprocessed data from CMEMS span the period from 1993 to 2020, and have 
enabled the acquisition of accurate sea level data within the coastal range of 0–20 km. In order to 
fully utilize this new dataset, we establish a global virtual network consisting of 184 virtual SA sta-
tions. We evaluate the impact of different stochastic noises on the estimation of the velocity of the 
sea surface height (SSH) time series using BIC_tp information criteria. In the second step, the prin-
cipal component analysis (PCA) allows the common-mode noise in the SSH time series to be miti-
gated. Finally, we analyzed the spatiotemporal characteristics and accuracy of sea level change de-
rived from SA. Our results suggest that the stochasticity of the SSH time series is not well described 
by a combination of random, flicker, and white noise, but is best described by an 
ARFIM/ARMA/GGM process. After removing the common-mode noise with PCA, about 96.7% of 
the times series’ RMS decreased, and most of the uncertainty associated with the computed SLR 
decreased. We confirm that the spatiotemporal correlations should be accounted for to yield trust-
worthy trends and reliable uncertainties. Our estimated SLR is 2.75 ± 0.89 mm/yr, which aligns 
closely with recent studies, emphasizing the robustness and consistency of our method using virtual 
SA stations. We additionally introduce open-source software (SA_Tool V1.0) to process the SA data 
and reduce noise in surface height time series to the community. 

Keywords: sea level change; satellite altimetry; stochastic noise model; principal component  
analysis 
 

1. Introduction 
Since the initiation of scientific record-keeping in 1880, the global mean sea level 

(GMSL) has undergone a significant increase of over 20 cm [1]. The trend of GMSL rises 
has shown a notable acceleration in recent decades [2–4]. Robust evidence suggests that 
sea levels are not only rising but are also continuing to increase in this century at an ac-
celerating pace [5,6]. Therefore, coastal cities and low-lying regions, including islands, are 
facing significant risks associated with tidal flooding, tropical cyclone storm surges, ero-
sion, and other geohazards that result from sea level rise (SLR). These geohazards can 
exert devastating impacts on both human populations and ecosystems [7]. 
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With a growing amount of data recorded by successive SA missions over the decades, 
an accurate modeling of stochastic noise is mandatory to ensure a trustworthy estimate of 
the SLR with reliable uncertainty, through accounting for correlations between measure-
ments and correcting for common-mode noise within the networks [8]. There are existing 
scientists who have identified that common-mode noise exists in sea level time series, and 
this type of noise is shared temporally and spatially in the network [8–10]. If there are data 
records covering a period of sufficiently extended duration, one can average the residuals 
from the linear fits of a few long-duration stations to remove the common-mode noise 
from all the records that share the noise [8,11]. The common-mode noise effect generally 
uses geophysical models and a noise reduction algorithm for correction, such as the ap-
plication of a geophysical fluid-loading model [12,13], EMD, or PCA noise reduction 
[9,14,15]. However, it is unclear if geophysical fluid-loading models are appropriate for 
reducing the SLR uncertainty retrieved from SA observations. Moreover, the optimal sto-
chastic model for SA might deviate from the conventional first-order autoregressive 
model (AR) used by Royston et al. (2018) [10]. Here, accounting for long-range depend-
ency could amplify uncertainty but increase the trustworthiness of the SLR. Regarding 
spatial correlations, there is an inclination to believe that minimizing common-mode noise 
could enhance the reliability of SLR from SA observations. In this study, we aim to address 
the three questions that relate to uncertainty assessment through the following: (i) an ex-
ploration of the influence of a well-defined stochastic noise model, which includes (ii) an 
examination of the impact of reducing common-mode noise with the PCA algorithm and 
(iii) an investigation of how geophysical loading models contribute to the uncertainty. 
Thus, we aim to achieve precise trend parameters in sea level time series to enable sus-
tainable development. We will utilize BIC_tp optimal noise to identify the criterion for 
choosing the most adequate model and principal component analysis to reduce the di-
mension and remove noise, as in, e.g., the work of Jones and Levy covering seismic data 
[16,17]. This method will be used within the context of SLR estimation with SA. Alterna-
tive noise removal approaches, such as ensemble empirical mode decomposition, wavelet, 
or frequency filtering [18], are valuable but may encounter limitations in effectively dis-
tinguishing signals from noise, especially in the presence of correlations. We selected 184 
“virtual” stations without searching for spatial optimality to highlight the potential of our 
noise reduction method in retrieving an SLR that is coherent with previous studies. 

The organization of the work is as follows: First, the data and mathematical methods 
are presented in brief. In the subsequent section, a comprehensive noise analysis and a 
reduction approach are presented, aiming to facilitate the derivation of reliable uncertain-
ties, albeit potentially higher than those typically assessed due to accounting for correla-
tions. Section 3 presents the results after applying our methodology on data computed at 
184 virtual coastal stations distributed worldwide. 

2. Data, Processing Software, and Methodology 
We provide a short description of the SA theory and various geophysical fluid-load-

ing products. We analyze and model the stochastic noise in the sea surface height (SSH) 
time series and subsequently implement effective noise reduction measures. 

2.1. Satellite Altimetry and Sea Surface Height 
The radar of the satellite altimeter operates by measuring the time for signals to prop-

agate between the satellite’s elevation and the surface of the sea. The difference and the 
SA altitude measured above a specified reference surface and the altimetric range result 
in the determination of SSH, as depicted in Figure 1. The discrepancy between the sea 
level and reference ellipsoid is illustrated in Figure 1 [19,20]. 
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Figure 1. The measure of the sea surface height using a radar installed on a satellite altimeter. 

2.2. Sea Surface Height Observations from Copernicus 
We used the daily products of GLOB-AL_MULTIYEAR_PHY_001_030 

(https://doi.org/10.48670/moi-00021, accessed on 6 March 2023) from the Copernicus Ma-
rine Environment Monitoring Service (CMEMS), covering the period from 1993 to 2020, 
which is defined on a standard regular grid at 1/12 degree resolution and covering ap-
proximately 8 km [13]. To investigate the sea level change in SSH from SA, we selected 
184 sites around the coasts (also called virtual coastal stations with SA observations), as 
illustrated in Figure 2. In this study, we determined the 184 virtual coastal stations based 
on the longitude and latitude of the TG from PSMSL, and those TG stations corresponding 
to the selected virtual stations include at least 50 years of data. In addition, the virtual 
coastal stations should be distributed globally as evenly as possible. The virtual coastal 
stations have data spanning from 1993 to 2020. They cover a substantial number of coastal 
regions around the world. 

 
Figure 2. Distribution of the 184 virtual coastal stations where the SSH time series are computed. 
Red circles-area 1 (West Coast of North America), blue circles-area 2 (West Coast of North America), 
green circles-area 3 (Europe), purple circles-area 4 (Western Pacific), and yellow circles-area 5 
(Southern Hemisphere Station). 
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2.3. Geophysical Fluid-Loading Product 
The temporal changes in surface mass loading result in the elastic deformation of the 

Earth’s surface [21]. In this study, we utilized the geophysical fluid-loading products re-
trieved from the German Research Center for Geosciences to further reduce those seasonal 
effects. These products encompass the mass redistribution of hydrological loading 
(HYDL), non-tidal atmospheric loading (NTAL), sea level loading (SLEL), and non-tidal 
oceanic loading (NTOL), which caused seasonal deformations in the Earth’s surface. A 
more detailed and specific description of the 4 loading products is posted in http://rz-
vm115.gfz-potsdam.de:8080/repository, accessed on 6 March 2023. 

In this study, we employed a bicubic interpolation method to compute the environ-
mental loading deformation at each station, utilizing latitude and longitude as the param-
eters. This approach aligns with the methodology outlined by Dill et al. (2013) [22]. It is 
important to acknowledge that atmospheric models, oceanic models, and hydrological 
models typically do not maintain global mass conservation. Notably, many oceanic mod-
els maintain a constant mass without accounting for mass exchange with the atmosphere 
and land. However, we used these models for noise reduction purposes rather than geo-
physical analysis, so this characteristic had no impact on the outcomes of our study. 

2.4. Stochastic Noise Property of Sea Surface Height Time Series 
Many geophysical time series, including the GNSS time series as well as the water 

level derived from tide gauges, suffer from time-correlated noise [23–26]. If sea level var-
iations exhibit spatiotemporal correlations, these are frequently overlooked in SLR esti-
mation for the sake of simplicity and/or ignorance, leading to potential consequences such 
as an underestimation of uncertainty. A few authors have tried to perform noise analysis, 
such as Nerem et al. (2010), who conducted a sea level data merging of all SA missions, 
and the effect of color noise on the estimated rate uncertainty was found to be lower than 
0.1 mm/yr, 0.12 mm/yr, and 0.20 mm/yr using various noise models including autoregres-
sive (AR)/AR fractionally integrated (ARFI)/generalized Gauss–Markov (GGM) stochastic 
models [27]. Bos et al. (2014) further analyzed the stochastic noise model and its accuracy 
for sea level time series and found an underestimation of the rate uncertainty in the case 
of a white noise (WN) assumption [9]. 

The literature suggests that autocorrelation significantly magnifies the uncertainty 
estimates linked to formal trends, consequently affecting the confidence in drawing con-
clusions about the identification of sea level acceleration. In this work, we examined sto-
chastic noise with a time-varying seasonal signal from the linear trend estimation of the 
sea level data described in the previous section [28,29]. We selected the autoregressive 
moving average (ARMA) (p, q); ARFIMA (p, d, q); GGM; flicker and white noise (FNWN); 
random walk, flicker, and white noise (RWFNWN); and power law and white noise 
(PLWN) models following Montillet et al. (2018), Wöppelmann et al. (2012), and He et al. 
(2017, 2019) with the package Hector (with access of https://teromovigo.com/hector/ (ac-
cessed on 6 March 2023) or https://pypi.org/project/hectorp/0.1.7/ (accessed on 6 March 
2023)) [26,30–32]. To accurately model the stochastic noise properties of the SSH time se-
ries from SA, we employed the optimal noise model selection criterion called BIC_tp, as 
described in He et al. (2019) [32]. Additionally, the power spectral density (PSD) plot was 
utilized for visual control as outlined in Bos et al. (2014) and He et al. (2017) [9,26]. Thus, 
we aimed to accurately assess the stochastic noise in a sea level time series. 

2.5. Common-Mode Noise Reduction with Principal Component Analysis 
As outlined by Wdowinski et al. (1997), spatiotemporal correlated noise (also called 

common-mode noise) is inherent in regional or global geodetic networks, such as GNSS, 
and sea level time series networks [9,33]. This noise, commonly referred to as common-
mode noise, has been previously discussed in the work of various authors [8,26,34–36]. 

http://rz-vm115.gfz-potsdam.de:8080/repository
http://rz-vm115.gfz-potsdam.de:8080/repository


Remote Sens. 2024, 16, 1334 5 of 17 
 

 

Principal component analysis (PCA) has been proposed as a solution for the com-
mon-mode noise from multiple time series (e.g., Aubrey and Emery, 1986; Dong et al., 
2006) and was applied by Burgette (2013), who underlined that the PCA should perform 
more effectively on records of a consistent length and with complete datasets [8,34,37]. We 
proposed the use of a similar approach for the virtual network derived from SA observa-
tions. Our examined SA time series were optimal for reaching that goal as they spanned 
from 1993 to 2021 with an average data gap of 0.41% and a maximum data loss of 2.09%. 
We applied the PCA method to the SSH time series to reduce the spatiotemporal correla-
tion noise in the related sea level time series derived from the downloaded SA product. 
The data processing is explained in the next section in detail. In addition, we uploaded 
the theory and program related to noise reduction with principal component analysis on 
SA time series to https://www.kaggle.com/datasets/spacegeodesy/sa-tool-v1-0-for-sa-on-
sea-level-rise-estimation (see “Theory of PCA on SA noise reduction.pdf”) (accessed on 6 
March 2023).  

2.6. Toolbox for Satellite Altimetry Products Processing and Analysis 
In the realm of processing raw SA products in NetCDF format [38], we created the 

Satellite Altimetry Toolbox (SA_Tool V1.0). Accessible at https://www.kaggle.com/da-
tasets/spacegeodesy/sa-tool-v1-0-for-sa-on-sea-level-rise-estimation (accessed on 10 April 
2023), this MATLAB GUI-based toolkit facilitates the processing and analysis of SA data. 
As illustrated in Figure 3, SA_Tool V1.0 encompasses three pivotal modules: the SA 
NetCDF to grid point module, the Data Preparation module, and the SSH TS Denoise 
module. SA_Tool V1.0 offers versatile functionalities, including reading raw NetCDF-for-
mat SA observations, generating SSH time series at specified points given their latitude 
and longitude, outlier detection using 3IQR, interpolation of SSH time series, and apply-
ing PCA filtering to the SSH time series. SA_Tool’s modules operate independently, al-
lowing users to execute each model separately. Simultaneously, a well-defined intercon-
nection exists between the modules, enabling the output of one module to serve as input 
data for another. The seamless integration and synergy between these modules create 
comprehensive time series processing and analysis software. The “Trend Analysis on SSH 
Time Series with PCA” section delves into the mathematical models and fundamental 
functions of each module, offering in-depth insights into the toolkit’s capabilities. 

 
Figure 3. Main interface of SA products’ processing and analysis toolbox. 

3. Results 
3.1. Stochastic Noise Property Analysis of SSH Time Series 

For the stochastic noise property analysis of the SSH time series, we analyzed 184 SA 
virtual coastal stations (Figure 2) using the stochastic models described in the previous 
section. Figure 4 displays examples of the SSH time series of the 0009 (NLD), 0636 (USA), 
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1027 (JPN), and 1325 (CAN) sites. The SSH time series exhibit significant seasonal fluctu-
ations (e.g., 1027 and 1325 show an obvious sinusoidal signal) and an envelope corre-
sponding to slow variations. In addition, slight differences in the periodic signal changes 
(e.g., amplitude of the seasonal signal) of the four listed sites are visible in Figure 4, high-
lighting regional differences in the SSH time series. 

 
Figure 4. SSH time series from the CMEMS SA product. 

Previous studies have pointed out that a geometric time series can be modeled with 
correlated (also called colored) noise, and that different stochastic models have a signifi-
cant impact on velocity parameter estimation for GNSS displacement time series 
[23,24,32,38]. To explore the optimal noise model of the SSH time series and the related 
impact, we used the ARMA (p, q), ARFIMA (p, d, q), GGM, FNWN, PLWN, and 
RWFNWN stochastic models to fit the SSH time series. We estimated the time-varying 
seasonal signal using the software Hector V2.1 based on maximum likelihood estimation 
as described in Bennett (2008) and Bos et al. (2013) [12,28]. Figure 5 shows the PSD of SSH 
residuals when various stochastic models were considered during the estimation. The sto-
chastic models FNWN/RWFNWN/PLWN exhibit a poorer fit to the SSH time series, 
whereas the GGM, ARMA (1, 1), and ARFIMA (1, d, 1) models demonstrate a better result 
for the SSH time series of SA virtual coastal stations 0202/1299, 0819/0413, and 0485/0636, 
respectively. 

In the second step, we compared the impact of various stochastic noise models from 
the SSH time series on the velocity and velocity uncertainty. The results are displayed in 
Table A1. Under the ARMA and GGM stochastic model assumptions, the estimation re-
sults of the SSH velocity parameters are close, and show only a slight difference compared 
to the ARFIMA model. As expected, the velocity uncertainty with ARFIMA becomes 
larger than that for the ARMA and GGM models, which is linked to the long-range de-
pendency (long-term correlations) due to the time-varying amplitude of the periodical 
components [39]. The estimated velocity uncertainty is higher for the poor-fit noise mod-
els, e.g., 8.03, 314.41, and 55.45 mm/yr for FNWN, PLWN, and RWFNWN, respectively. 
These velocity uncertainties are unrealistic and linked with the unbounded increase in the 
variance at low frequency. The six sites listed in Table A1 did not select 
FNWN/FNRWWN/PLWN as optimal noise models but did select the ARMA (1, 
1)/ARFIMA (1, d, 1)/GGM models. However, the value of (p, d, q) in the ARFIMA and 
ARMA models will affect the velocity estimation and uncertainty. As an example, Bos et 
al. (2014) found rate uncertainties of 0.02 mm/yr and 0.03 mm/yr with AR (1) and AR (5), 
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respectively [9]. Figures 6 and A1 show the statistical analysis of the average absolute 
value of velocity difference on the 184 sites using the ARFIMA (p, d, q) and ARMA (p, q) 
models (p ∈ (0,5), q ∈ (0,5)) and comparing the velocity parameters with the ARFIMA (1, 
d, 1) and ARMA (1, 1) models. We can see that the difference between the ARMA and 
ARFIMA models is small, with a maximum velocity difference of 0.11 mm/yr. The results 
for the uncertainty are presented in Table A2. Under the ARFIMA and ARMA models, the 
velocity uncertainty varies around factors of 0.82~2.07 and 0.92~1.27. This difference illus-
trates that an accurate estimation of the (p, q) values is of considerable importance to ob-
tain an accurate velocity with the corresponding reliable uncertainty from the SSH time 
series. 

 
Figure 5. The PSD of SSH time series with various stochastic models. 

 
Figure 6. Statistical analysis of absolute value of the velocity difference of ARFIMA models. 
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In the following, we utilize the GGM, ARMA (p, q), and ARFIMA (p, d, q) models 
through varying p and q between 0 and 5 for the 184 SA virtual coastal stations. We use 
the BIC_tp criterion which was chosen with a higher confidence as the optimal noise 
model for the functional model of interest (trend and seasonal components), as high-
lighted in the work of He et al. (2019) [32]. The results show that 54.9%, 41.3%, and 3.8% 
of the sites are best described using the ARFIMA (p, d, q), ARMA (p, q), and GGM models. 
Among them, ARFIMA (1, d, 1), ARFIMA (3, d, 0), and ARFIMA (1, d, 2), and ARMA (2, 
2), ARMA (1, 2), and ARMA (1, 1) account for the highest proportion for ARFIMA and 
ARMA, respectively. In addition, we illustrate the spatial arrangement of the optimal sto-
chastic model using the analyzed time series of sea surface height (SSH) across 184 virtual 
coastal stations in Figure 7. No obvious patterns allow for classification with an optimal 
noise model. This outcome is reasonable, because each virtual station may differ as to the 
data quality. 

 
Figure 7. Optimal stochastic model distribution of the 184 virtual coastal stations analyzed. 

3.2. Geophysical Fluid-Loading Effect of SSH Time Series 
In this section, we investigate the extent to which geophysical loading products 

would affect the SLR and its uncertainty. Figure A2 shows the statistical distribution of 
the maximum and mean values of the amplitude of the combined HYDL, NTAL, NTOL, 
and SLEL loading deformation between 1993 and 2020 for the 184 stations of the virtual 
network. 

The histogram in Figure A2 (left, max value) highlights that the combined HYDL, 
NTAL, NTOL, and SLEL loading-induced sea surface variation can reach up to 30 mm. 
Thus, the geophysical loading effect is significant for a short time series, while it is close 
to zero on average for a long time series (mean of 28 years). This result is due to the strong 
seasonal component of the loading products. 

We further investigated the impact of geophysical fluid loadings through a reduction 
in the raw SSH time series. Figure 8 shows the statistical distribution of the correlation 
coefficients of the analyzed SSH time series with respect to the geophysical loading prod-
ucts’ time series, i.e., the four combined loading-induced height time series. Figure 8 high-
lights that the mean value of the correlation coefficients for the 184 virtual stations is −0.30, 
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respectively. Most virtual stations show a negative correlation and the correlation coeffi-
cient is small. Furthermore, after loading correction, about 88.0% of the selected optimal 
noise model remains unchanged. 
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Figure 8. The correlation coefficient distribution between SSH time series after load correction and 
the geophysical fluid-loading deformation. 

We further showed that the root mean square (RMS) of the SSH time series after re-
duction increases slightly, i.e., about 82.1% of the sites displayed an average increase of 
around 0.66 mm. Thus, the impact of the geophysical fluid-loading products on the SSH 
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than in the raw case for SSH time series. Correspondingly, the effects of reducing the raw 
SSH time series from geophysical fluid loading are small compared to what was discov-
ered for the GNSS time series [40]. We absolutely believe that geophysical fluid loading is 
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and/or local effects that are not accounted for in the products. We propose to renounce 
their use for SSH time series derived from SA observations. 
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available values. This method accounts for correlation and physical background between 
time series, offering more accurate estimates of the missing values [41]; 

(3) Detrend and noise reduction. Remove linear trends with the least square method, 
then perform common-mode noise reduction with PCA on the residual SSH time series. 
We followed the indicators that the stations (>50.0%) had clearly normalized responses 
(>25.0%) as recommended by Dong (2006) [34]. 

 
Figure 9. The flowchart of common-mode noise reduction with PCA on SSH time series. 

Figure 10 shows the spatial response of the first three PCs after applying the PCA 
noise reduction algorithm to the SSH time series. The value of the spatial response for PC1 
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After removing common-mode noise through PCA, the RMS of 96.7% of the SSH 
times series decreases by an average of 8.47 mm, and the average correlation coefficient of 
the SSH times series before and after noise reduction is 0.86. In addition, after PCA noise 
reduction, about 51.6% of the SSH time series’ optimal noise model changes. We then used 
the optimal noise models to compare the velocity parameters before and after applying 
the PCA method. Table 2 provides the distribution of variations in the velocity parameters 
after PCA noise reduction. The results show that PCA preserves the velocity of the original 
SSH time series, while the velocity uncertainty’s accuracy improves after PCA denoising 
(about 59.3% of virtual coastal stations’ velocity uncertainty is reduced). It should be men-
tioned that our stations were not chosen to provide the most favorable results, so this re-
sult highlights the importance of PCA denoising to improve SLR retrieval (both parame-
ters and uncertainty). 

Table 2. Distribution of velocity parameter variation on SSH time series after PCA noise reduction. 

Difference Interval Distribution 
Velocity  

|Raw − PCA| 
[0.00, 0.10] (0.10, 0.20] >0.20 

81.0% 9.8% 9.2% 
Uncertainty 

(PCA − Raw) 
<0 [0, 0.2] >0.2 

59.3% 31.5% 9.2% 

4. Discussion: SLR Change Estimated from SA 
In this section, we analyze the SLR change estimated from the SSH time series after 

PCA noise reduction. In Figure 11, the velocity of the SLR change for the 184 virtual coastal 
stations analyzed is illustrated, with data spanning the period 1993 to 2020. To assess the 
spatial and temporal fluctuations in sea level change, we divided the 28-year-long SSH 
time series into four time periods: 1993–2006, 2000–2013, 2006–2020, and 1993–2020. Table 
A4 shows the statistical results of velocity and related uncertainty for different periods, 
highlighting that the rate of SLR in the past 14 years (2006–2020 with mean rate of 3.02 ± 
2.10 mm/yr) has been significantly higher than in the previous 14 years (1993–2006 with 
mean rate of 2.46 ± 1.83 mm/yr) for the 184 virtual coastal stations analyzed. Using a long-
term time series is beneficial for the accuracy of the estimated parameters, e.g., with 14 
years of data, the uncertainty is around 1.8 mm/yr, and it decreases to around 0.89 mm/yr 
with 28 years of data. Note that in the appendices, Table A5 shows the SLR estimated for 
various regions. 

 
Figure 11. The spatial distribution of the velocity of the SLR change for the 184 virtual coastal sta-
tions analyzed, with data spanning the period from 1993.0 to 2021.0. 
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The geocentric ocean height rates (also referred to as GMSL) observed in the twenti-
eth century exhibited a global mean of 1.5~1.9 mm/yr. This is approximately half the rate 
observed in the twenty-first century, which is 3.2 [2.8~3.6] mm/yr. This discrepancy im-
plies a continuing acceleration in the rates of sea level rise [42,43]. We found a value of 
2.75 ± 0.89 mm/yr for the SLR. This is lower than the estimates of Cazenave et al. (2018) 
with 3.1 ± 0.3 mm/yr, and Horwath et al. (2021) with a value of 3.3 ± 0.4 mm/yr [44,45]. 
However, Camargo et al. (2022) estimated regional sea level trends between −0.4 and 3.3 
mm/yr (data ranging from 1993 to 2016) [46]. Dangendorf et al. (2019) averaged the SLR 
of eight regions, and identified that RSLR ranged from 0.2 to 3.5 mm/yr with a global mean 
of around 2.8 ± 0.1 mm/yr [5]. Therefore, our estimate is at the low end of the interval of 
values defined for the twenty-first century rates. However, our associated uncertainty is 
high, i.e., more than twice the uncertainties associated with the previous GMSL values. 
We can explain this discrepancy by considering the following: 

a. The 184 virtual coastal stations analyzed are all based on the longitude and latitude 
of TG sites from PSMSL, which are close to the coastline and have significant fluctuations 
in sea level, making the uncertainty of the rate higher. We further chose the virtual stations 
without searching for optimality. Thus, the coherence of our results with previous find-
ings highlights the importance of an accurate stochastic model and a PCA reduction; 

b. The Copernicus grid data product may have slightly lower accuracy in offshore 
areas, and further studies on the consistency of uncertainty in satellite estimates of global 
mean sea level changes from Copernicus/AVISO/CORA2.0 SA products are needed in the 
future; 

c. We modeled the time correlations within the observations with the colored noise 
models (ARMA/ARFIMA/GGM). Therefore, we increased the uncertainty to take into ac-
count the noise amplitude and long-range dependency intrinsic to the data, but also to 
enhance the reliability of the results. 

5. Conclusions 
We have investigated the spatiotemporal pattern of SSH time series with 184 globally 

distributed virtual coastal stations around the coast with data ranging between 1993.0 and 
2021.0. We have carefully analyzed the stochastic noise properties and their effect on the 
computed SLR based on the BIC_tp criterion and evaluated the geophysical fluid-loading 
effect on the SSH time series. Finally, spatiotemporal filtering with PCA has been per-
formed to mitigate the common-mode noise. The following conclusions can be drawn: 

(1) We have analyzed the stochastic noise properties of the SSH time series with the 
BIC_tp criterion under the background noise modes of ARFIMA (p, d, q), ARMA (p, q), 
GGM, FNWN, PLWN, and RWFNWN, and explored the influence of different types of 
noise on the velocity parameters of the SSH time series. Our results show that the FNWN, 
PLWN, and RWFNWN misfit the correlated noise of the SSH time series. We conclude 
that the SSH time series can be best described with the ARMA/ARFIMA/GGM models, 
which account for long-term correlated noise. In addition, the accurate estimation of the 
(p, q) values is of great importance to obtain trustworthy SSH time series velocity param-
eters. 

(2) For the first time, we have investigated the impact of geophysical fluid loading for 
SSH data on the sea level change. The results show that the correlation coefficients be-
tween the SSH time series and the combined HYDL, NTAL, NTOL, and SLEL loading-
induced sea surface variation time series are negative and small. Therefore, the geophys-
ical fluid-loading products are not appropriate for correcting the SSH time series. 

(3) After removing the common-mode noise in the SSH data with PCA, 96.7% of the 
times series’ RMS decreases (with an average of 8.47 mm reduction), and the average cor-
relation coefficient before and after noise reduction is around 0.86. Most of the uncertainty 
associated with the computed SLR after applying PCA decreases. 

(4) We have estimated the SLR change using four time periods: 1993–2006, 2000–2013, 
2006–2020, and 1993–2020. We have observed that the SLR increases at a mean rate of 2.75 
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± 0.89 mm/yr between 1993 and 2020, which is at the low end of the interval of [2.8–3.6] 
mm/yr defined by the IPCC. 

We have introduced to the community an open-source software program (SA_Tool 
V1.0) to process SA data and reduce noise in surface height time series. Overall, we sup-
port the findings of Dangendorf et al. (2019) and Carolina et al. (2022) [5,46]. Our uncer-
tainty is high compared with previous results (e.g., Cazenave et al. (2018)) [44]. However, 
our selected virtual stations do not cover all of the world’s coastlines. Therefore, we must 
be careful when comparing our estimates with those of other studies. In addition, most of 
our virtual coastal stations are located close to the coastline. Sea level observation from 
SA has faced difficulties, e.g., the influence of coastal bottom topography and water dy-
namics poses challenges in directly extracting useful information from the waveform in 
coastal areas. This difficulty contributes to a decrease in data accuracy [47]. 
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Appendix A 

Table A1. Velocity and velocity uncertainty estimated from SSH data under various models. (The 
optimal model for 0485/0636 station time series is ARFIMA (1, d, 1), The optimal model for 0413/0819 
station time series is ARMA (1, 1), The optimal model for 0202/1299 station time series is GGM). 

Value 
(mm/yr)- 

Site ARFIMA (1, d, 1) ARMA (1, 1) GGM FNWN PLWN RWFNWN 

Velocity 

0485 2.33 2.15 2.15 2.65 0.34 2.93 
0636 1.74 1.75 1.75 1.46 1.10 1.46 
0413 2.18 2.16 2.16 2.42 2.40 2.42 
0819 3.43 3.37 3.37 2.75 2.86 2.75 
0202 1.51 1.46 1.45 1.43 1.46 1.43 
1299 1.63 1.81 1.79 1.38 1.47 1.38 

Uncertainty 

0485 0.41 0.17 0.16 1.09 314.41 55.45 
0636 0.70 0.31 0.36 6.21 21.21 6.21 
0413 0.40 0.35 0.37 5.30 2.85 5.30 
0819 0.21 0.29 0.30 8.03 3.11 8.03 
0202 0.52 0.18 0.23 2.40 1.86 2.40 
1299 0.64 0.17 0.25 2.00 1.38 2.00 

Mean Uncertainty 0.48 ± 0.16 0.25 ± 0.07 0.28 ± 0.07 4.17 ± 2.51 57.47 ± 115.12 13.23 ± 19.00 
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Figure A1. Statistical analysis of absolute value of velocity difference of ARMA models. 

Table A2. Statistical analysis of velocity uncertainty ratio with different stochastic models ((p ∈ (0,5), 
q ∈ (0,5))). 

Uncertainty Ratio 
( , , )
( , , )1 1

ARFIMA p d q
ARFIMA d  

( , )
( , )1 1

ARMA p q
ARMA  

Max 2.07 1.27 
Min 0.82 0.92 

Mean 0.93 1.16 

 
Figure A2. Statistical analysis of the geophysical fluid loading effects for the 184 SA virtual coastal 
stations. 
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Figure A3. Interval distribution of |trend difference| of the SLR after loading correction. 

Table A3. Individual contribution rate of the first 11 eigenvalues sorted according to the PC order. 

PCs 
SSH 

Contribution Rate (%) 
1 28.0 
2 15.1 
3 8.7 
4 7.9 
5 6.7 
6 3.9 
7 2.7 
8 2.2 
9 2.1 
10 2.0 
11 1.9 

Table A4. Statistical results of velocity and related uncertainty for different periods. 

Values Period Mean 

Velocity (mm/yr) 

1993.0–2007.0 2.46 ± 1.83 
2000.0–2014.0 3.02 + 1.41 
2007.0–2021.0 3.02 ± 2.10 
1993.0–2021.0 2.75 ± 0.89 

Appendix B 
Here, we divide the 184 global sites into 5 sub-areas: Area 1 (West Coast of North 

America in red point), Area 2 (West Coast of North America in blue point), Area 3 (Europe 
in green point), Area 4 (Western Pacific in purple point), and Area 5 (Southern Hemisphere 
Station in yellow point). The changes in average sea level of different regions are shown 
in Table A5. We can see that there are regional differences in the sea level trend. 
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Table A5. Statistics results for velocity in four regions from 1993 to 2020. 

Area Number Velocity 
1 16 1.61 ± 0.67 
2 34 2.49 ± 0.81 
3 67 2.92 ± 0.91 
4 55 3.00 ± 0.65 
5 12 2.96 ± 0.79 
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