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Abstract: To address the issue associated with poor accuracy rates for specific emitter identification
(SEI) under low signal-to-noise ratio (SNR) conditions, where the single-dimension radar signal
characteristics are severely affected by noise, we propose an attention-enhanced dual-branch residual
network structure based on the adaptive large-margin Softmax (ALS). Initially, we designed a dual-
branch network structure to extract features from one-dimensional intermediate frequency data
and two-dimensional time–frequency images, respectively. By assigning different attention weights
according to their importance, these features are fused into an enhanced joint feature for further
training. This approach enables the model to extract distinctive features across multiple dimensions
and achieve good recognition performance even when the signal is affected by noise. In addition,
we have introduced L-Softmax to replace the original Softmax and propose the ALS. This approach
adaptively calculates the classification margin decision parameter based on the angle between samples
and the classification boundary and adjusts the margin values of the sample classification boundaries;
it reduces the intra-class distance for the same class while increasing the inter-class distance between
different classes without the need for cumbersome experiments to determine the optimal value of
decision parameters. Our experimental findings revealed that, in comparison to alternative methods,
our proposed approach markedly enhances the model’s capability to extract features from signals
and classify them in low-SNR environments, thereby effectively diminishing the influence of noise.
Notably, it achieves the highest recognition rate across a range of low-SNR conditions, registering an
average increase in recognition rate of 4.8%.

Keywords: specific emitter identification; residual network; feature fusion; attention mechanism;
adaptive large-margin Softmax

1. Introduction

In contemporary warfare, electronic countermeasure technology has emerged as the
primary defense against information warfare. The electromagnetic environment of the
battlefield has become increasingly complex due to the continuous development and
widespread use of new radar systems [1]. As a crucial aspect of electronic reconnaissance,
radar individual identification has garnered significant attention from scholars [1–6]. This
technology relies on the distinctive individual features of radar signals to accurately identify
different radar transmitters in complex environments [7].

Radar emitter individual identification is known as specific emitter identification (SEI)
or fingerprint identification [8], which is an advanced task in radar signal identification in
addition to radar signal model identification, type identification, and waveform identifi-
cation [9,10]. Specifically, it refers to analyzing and processing the radar signals received
by the receiver; extracting the unique fingerprint features in the signal due to personal
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reasons such as the equipment platform, etc.; and using it to distinguish and judge which
radar individual the received signal belongs to [11]. Unlike radar signal type and model
identification, the great difficulty and challenge in SEI is that radars of the same model
can still be correctly distinguished when they emit the same type of radar signal with
the same parameters [12], which relies on the following characteristics of the fingerprint
features: (1) uniqueness—the fingerprint features must be unique for each radar individ-
ual; (2) stability—each radar’s fingerprint features must be invariable and in a period
of observation without significant changes and fluctuations; and (3) extractability—the
fingerprint feature extraction method should be able to use the existing technical means
from the limited reception signal detection and extraction. Therefore, the key to radar
emitter individual identification can be summarized as the individual feature generation
principle, feature extraction method, and identification algorithm [13,14].

Fingerprint features can reflect the characteristics of different radars extracted from
multiple dimensions such as time, frequency, spatial, energy, and transform domain. These
features mainly arise from the Unintentional Modulation on Pulse (UMOP) caused by the
nonlinear components, such as transmitter tubes, crystal oscillators, and power amplifiers,
in the radar transmitter equipment during transmission, their device aging and tendency
to be influenced by noise, temperature, and humidity in the environment [15,16]. UMOP is
the inherent property of radar individuals, and it cannot be prevented and eliminated, so in
recent years, many researchers have investigated various characteristics of UMOP. Carroll
T L [17] established a radar power amplifier model, constructed a nonlinear mechanical
system, and used spatial analysis to distinguish radar individuals. D. Xu [18] studied the
working principle of a self-excited oscillation-type transmitter, constructed a radar RF oscil-
lator model, simulated the physical processes of free oscillation and controlled oscillation,
extracted the middle pulse envelope feature quantity, and designed a fingerprint feature
identification method to address the shortcomings of envelope rising edge and envelope
trailing edge delay measurement methods in traditional individual features. S. Yu [1]
introduced a method for radar emitter individual identification that combines variational
mode decomposition (VMD) with multiple image features. The process involves decom-
posing the radar signal using VMD, extracting features from the modal components to
create VMD–Hilbert and VMD–envelope spectra, and then employing a SEResNet50-based
network for feature fusion and recognition. L. Ding [19] developed a deep-learning-based
SEI method that leverages the bispectrum of steady-state signals for feature extraction by
applying supervised dimensionality reduction on the bispectrum followed by a Convolu-
tional Neural Network (CNN) which can efficiently identify specific emitters, enhancing
identification performance through comprehensive feature analysis. Chen Taowei et al. [20]
established a phase noise model for radar transmitters based on sinusoidal signals and
then used bispectral analysis to distinguish the differences between different radar indi-
viduals. Based on this, Wang Lei [21] used fuzzy functions to analyze the phase noise
and various unique parasitic signals generated during transmitter emission and use it as
a feature to aid recognition. M. Hua [6] proposed an improved deep learning-based SEI
method using a signal feature embedded knowledge graph composed of universal features.
Kawalec [22] et al., systematically analyzed the time domain waveforms of radar signals
and obtained the fine fingerprint features of pulse envelopes by demodulating them, includ-
ing pulse width, envelope rising edge, trailing edge, envelope top drop, etc. The research
on fingerprint features and their extraction methods is very developed; however, the design
of classification algorithms for different scenarios and problems, which is the focus of this
paper, still deserves extensive research.

Research on classification algorithms for SEI is mainly divided into two types:
(1) designing classifiers based on extracted fingerprint features, including machine learning
methods such as clustering, K-nearest neighbor (KNN), Support Vector Machines (SVMs),
and decision trees, among others, and (2) deep learning-based recognition methods, in-
cluding deep self-encoders and CNNs. Y. Zhong [14] introduced a novel multimodal deep
learning model that leverages diverse signal feature extraction techniques and deep net-
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work branches for independent processing. The model integrates these branches’ outputs
through a fully connected layer, enhancing its analytical capabilities. Wu, LW, and col-
leagues [23] investigated individual differences in pulse envelopes, modeling four types of
pulse envelopes. They proposed an intrinsic mode function distinct native attribute feature
extraction algorithm and a joint feature selection algorithm as the final SEI technique to
identify specific emitters by leveraging individual features alongside the pulse envelope.
Shieh C S [24] used pulse repetition period (PRI), carrier frequency information, and pulse
width as inputs to build a vector neural network structure to classify a radar individual.
Kong M, Zhang J, Liu W et al. [25] relied on deep neural networks to extract deep features in
the signal, ensuring the integrity of feature information, solving the problem of subjectivity
when manually extracting features, and taking the bispectral features of radar signals as the
input. Jialiang Gong [26] introduced an unsupervised SEI framework utilizing information-
maximized generative adversarial networks combined with radio frequency fingerprint
embedding. The framework was enhanced by embedding a gray histogram derived from
the signal’s bispectrum and incorporating a priori statistical characteristics of wireless
channels into a structured multimodal latent vector to improve GAN quality. However, all
these classification methods have common drawbacks: the learning of fingerprint features
by the classifier relies on a single pattern of data input, which is highly susceptible to noise.
Both manual extractions of fingerprint features and deep learning algorithms that learn
individual information from emitter signals rely on high-quality data with a high SNR. In
practical applications, when reconnaissance data becomes heavily contaminated, finger-
print features may be obscured by noise at low SNRs. Relying solely on data input from a
single modality can result in a sudden drop in classifier recognition accuracy. Moreover,
high-quality signals are often scarce, requiring high-precision reconnaissance equipment
for extended periods of measurement and accumulation, which can be costly.

Therefore, to address the issue of low accuracy in SEI under low-SNR conditions, we
have introduced an attention-enhanced dual-branch residual network that utilizes ALS.
This network extracts features from one-dimensional intermediate frequency data and
two-dimensional time–frequency images, fusing them with varying attention weights to
form an enhanced joint feature for advanced training. This method allows for the extrac-
tion of distinctive features across dimensions, ensuring robust recognition performance
amidst noise. Additionally, we replace the original Softmax with L-Softmax and further
develop ALS, which adaptively calculates and adjusts the classification margin decision
parameter, effectively reducing intra-class distances while increasing inter-class separations
without extensive experimental tuning. Our experimental results show that this approach
significantly outperforms existing methods in low-SNR scenarios, achieving an average
recognition rate improvement of 4.8%.

The remainder of the paper proceeds as follows: Section 2 is concerned with the
methodology used for this study. Detailed experimental procedures are given in Section 3.
In Section 4, we discuss the results and analyze the factors influencing the results. Section 5
presents the conclusions derived from this study.

2. Methods
2.1. Fingerprint Feature and Time–Frequency Feature Extraction
2.1.1. Signal Envelope Fingerprint Features

The envelope feature is a significant fingerprint feature in the time domain of the
radar radiation source signal and is also the most intuitive feature. It results from the
physical non-idealities caused by different production batches and the processes of var-
ious hardware devices (such as power amplifiers, etc.) in radar transmitters [14], which
manifest themselves in the time domain as varying degrees of envelope distortion and
attenuation of the signal waveform, resulting in minor differences in the envelope of the
signal pulses emitted by different radar individuals. These differences exhibit particular
levels of distinctness and consistency.
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The three features of envelope rising edge time [16] (rising edge slope), pulse width,
and envelope top drop of different radar individuals are the least affected by environmental
factors and the most reliable, and they do not fluctuate significantly with changes in the
working mode and environmental factors of radar individuals. At the same time, they
are less disturbed by multipath effects and other forms of interference in the transmission
process, so these three features are commonly selected as fingerprint features on the
envelope of radar radiation source individuals for analysis [27]. Figure 1 illustrates three
different envelope fingerprint features.
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2.1.2. Signal Phase Noise Fingerprint Features

In addition to the envelope fingerprint feature, the instability of the hardware system of
the transmitter also affects the signal phase to some extent [28]. Specifically, some nonlinear
devices’ frequency instability generated by the harmonic component and carrier cross-tuned
component coupling and other nonlinear effects, as well as the resistive thermal noise in the
circuit and the change in impedance caused by components such as inductors and capacitors
and the noise of each resonant circuit generated by the phase parasitic modulation, can be
called phase noise. In the frequency domain, it is expressed as individual differences in the
frequency deviation value [29,30].

Phase noise is the phenomenon of random phase fluctuations occurring in a signal.
It can be quantified by the single sideband power spectrum of phase noise, which is
represented by the ratio L( fm) of power PSSB of the phase-modulated single sideband
signal to the power PS of the carrier signal within a 1 Hz bandwidth centered at a frequency
deviation fm from the carrier signal, defined as

L( fm) = 10lg
(

PSSB
PS

)
(1)

The linear frequency modulation (LFM) signal is a commonly used FM signal in radar
applications and a popular method of intra-pulse phase modulation for pulse compression.
Its time–frequency relationship varies linearly, and today, it is a primary transmit signal
employed in most phased array radars. As a result, we simulated the phase noise of various
radar systems using the LFM signal as a basis. The LFM signal is defined as

S(t) = A sin
(

2π fct + kπt2 + ϕ0

)
, 0 ≤ t ≤ τ (2)

where A is the amplitude, fc is the carrier frequency, k is the FM slope, τ is the pulse width,
and the initial phase f0 is taken as 0 to simplify the analysis. The phase noise ϕ(t) of the
LFM signal can be approximated as a sinusoidal signal with a carrier frequency of fm,
expressed as

ϕ(t) = M sin(2π fmt) (3)
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where M is the amplitude constant, also referred to as the phase modulation factor, and fm
is the frequency offset. The LFM signal with phase noise can be expressed as follows:

S(t) = A sin
(

2π fct + kπt2 + M sin(2π fmt)
)

(4)

Figure 2 shows the spectrum of the LFM signal without phase noise and with three
different phase noises after a short-time Fourier transform.
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2.1.3. Time–Frequency Transform

Joint Time–Frequency Domain Analysis (JTFA) is a powerful tool in modern signal
processing for analyzing time-varying non-stationary signals. It is also an effective method
for extracting time–frequency domain features. By combining distribution information
from both the time and frequency domains, this analysis method can clearly describe the
relationship between signal frequency and time. Additionally, JTFA has a signal-filtering
function that further enhances its utility in signal-processing applications. The short-time
Fourier transform (STFT) is a widely used method in JTFA. The fundamental concept of this
technique is rooted in the principles of the Fourier transform, which is a mathematical tool
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utilized to convert signals from the time domain to the frequency domain [31]. Specifically,
for radar signals in the time domain, the Fourier transform can be expressed as follows:

F(ω) = F[ f (t)] =
∞∫

−∞

f (t)e−iωtdt (5)

where f (t) is the radar signal, F(ω) is the representation of this function in the frequency
domain, e−iωt is the complex exponential function, and ω is the angular frequency.

The STFT slices the time domain based on the Fourier transform. A sliding window
divides the time domain signal into smaller segments. This window is centered at a
specific point in time and multiplied with the radar signal to obtain its local frequency
representation. If the window is small enough to ensure the signal values are smooth,
the Fourier transform can be applied to each segment to obtain a time-varying frequency
spectrum of the signal. This approach is commonly used in signal processing applications
to analyze non-stationary signals. The STFT is defined as follows:

STFT(t, f ) =
∞∫

−∞

[z(u)g∗(u − t)]e−2jπutdu (6)

where z(u) is the radar signal source, and g(t) is the window with a small time slice that
slides along the time axis. In this study, we used the STFT to perform time–frequency
transformations on radar signals, and Figure 3 shows the time–frequency diagrams of the
LFM signal without individual features and with three different individual features added.
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2.2. The Proposed Methods
2.2.1. Introduction to the Fundamentals of CNNs

The Convolutional Neural Network (CNN), a prime example of deep learning, was
initially developed by Y. L. Cun [32]. He designed the renowned LeNet-5 for classifying
handwritten digits, leveraging artificial neurons and mechanisms of visual perception.
CNNs bear considerable resemblance to traditional neural networks as they both emulate
the structure of human neural systems and comprise neurons with learnable weights and
bias constants [32]. However, CNNs have gained wider acceptance due to their ability to
bypass complex data pre-processing and directly input raw data, relying on convolution
layers for feature map extraction [33].

Over the years, CNNs have evolved from their classic structure. In 2012, Geoffrey
and his student Alex developed the Alex network [34], introducing a nonlinear activation
function based on LeNet (ReLU) and methods to prevent overfitting (dropout, data aug-
mentation). In 2014, K. S et al. [35] proposed VGG-Net, which incorporated more layers
and utilized a uniform-size convolutional filter. The Inception structure of GoogLeNet [36]
facilitated the expansion of the entire network structure in both width and depth. Residual
Networks (ResNet) [37] introduced a residual learning framework to alleviate the training
load on the network. This concept of residuals allows for the bypassing of the layers or
segments within the network, directly forwarding the inputs to subsequent layers. This
strategy effectively helps the network prevent model degradation, improving accuracy
and stability.

The essence of CNNs lies in convolution, mirroring human cognition of the external
world, which generally progresses from local to global. Initially, there is local perceptual
awareness, which gradually expands to encompass the whole. Neurons do not need to
perceive the entire image; they only need to extract local features, which is achieved by
using a smaller convolution module to perform convolution operations on the input. As
the convolution block slides across the entire input matrix, the local receptive fields are
connected. At a higher level, the perceptions obtained from different local neurons can be
integrated to acquire global information [38]. In the domain of radar signal identification,
the data typically consist of 1D intermediate frequency (IF) data gathered by radar receivers
and 2D time–frequency images derived from time–frequency transformations of these data.
Consequently, the structure of CNNs is bifurcated into 1D-CNN and 2D-CNN, as shown in
Figure 4.
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2.2.2. Dual-Branch Assisted Training

In environments characterized by a low SNR, enhancing recognition accuracy solely
through single-modality network training proves challenging [1,3,14]. Regardless of
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whether the data are a 1D sequence or transformed into a 2D time–frequency image,
the signal fingerprint features are notably vulnerable to environmental noise interference.
Moreover, deepening the convolutional network structure may lead to model overfitting,
which contributes minimally to the enhancement of classification performance. Drawing
inspiration from the human perception process, which operates from a macroscopic–local–
macroscopic perspective [38,39], we propose a network structure designed for multimodal
training, integrating 2D images with 1D sequences.

As depicted in Figure 5, the network is composed of two distinct branches: the 2D
image auxiliary branch and the 1D sequence main branch. The auxiliary branch accepts as
input an individual 2D time–frequency map, which is derived from a short-time Fourier
transform. To mitigate the vanishing gradient problem that arises with increasing network
depth while also allowing for flexible adjustments to the network’s depth and width to
maintain its effectiveness, the architecture of ResNet alternates between “Identity Blocks”
and “Convolutional Blocks”. This design enables ResNet to perform well across various
tasks and datasets, whether there is a need for deeper feature learning or adjustments to the
depth of feature maps to meet different output requirements [37]. The shortcut connection
can be represented as follows:

XL = Xl +
L−1

∑
i

F(xi, Wi) (7)

where Xl signifies the output from the preceding residual function,

L−1

∑
i=1

F(xi, Wi) (8)
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Signifies the residual function, and XL corresponds to the output of the superposition.
Utilizing the chain rule, the inverse gradient can be derived as follows:

∂loss
∂xl

=
∂loss
∂xL

· ∂xL
∂xl

=
∂loss
∂xL

·
(

1 +
∂

∂xL

L−1

∑
i=l

F(xi, Wi)

)
(9)

The 2D feature map obtained from the auxiliary branch through the residual network is
flattened and then connected with the features of the 1D sequence main branch through the
weight allocation of the attention layer [40]. Since the influence of each local information in
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the feature map on whether the time–frequency map can be correctly identified is different,
the attention mechanism can better focus on the subtle fingerprint features of the signal [41].
The formula for the attention mechanism is as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (10)

In the formula, Q stands for Query, K for Key, and V for Value. They are derived from
the linear transformation of the input matrix X with three trainable parameter matrices,
WQ, WK, and WV , respectively. Q and KT are multiplied to generate a similarity matrix.
Each element of the similarity matrix is divided by

√
dk, where dk is the dimension size of

K. This division is referred to as scaling. When dk is large, the variance of the product of Q
and KT increases. Scaling can reduce this variance, making gradient updates more stable
during training. After normalization by the Softmax function, each value has a weight
coefficient greater than 0 and less than 1, and the sum of all values is 1. This result can be
understood as a weight matrix. Finally, the weight matrix is multiplied by V to calculate
the weighted sum, endowing the model with an attention mechanism.

The main branch is composed of 1D convolutional blocks using a pyramid struc-
ture [35]. A pyramid-structured network typically processes smaller-scale (i.e., higher-
resolution) features near the input layer, which typically include low-level visual informa-
tion such as edges and textures. Then, as the depth of the network increases, the scale of
the processed features gradually increases, and these larger-scale features usually include
parts or the whole of the object, which are higher-level visual information.

Tables 1 and 2 present the number of feature maps and the dimensions of the con-
volutional kernels for each layer. To reduce the parameter count and computational load
without compromising the receptive field, we employed multiple 1 × 3 and 1 × 5 convolu-
tional kernels as an alternative to larger ones [39]. With the network depth progression,
we augmented the convolutional kernels to derive richer deep features. Subsequently,
we applied max pooling to downsample the feature maps, which serves as a strategy to
mitigate overfitting.

Table 1. The design scheme for the auxiliary branch network.

Layer Channel

auxiliary branch

Convolution Block 1 64
Identity Block 2–3 64

Convolution Block 4 128
Identity Block 5–7 128

Convolution Block 8 256
Identity Block 9–13 256

Convolution Block 14 512
Identity Block 15–16 512

Table 2. The design scheme for the main branch network.

Layer Kernel Size Channel Max Pooling

main branch

Convolutional
Layer 1–3 1 × 3 32 1 × 2

Convolutional
Layer 4–6 1 × 3 64 1 × 2

Convolutional
Layer 7–9 1 × 5 128 1 × 4

Convolutional
Layer 10–12 1 × 5 256 1 × 4
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These features are combined with the image information extracted from the auxiliary
branch using different attention weights to form new joint features for training. By fusing
features from two dimensions, the model integrates 2D image features, which focus more
on contour and location information, with 1D sequence features that change over time,
thereby better distinguishing subtle differences in radar individual signals. Finally, the joint
features are further learned through the improved large-margin Softmax loss function (L-
Softmax) [42] to enhance the compactness within classes and separability between different
radar individuals. The improved L-Softmax is one of the innovative points of this paper,
and it will be detailed in the following section.

2.2.3. Adaptive L-Softmax Loss (ALS)

L-Softmax is a novel loss function proposed by Liu W, Wen Y, Yu Z et al. in 2016 [42]
which improves upon the foundational Softmax loss function. The Softmax loss function
is frequently used in convolutional neural networks due to its simplicity and practicality.
However, it does not explicitly guide the network to learn more discriminative classification
boundaries. The Softmax loss function calculates the cross-entropy loss of the results from
the Softmax layer, and its formula is defined as follows:

L =
1
N ∑

i
Li =

1
N ∑

i
− log

 e fyi

∑
j

e f j

 (11)

N represents the total number of samples, and f j represents the score of the j category
of sample i. The cross-entropy loss is calculated with the ground truth after passing through
the Softmax function. Generally, f is calculated by taking the dot product of the sample’s
embedding feature ϕ(x) and a weight vector W, where we denote ϕ(x) as x. Therefore,
f j = WT

j x. For categories 1 and 2, their weight vectors are W1 and W2, respectively.
Therefore, for category 1, Softmax tries to learn W1x > W2x as much as possible, that is,

||W1||2||x||2 cos(θ1) >||W2||2||x||2 cos(θ2) (12)

θ1 and θ2 are the angles between sample x and W1, W2, respectively. For the sake of
argument, let us assume that ||W1||2 =||W2||2, meaning the two weight vectors have equal
lengths. At this point, Equation (12) can be simplified as:

cos(θ1) > cos(θ2). (13)

The classification problem under this circumstance is illustrated in Figure 6.
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Considering the monotonically decreasing characteristic of the cosine function in the
interval [0, π], L-Softmax builds upon this by introducing a positive integer variable m,
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thereby generating a decision variable that can more strictly constrain the classification
boundary. Its formula is as follows:

Li = − log

 e||Wyi ||2 ||xi ||2ψ(θyi )

e||Wyi ||2 ||xi ||2ψ(θyi )+ ∑
j ̸=yi

e||Wj ||2 ||xi ||2ψ(θj)


ψ(θ) = (−1)k cos(mθ)− 2k,
kπ
m ≤ θ ≤ (k+1)π

m , k ∈ [0, m − 1]

. (14)

The L-Softmax loss has a clear geometric interpretation, as shown in Figure 6 The
variable m controls the gap between categories. As m increases, the margin between classes
becomes larger, making the learning more challenging, which can effectively prevent
overfitting [43].

The introduction of L-Softmax has significantly increased the margin between decision
boundaries of similar classes. However, its approach of directly multiplying by a fixed
m to forcibly increase the angular margin between classes for enhanced discriminative
power of the model is a simple linear method. This method requires adjusting the size
of parameter m to achieve optimal classification results when facing different problems.
Therefore, to make the adjustment of the angular margin more flexible, we propose ALS
based on L-Softmax. This allows the model to adaptively adjust the size of parameter
m according to the magnitude of the classification boundaries. In this approach, m is no
longer a fixed parameter that needs to be set based on experimental results; instead, it is
replaced with an adaptive parameter m′, whose calculation formula is as follows:

m′ =
π + c
θ + c

. (15)

In the formula, to avoid the denominator approaching 0 when θ is close to 0, a constant
c is added to both the numerator and the denominator. Furthermore, c can also control
the range of values for m′. To maintain consistency with ref. [42], where m = 2, 3, 4, we set
c = π

3 in this study. Consequently, when θ is within [0, π], m′ falls within the range [1,4].
The range of variation for m′ can be adjusted for different task requirements by calculating
c. Based on the derivation of the above formula, it becomes evident that when θ is small,
indicating that the classification margin is small and the categories are close to each other,
m′ obtains a larger value close to 4, which amplifies the angular difference, which helps to
increase the inter-class distance. As θ increases, indicating a large margin between classes
and making them easier to distinguish, the value of m′ decreases. When θ = π, it can be
derived that m′ = 1. Under this condition, the ALS method degenerates into the Softmax.
This approach avoids excessive amplification for larger values of m′, thereby maintaining
the reasonableness of the inter-class distance to a certain extent.

3. Experiments and Results

We simulated multiple datasets of pulse signals originating from different radar emit-
ters at different SNRs. These datasets were utilized for training and testing the proposed
method and other baseline methods in terms of their capabilities in SEI. The experiments
described in this article were based on the basic framework of Tensorflow and Keras to
construct neural networks with an Intel 10900K CPU, Santa Clara, CA, USA, with 128GB of
RAM and an RTX 3090 GPU.

3.1. Dataset and Parameter Setting

Typically, conventional radar signals are characterized by high-power radio frequency
pulses, with a carrier band spanning from 3 MHz to 100 GHz. In our simulation, the
radar receiver employed a local oscillator (LO) to mix with the high-frequency radar
signal, thereby down-converting the frequency of the received signal. This process yields
a lower-frequency signal via the intermediate frequency (IF) amplifier. More specifically,
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a mixer was employed in the simulation to down-convert the frequency of the received
signal, thereby ensuring a precise representation of the radar system’s operation within a
real-world environment. This mixer operates by multiplying the RF signal with the local
oscillator signal, resulting in two output frequencies: the sum and the difference between
the radio frequency fRF and the LO frequency fLO, which can be represented as follows:

fRF + fLO (16)

fRF − fLO (17)

Obviously, for the convenience of subsequent signal processing, we need to obtain the
lower frequencies fRF − fLO, which serve as the intermediate frequency (IF). By using a low-
pass filter, we can effectively suppress the summed frequencies fRF + fLO, thereby isolating
the subtracted frequencies that constitute the IF signal. According to the Nyquist sampling
theorem, the sampling frequency of a signal should be at least twice the bandwidth of it.
In most cases, the modulation bandwidth of radar signals is less than the instantaneous
receiving bandwidth of radar reconnaissance equipment, the latter typically ranging from
tens of megahertz to gigahertz. Therefore, in our experiment, we have chosen a sampling
frequency of 1 GHz.

In order to simulate the nonlinear variations in transmitted signals caused by physical
hardware as accurately as possible, we referenced the characteristics of signals received by
radar receivers in reality and several validated research articles from various dimensions,
such as the time domain and frequency domain [14,26–31]. In our simulation, we first
modeled three different radar systems by adjusting parameters such as pulse width (PW),
bandwidth (BW), and radio frequency (RF), also known as the carrier frequency. Based on
these models, we then simulated three unique transmitters for each model by varying key
fingerprint features such as the radio frequency offset (RFO), phase-noise frequency offset
(PNFO), and phase modulation coefficient (PMC) [10]. Additionally, we adjusted envelope
attributes such as the filter sample frequency (FSF) and the filter cutoff frequency (FCF).
This process allowed us to generate nine individual distinct radar emitter signals. Details
of the parameters of the simulated signals used in the experiments of this study are shown
in Table 3.

We introduced simulated additive noise into all signals to emulate a realistic electro-
magnetic environment. In radar signal processing, additive Gaussian white noise (AWGN)
is the most common noise. This noise simulates the natural random variations that occur
during the signal transmission process, with its power spectral density being uniform
across the entire frequency range. In addition, the signal may also be affected by Rayleigh
noise due to multipath effects, and due to errors in the radar system, the signal may contain
uniformly distributed noise. Figure 7 shows the superposition of different noises with the
signal for simulation.
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the addition of Rayleigh noise.



Remote Sens. 2024, 16, 1332 13 of 23

Table 3. Parameter configuration of radar individual signal fingerprint features.

Type PW/µs BW/MHz RFO/MHz PNFO/Hz PMC FSF/MHz FCF/Hz

1

1 1.5 ± 0.3 40 2.0 × 10–4
[1.0 K 10 K
100 K 1.0 M

10 M]

[1.0 0.1 0.01
0.001

0.0001]
20 200

2 1.5 ± 0.3 40 1.5 × 10–4
[10 K 80 K
3 M 18 M

70 M]

[0.5 0.1 0.03
0.007

0.0004]
30 150

3 1.5 ± 0.3 40 2.5 × 10–4
[5 K 30 K
400 K 7 M

50 M]

[0.8 0.2 0.04
0.003

0.0006]
30 200

2

1 2.0 ± 0.3 30 2.1 × 10–4
[1.1 K 11 K
101 K 1.1 M

11 M]

[1.1 0.2 0.02
0.002

0.0002]
20 200

2 2.0 ± 0.3 30 1.6 × 10–4
[12 K 60 K
4 M 20 M

80 M]

[0.3 0.1 0.02
0.006

0.0003]
30 150

3 2.0 ± 0.3 30 2.6 × 10–4
[8 K 20 K
100 K 8 M

60 M]

[0.9 0.3 0.05
0.004

0.0006]
30 200

3

1 2.5 ± 0.3 20 2.2 × 10–4
[1.2 K 12 K
101 K 1.2 M

12 M]

[1.2 0.3 0.03
0.003

0.0003]
20 200

2 2.5 ± 0.3 20 1.7 × 10–4
[15 K 70 K
5 M 22 M

60 M]

[0.4 0.1 0.01
0.005

0.0002]
30 150

3 2.5 ± 0.3 20 2.7 × 10–4
[7 K 20 K
200 K 9 M

70 M]

[0.6 0.4 0.03
0.002

0.0004]
30 200

AWGN is prevalent in many natural and artificial systems. In nature, the outcomes
of many random processes tend to follow a Gaussian distribution. According to the
Central Limit Theorem, the sum of multiple independent random variables approximates
a Gaussian distribution, even if these variables do not follow a Gaussian distribution. In
technical systems such as electronic devices, the noise generated by the superposition of
various factors, including resistance, current, and thermal effects, also tends to approximate
a Gaussian distribution. Therefore, due to the ubiquity of Gaussian white noise in both
natural and technical systems, its favorable statistical properties, and its convenience, these
properties ensure that the specific waveform characteristics of the noise do not have a
significant impact on the method’s performance. In this study, we chose to superimpose
Gaussian white noise with the simulation signal. The model representing the radar signal
intercepted by the receiver is as follows:

x(t) = s(t) + n(t) (18)

n(t) is white Gaussian noise, and s(t) is the radar signal. The SNR is defined as:

SNR = 10 log10
PS
PN

(19)

To assess the algorithm’s recognition capabilities under various low-SNR scenarios,
we configured multiple low-SNR environments for the nine distinct radar transmitter signal
datasets outlined in the preceding table. Each dataset was synthesized under identical
SNR conditions, with SNRs extending from −10 dB to −4 dB at 1 dB intervals. For these
training sets, we proportionally allocated the data into training, validation, and test sets at
a ratio of 4:1:1. For example, with a training set comprising 4500 samples at each SNR level
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(encompassing 7 SNR levels from −10 to −4 dB), the corresponding validation and test
sets would each contain 1125 samples. Figure 8 illustrates the temporal waveforms of the
nine individual radar signals listed in Table 3 at an SNR of −4 dB.
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3.2. Experiments on the Proposed Method

In this section, we present the use of the nine distinct radar emitter IF signal datasets
described in Section 3.1 as the input for the 1D sequence main branch of the dual-branch
network and the 2D time–frequency images produced through the time–frequency transfor-
mation presented in Section 2.1.3 as the network input for the 2D image auxiliary branch.

Both branches utilize the cross-entropy loss function and the Adam optimizer, with a
0.0001 learning rate and 32 batch size. Each branch extracts features from data of different
dimensions. The auxiliary branch, which extracts 2D time–frequency features, assigns
varying weights through an attention layer after the flattening layer to fuse with the 1D
features from the main branch. Subsequently, the ALS (mentioned in Section 2.2.3) enhances
the disparity of features between individual radar signal categories, preventing network
overfitting. The network weights were saved when the highest accuracy was achieved on
the validation set. The specific experimental procedure is as follows:



Remote Sens. 2024, 16, 1332 15 of 23

1. Initialize the network parameters, training and optimizing both the 1D intermediate
frequency (IF) sequence and the 2D time–frequency image branches simultaneously
in a dual-input, dual-output format;

2. Flatten the feature maps extracted by the last identity convolution block of the 2D
image auxiliary branch, calculate and assign attention weights through the attention
layer, and form a joint feature vector with the flattened features from the 1D IF
sequence main branch;

3. Apply the ALS to the joint feature vector, introducing adaptive decision variables to
constrain the classification boundaries, reducing the feature distance within the same
category of radar individual signals and increasing the disparity between categories.
Then, compute the loss of the joint feature vector;

4. The loss of the joint features serves as the overall loss for both branches, which is back-
propagated to each branch for the optimization and updating of network parameters;

5. Save the network weights when the highest accuracy on the validation set is achieved,
independently conduct each experiment and repeat each one 10 times, and take the
average of multiple experiments as the final test result.

Based on the experimental procedure described above, we documented and preserved
the variation in validation set accuracy concerning the number of training epochs, as shown
in Figure 9.
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As depicted in Figure 9, the model’s accuracy on the validation set fluctuates signifi-
cantly in the early stages of training (first 100 epochs). As the training iterations progress,
the model’s accuracy on the validation dataset tends to stabilize. It is worth noting that
after the 200th training iteration, the accuracy reaches an almost constant state, indicating
that the model has converged. We store the weights corresponding to the highest accuracy
on the validation set during the training process for subsequent testing.

To further assess the classification performance of the multi-class network, we intro-
duced additional metrics beyond accuracy and loss, including precision, error rate, F1 score,
and Kappa [44]. Accuracy is the proportion of correctly predicted observations to the total
observations. It reflects the overall effectiveness of a model in classifying instances correctly.
However, it may not be a reliable indicator on its own, especially in cases where class
distributions are imbalanced. The error rate is the proportion of incorrectly predicted obser-
vations to the total observations. Precision for a specific class is the number of true positives
(correctly predicted instances of the class) divided by the total number of samples predicted
to belong to that class (the sum of true positives and false positives). The F1 Score is the
harmonic mean of precision and recall. The F1 score conveys the balance between precision
and recall, which is particularly useful when the class distribution is uneven. Cohen’s
Kappa, commonly referred to as Kappa, quantifies the concordance between predicted
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and true classifications, adjusting for the likelihood of random agreement. This metric
offers a refined perspective on the model’s predictive performance. Consequently, we
have obtained the network classification performance scores on the test set of the proposed
method ALSDBFF under various SNRs, as presented in Table 4.

Table 4. The network classification performance metrics for radar individual signals, based on
ALSDBFF across various SNRs.

SNR/dB Accuracy Error Rate Precision F1 Score Kappa

−10 0.8053 0.1947 0.8124 0.8055 0.781
−9 0.8391 0.1609 0.8489 0.8394 0.819
−8 0.8693 0.1307 0.8772 0.8698 0.853
−7 0.9102 0.0897 0.9135 0.9102 0.899
−6 0.9431 0.0569 0.9448 0.9432 0.936
−5 0.9804 0.0196 0.9807 0.9805 0.978
−4 0.9884 0.0116 0.9886 0.9885 0.987

As shown in Table 4, the conclusion can be drawn that the proposed method performs
well under various low-SNR conditions, with the average classification accuracy steadily
increasing as the SNR improves. When the SNR is greater than or equal to −7 dB, the
classification accuracy of the test set consistently exceeds 90%. Furthermore, the model
achieves high scores in metrics such as Precision, F1 Score, and Kappa, indicating that the
model does not learn from class imbalance in this multi-classification task and maintains
good consistency and classification performance.

3.3. Comparisons with Other Baseline Methods

To demonstrate the effectiveness of the dual-branch fusion and our proposed Adaptive
L-Softmax Loss (ALS), we constructed seven models based on different network structures
or the addition of these enhancements while ensuring they all share the same convolutional
layers, kernel sizes, fully connected layers, batch normalization layers, etc. We used
1D-CNN [45] and 2D-ResNet50 [46] as the baseline control groups and then named the
1D-CNN with the added ALS function as 1D-ALSCNN and the 2D-ResNet50 with the
added ALS function as 2D-ALSResNet50. The dual-branch feature fusion of 1D-CNN
and 2D-ResNet50, which does not incorporate the ALS enhancement, is named the DBFF-
Softmax and employs the standard Softmax, while the network using L-Softmax is named
DBFF-LSoftmax. The model proposed in this paper, based on ALS, is named ALSDBFF, as
shown in Table 5.

Table 5. Differences between the proposed method and other baseline methods.

Feature Fusion L-Softmax Attention L-Softmax

1D-CNN no no no
2D-ResNet50 no no no
1D-ALSCNN no no yes

2D-ALSResNet50 no no yes
DBFF-Softmax yes no no

DBFF-LSoftmax yes yes no
ALSDBFF yes yes yes

“yes” means that the model uses this improvement; “no” means it is not used.

In Table 6, we compare the classification accuracy of the method proposed in this paper
(ALSDBFF) with other baseline methods under different SNR conditions and calculate
their average accuracy (AA). To more clearly observe the classification accuracy of different
methods for each radar individual signal category, we have plotted the confusion matrices
of these methods under the -4dB condition, as shown in Figure 10.
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Table 6. The classification accuracy of different methods at different SNRs.

Methods −10 −9 −8 −7 −6 −5 −4 AA

1D-CNN 0.7307 0.7876 0.8187 0.8542 0.8818 0.9156 0.9521 0.8486
2D-ResNet50 0.5520 0.6044 0.6641 0.7084 0.7601 0.8151 0.8658 0.7099
1D-ALSCNN 0.7671 0.7911 0.8276 0.8756 0.9067 0.9333 0.9547 0.8651

2D-ALSResNet50 0.5733 0.6151 0.6747 0.7121 0.7689 0.8213 0.8729 0.7197
DBFF-Softmax 0.7831 0.8089 0.8338 0.8836 0.9138 0.9484 0.9627 0.8763

DBFF-LSoftmax 0.7938 0.8249 0.8676 0.8862 0.9182 0.9511 0.9653 0.8867
ALSDBFF 0.8053 0.8391 0.8693 0.9102 0.9431 0.9804 0.9884 0.9051
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As shown in Table 6 and Figure 10, the recognition effects of the two baseline methods,
the 1D-CNN using only the IF sequence (Figure 10b) and the 2D-ResNet50 using only
the time–frequency images (Figure 10c), are the poorest, especially for the 2D-ResNet50
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network, which experienced confusion in most categories, with the highest misclassification
in categories 1, 3, 6, and 9. This is due to the subtle features in the images being easily
disturbed by noise, particularly evident in low-noise situations, presenting a challenge
for the 2D-ResNet50 method. Incorporating our proposed ALS method into the 1D-CNN
and 2D-ResNet50 (as shown in Figure 10e,f) can effectively enhance network recognition
performance and reduce the number of misclassified samples. Furthermore, the network
that trains and recognizes using joint features formed by fusing one-dimensional features
with two-dimensional time–frequency features, DBFF-Softmax (as shown in Figure 10d),
significantly reduces the impact of noise. The recognition effect is superior to that of using
the single features of 1D-CNN and 2D-ResNet50 alone, indicating that the dual-branch
feature fusion network structure helps improve network stability. DBFF-LSoftmax (as
shown in Figure 10g), which improves upon Softmax, further enhances the recognition
rate. Our proposed method (ALSDBFF, as shown in Figure 10a), which utilizes both the
DBFF network structure and the ALS method, greatly ameliorates the misclassification
issues in categories 1, 3, 6, and 9 and enhances the recognition accuracy of individual
radar signals under different low-SNR conditions, achieving an average recognition rate
of 90.51%. Even under the condition of −10 dB, the recognition accuracy of our proposed
algorithm exceeds 80%. Meanwhile, the model’s recognition capability steadily improved
as the SNR increased.

As illustrated in Figure 11, we also evaluated seven networks using metrics such as
Error Rate, Precision, F1 Score, and Kappa, and based on these, we plotted performance
line charts under various SNRs. From the figure, we can draw the same conclusion that the
method we proposed has enhanced the stability and accuracy of the network, achieving
superior performance across different scenarios.
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4. Discussion
4.1. Effect of Different Number of Layers in the Auxiliary Branch ResNet Network on
Experimental Results

In Section 2.2.2, we described our employment of the standard ResNet50 network
structure as the auxiliary branch within the dual-branch network architecture. This choice is
attributed to the ResNet network’s capability to preserve original features through residual
connections while training deeper neural networks, thereby enhancing the network’s ability
to learn and represent features of two-dimensional images. The classic and widely used
ResNet variants include ResNet18, ResNet34, ResNet50, and ResNet101. Therefore, when
constructing the layer structure of the auxiliary branch ResNet network, we conducted
experimental comparisons with various ResNet networks under different SNR conditions to
select the optimal network structure. Table 7 was generated using the average classification
accuracy as the metric.

Table 7. Classification accuracy of different layers of ResNet within auxiliary branch at different SNRs.

Auxiliary
Branch
ResNet

Network

−10 −9 −8 −7 −6 −5 −4 AA

ResNet-18 0.6844 0.7813 0.8462 0.9004 0.9402 0.9698 0.9716 0.8706
ResNet-34 0.7973 0.8322 0.8658 0.8978 0.9227 0.9662 0.9707 0.8932
ResNet-50 0.8053 0.8391 0.8693 0.9102 0.9431 0.9804 0.9884 0.9051

ResNet-101 0.8108 0.8311 0.8649 0.9076 0.9438 0.9609 0.9796 0.8998

As shown in Table 7, with the increase in the number of layers in the ResNet network
from 18 to 34 and then to 50, the ability of the auxiliary branch to extract features and learn
deep image information gradually strengthens, resulting in a significant improvement in
the accuracy of recognition. However, this does not mean that the deeper the network, the
better. When we increased the number of ResNet layers from 50 to 101, it was observed that
the recognition accuracy of the ResNet-101 network did not improve as expected. Instead,
there was a decrease in recognition rates in more than half of the datasets, with only a
slight advantage in the −10 dB and −6 dB datasets. Based on analysis, we believe that the
excessive depth of the network may have caused overfitting or slow optimization due to the
massive number of network parameters. Moreover, with the same set of hyperparameters,
the training time per epoch for ResNet-101 is 25 s, 225 ms/step, compared to 16s, 144
ms/step for ResNet-50. The training time cost far exceeds that of ResNet-50. Therefore, we
ultimately selected the classic structure of ResNet-50 as the auxiliary branch.

4.2. The Number of Iterations and Time per Iteration for Training the Model via Different Methods

From the experiments described in Section 3, it can be concluded that our method
performs well under various SNR conditions. However, evaluating the merits of a net-
work also requires a comprehensive consideration of the time cost incurred during its
training process, as well as the network’s convergence speed. These factors are crucial
in determining the suitable application scenarios and resource conditions for different
networks. Therefore, we compared the time cost of training different networks under the
same experimental conditions on the same dataset (taking −4 dB as an example), as shown
in Table 8.

During the experimental process, we employed an early stopping strategy for training:
If the model’s performance does not show significant improvement on the validation set
over ten consecutive training epochs, the model may begin to overfit the training data. At
this point, the training process will be prematurely terminated to prevent overfitting and to
save training time when there is no further improvement in model performance. To better
observe the training time, we have presented the results in a bar chart (shown in Figure 12).
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Table 8. The number of iterations and time per iteration for training the model via different methods.

Number of Epochs Time per Epoch (RTX3090)

1D-CNN 122 2 s
2D-ResNet50 153 15 s
1D-ALSCNN 144 2 s

2D-ALSResNet50 180 15 s
DBFF-Softmax 161 18 s

DBFF-LSoftmax 189 19 s
ALSDBFF 167 18 s
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From Table 8 and Figure 12, we can conclude that the three methods utilizing a dual-
branch network structure (DBFF-Softmax, DBFF-LSoftmax, and the proposed method)
require simultaneous training on one-dimensional data and two-dimensional images,
resulting in longer training times per epoch compared to models which only use a single
branch or a single dimension. Furthermore, the L-Softmax loss function further increases the
complexity of network optimization, necessitating more epochs for the model to converge.
Therefore, although the method proposed in this paper significantly improves network
recognition performance compared to other methods, it has issues such as its longer training
times and slower model convergence rates, making it unsuitable for scenarios that require
shorter training periods. In our future work, we will focus on model optimization and
improving training speed.

4.3. Impact of the Sampling Rate on the Performance of the Method

In our aforementioned experiment, the signal sampling frequency was fixed and set
at 1 GHz. These settings of the sampling frequency, along with the signal bandwidth
and pulse width, primarily affect the length of the simulated one-dimensional signal.
Specifically, the sampling frequency determines the number of samples per unit time, the
bandwidth affects the frequency range of the signal, and the pulse width influences the
sampling duration of the signal. These factors, together, lead to variations in signal length
and the degree of similarity between signals of different classes within the dataset. In
Section 3.1, we described how we adjusted the degree of similarity between the types of
signals by changing the pulse width and bandwidth, generating nine different types of
radar individual signals. Therefore, in this section, we mainly discuss the impact of the
sampling rate on our method and enrich and supplement the original dataset accordingly.

According to the Nyquist low-pass sampling theorem, the sampling frequency must
be at least twice the signal bandwidth. However, to ensure that the subtle individual charac-
teristics of the signal are as detailedly described and preserved as much as possible during
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the sampling process, we adjusted the sampling rates to three levels: low, medium, and
high, which are 500 MHz, 1 GHz, and 2 GHz, respectively. We validated the generalization
performance of this method under different sampling rates using the −5 dB dataset as a
representative, as shown in Table 9.

Table 9. Classification performance for proposed method based on different sampling rates.

Sampling
Rates Accuracy Error Rate Precision F1 Score Kappa

500 MHz 0.9753 0.0247 0.9786 0.9758 0.971
1 MHz 0.9804 0.0196 0.9807 0.9805 0.978
2 MHz 0.9863 0.0137 0.9872 0.9871 0.982

We concluded that, with other parameters remaining constant, changing the sampling
rate, which alters the data length, indeed impacts the network’s recognition performance,
but the overall effect is minimal. This demonstrates that the method we proposed exhibits
a certain degree of robustness on datasets of varying lengths.

5. Conclusions

To address the problem of the poor classification accuracy of radar individual signal
characteristics within low-SNR conditions, where the single-dimensional radar individual
signal features are severely affected by noise, we propose the ALSDBFF for radar individual
signal classification. We designed a dual-branch network structure to extract features from
one-dimensional IF data and two-dimensional time–frequency images and assign the
weights of the features, fusing them into an enhanced joint feature for continued training.
Additionally, we introduced the Adaptive L-Softmax method (ALS) to replace the original
Softmax, which adaptively calculates the classification margin decision parameter based on
the angle between samples and the classification boundary and adjusts the margin values
of the sample classification boundaries; it reduces the intra-class distance for the same class
while increasing the inter-class distance between different classes without the need for
cumbersome experiments to determine the optimal value of decision parameter.

The experimental results demonstrate that relative to other baseline approaches, the
proposed method significantly improves the model’s ability to extract features and classify
data under low-SNR conditions, effectively mitigating the influence of noise. Compared
to models using only single-dimensional features (1D-CNN, 2D-ResNet), the network
structure utilizing dual-branch feature fusion achieves an average classification accuracy
rate improvement of 9.7%. Further experimental investigation into the effects of ALS
indicates that employing L-Softmax aids the model in enlarging the distance between dif-
ferent classes, thus diminishing the likelihood of misclassification among similar categories.
Compared to Softmax, the average classification accuracy rate improved by 1.04%, and the
accuracy rate was further enhanced by 1.84% when using the attention mechanism with
L-Softmax compared to L-Softmax alone. However, we also recognize the shortcomings of
our method. Firstly, although the dual-branch network structure improves the network’s
classification accuracy rate and stability, it somewhat sacrifices training speed. Meanwhile,
the L-Softmax makes the model more difficult to converge during training, requiring a
greater time investment. Secondly, the auxiliary branch’s ResNet network structure is
prone to overfitting, posing challenges in enhancing the model’s validation set accuracy
throughout the training process.

In future work, we hope to continue improving this method, enhancing network
training efficiency, reducing training time costs, and reducing overfitting through designing
or improving loss function methods. Meanwhile, we plan to collect real-world data to
further refine our model to ensure its robustness and reliability in real-world applications.
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