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Abstract: Landsat cloud and cloud shadow detection has a long heritage based on the application of
empirical spectral tests to single image pixels, including the Landsat product Fmask algorithm, which
uses spectral tests applied to optical and thermal bands to detect clouds and uses the sun-sensor-
cloud geometry to detect shadows. Since the Fmask was developed, convolutional neural network
(CNN) algorithms, and in particular U-Net algorithms (a type of CNN with a U-shaped network
structure), have been developed and are applied to pixels in square patches to take advantage of both
spatial and spectral information. The purpose of this study was to develop and assess a new U-Net
algorithm that classifies Landsat 8/9 Operational Land Imager (OLI) pixels with higher accuracy than
the Fmask algorithm. The algorithm, termed the Learning Attention Network Algorithm (LANA),
is a form of U-Net but with an additional attention mechanism (a type of network structure) that,
unlike conventional U-Net, uses more spatial pixel information across each image patch. The LANA
was trained using 16,861 512 × 512 30 m pixel annotated Landsat 8 OLI patches extracted from
27 images and 69 image subsets that are publicly available and have been used by others for cloud
mask algorithm development and assessment. The annotated data were manually refined to improve
the annotation and were supplemented with another four annotated images selected to include clear,
completely cloudy, and developed land images. The LANA classifies image pixels as either clear,
thin cloud, cloud, or cloud shadow. To evaluate the classification accuracy, five annotated Landsat
8 OLI images (composed of >205 million 30 m pixels) were classified, and the results compared with
the Fmask and a publicly available U-Net model (U-Net Wieland). The LANA had a 78% overall
classification accuracy considering cloud, thin cloud, cloud shadow, and clear classes. As the LANA,
Fmask, and U-Net Wieland algorithms have different class legends, their classification results were
harmonized to the same three common classes: cloud, cloud shadow, and clear. Considering these
three classes, the LANA had the highest (89%) overall accuracy, followed by Fmask (86%), and then
U-Net Wieland (85%). The LANA had the highest F1-scores for cloud (0.92), cloud shadow (0.57),
and clear (0.89), and the other two algorithms had lower F1-scores, particularly for cloud (Fmask 0.90,
U-Net Wieland 0.88) and cloud shadow (Fmask 0.45, U-Net Wieland 0.52). In addition, a time-series
evaluation was undertaken to examine the prevalence of undetected clouds and cloud shadows
(i.e., omission errors). The band-specific temporal smoothness index (TSIλ) was applied to a year
of Landsat 8 OLI surface reflectance observations after discarding pixel observations labelled as
cloud or cloud shadow. This was undertaken independently at each gridded pixel location in four
5000 × 5000 30 m pixel Landsat analysis-ready data (ARD) tiles. The TSIλ results broadly reflected
the classification accuracy results and indicated that the LANA had the smallest cloud and cloud
shadow omission errors, whereas the Fmask had the greatest cloud omission error and the second
greatest cloud shadow omission error. Detailed visual examination, true color image examples and
classification results are included and confirm these findings. The TSIλ results also highlight the need
for algorithm developers to undertake product quality assessment in addition to accuracy assessment.
The LANA model, training and evaluation data, and application codes are publicly available for
other researchers.
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1. Introduction

The Landsat satellite series provides the longest record of land observations from
space, and the >10 million images sensed since 1972 are archived and processed by the
United States Geological Survey (USGS) into radiometrically calibrated, geolocated, and
atmospherically corrected images [1]. The most recently processed Collection 2 Landsat
data sensed by the Thematic Mapper (TM) (Landsat 4 and 5), Enhanced Thematic Mapper
Plus (ETM+) (Landsat 7), Operational Land Imager (OLI), and Thermal Infrared Sensor
(TIRS) (Landsat 8 and 9) instruments are provided with cloud and shadow masks so
that contaminated pixels may be discarded prior to analysis [2]. Accurate cloud and
shadow classification is challenging, particularly over cold and highly reflective surfaces,
or over dark surfaces, that are spectrally similar to clouds and shadows, respectively [3–6].
The need for improved Landsat cloud detection in the next Landsat collection has been
recognized [2]. In this paper, we present research to develop improved cloud and cloud
shadow masking suitable for global application to Landsat OLI data using a recent deep
learning attention model.

The Landsat sensors were not designed for cloud property investigations and lack the
appropriate spectral bands and sensor design found on dedicated cloud and atmospheric
satellite remote sensing systems [7–10]. Consequently, physically based cloud and cloud
shadow detection algorithms have not been developed for Landsat, and instead, algorithms
have used supervised classification or empirical spectral test-based approaches. Clouds
are dynamic with considerable spatial, seasonal, and diurnal variation; have variable mor-
phology, water vapor content, and height; and often co-exist at different altitudes [11–13].
Consequently, conventional supervised classification algorithms that are applied to in-
dividual Landsat pixels, using classifiers such as decision trees [14–16], artificial neural
networks [16,17], and random forests [18,19], are challenging to train in a globally represen-
tative manner and apply to provide globally reliable results. A number of empirical cloud
detection algorithms have been developed that apply spectral tests to individual Landsat
pixels [20–24]. Cloud shadow detection algorithms have also been developed and typi-
cally first require a cloud mask and use the sun-cloud-sensor geometry with an assumed
or approximately estimated cloud height (based on brightness temperature for Landsat
sensors with thermal bands) to locate potentially shaded areas, followed by spectral tests
to refine the locations of shadow pixels [25–28]. In addition, algorithms using time series
images have also been developed by assuming that cloud changes more rapidly than land
surface [4,6,29,30]). The Landsat cloud and cloud shadow masks are generated using a
version of the empirical Fmask cloud and cloud shadow detection algorithms [2].

In the last decade, a number of deep learning algorithms using convolutional neural
networks have been developed for Landsat cloud and cloud shadow detection (summarized
in Appendix A). Rather than be applied to individual pixels, they are applied to square
image subsets, termed patches, and the spatial relationships within the patch provide
additional information for cloud and shadow detection. The trained network is applied
to image patches translated across the image to classify each patch center pixel. Fully
convolutional networks (FCN) [31] classify all the patch pixels, rather than the center
pixel, and most recent Landsat cloud/shadow deep learning architectures use some form
of FCN [32,33]. In particular, the U-Net model has been adopted because it preserves
spatial detail by using skip connections between low-level and high-level features [34]. For
example, [32,33,35–38] used U-Net for cloud detection, although other architectures such
as SegNET [39] and DeepLab [40] have also been used. Most models are implemented
with patch spatial dimensions varying from 86 × 86 to 512 × 512 30 m pixels and using
the OLI visible and short wavelength bands. Of the deep learning algorithms summarized
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in Appendix A, only a minority also used the TIRS bands. Deep learning algorithms that
detect clouds and shadows separately have been developed [41,42] although this may
result in the incorrect detection of both cloud and cloud shadows at the same pixel location.
All the Landsat deep learning algorithms summarized in Appendix A were trained and
evaluated using publicly available annotated datasets derived by visual interpretation of
185 × 180 km Landsat images [22] or image spatial subsets [17].

We present a new Landsat 8/9 OLI cloud and cloud shadow masking algorithm that
classifies pixels as either clear, thin cloud, cloud, or cloud shadow. The algorithm is called
the Learning Attention Network Algorithm (LANA) and is designed for application to
OLI imagery acquired over global land surfaces, including snow and coastal/inland water.
The LANA is a form of U-Net with an additional attention mechanism that reduces small
receptive field (a small local spatial window around a patch pixel that determines the feature
values for the pixel) issues. The issues often present in convolution-based deep learning
structures are that the feature values for a pixel location in a two-dimensional feature map
(derived by a convolutional layer) may be determined by only a small local spatial window
around the pixel [43,44]. The attention mechanism was developed to capture long-range
structure among pixels [45,46] in image classification, which was inspired by the attention
success in machine translation each word generation needs to attend to all the input words
in the to-be-translated sentence to address the grammar difference [47,48]. This may be
helpful for detection of cloud shadows that always occur to the west of clouds in Landsat
imagery because the sun is in the East for the majority of global land areas except at very
high latitudes due to the Landsat morning overpass time [49]. The offsets can be quite
large relative to 30 m pixel dimensions. For example, shadows will be offset from clouds by
3.76 km and 6.92 km, considering a cloud with a global average 4.0 km cloud top height [11]
and solar zenith angles of 43.23◦ and 60◦, respectively. The global annual mean Landsat
solar zenith angle is 43.23◦ and a 60◦ solar zenith angle is typically experienced in Landsat
imagery at mid-latitudes in the winter [49]. The attention mechanism may also be helpful
for cloud detection in images with non-random cloud distributions. A customized loss
function was also used in the LANA implementation to increase the influence of minority
classes in the model training that can be missed by machine learning models [50,51].

The LANA was trained using Landsat 8 OLI top of atmosphere (TOA) reflectance and
associated cloud/shadow state annotations drawn from a pool of 100 datasets composed
of (i) 27 Landsat 8 images annotated by USGS personnel [52], (ii) 69 1000 × 1000 Landsat
8 image subsets annotated by the Spatial Procedures for Automated Removal of Cloud
and Shadow (SPARCS) project [17], and (iii) 4 Landsat 8 images that we annotated to
capture image conditions underrepresented in the USGS and SPARCS datasets. Overall
and class-specific accuracy statistics were derived from a single confusion matrix populated
with the five selected datasets from the 100 datasets. For comparative purposes, the
classification accuracies provided by a conventional U-Net model [36], referred to here
as U-Net Wieland, were also assessed. The U-Net Wieland model was considered as its
authors have publicly released their trained model, mitigating potential implementation
biases that may arise from re-training other published models. This is a real issue, as
deep learning model performance is sensitive to the implementation and hyper-parameter
settings [53,54]. The accuracy of the Fmask cloud/shadow mask provided with the Landsat
8 data was quantified, considering the same evaluation data as a benchmark.

In addition to cloud and cloud shadow accuracy assessment, the results of the three
algorithms (LANA, U-Net Wieland, and Fmask) were compared considering a year of
Landsat 8 OLI data acquired over four 5000 × 5000 30 m Landsat Analysis Ready Data
(ARD) tiles [55]. The geographic coordinates of each Landsat ARD tile pixel are fixed, and
no additional geometric alignment steps are necessary prior to multi-temporal analysis
using the ARD. Qualitative visual comparisons were undertaken, and summary statistics
of the number of cloud and shadow masked observations over the year for the algorithms
were compared. The temporal smoothness of the cloud and shadow-masked ARD surface
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reflectance time series was quantified to provide insights into the relative prevalence of
undetected clouds and cloud shadows.

The paper is structured as follows. First, the Landsat 8 training and evaluation data
are described (Section 2). Then, the methods, including the LANA algorithm, accuracy
assessment, and the algorithm time-series comparison, are described (Section 3). This is
followed by the results (Section 4) reporting the LANA training and parameter optimization,
accuracy assessment, and algorithm comparisons. The paper concludes with a discussion
of LANA and its merits over the two other cloud and cloud shadow masking algorithms.

2. Landsat Training and Evaluation Data
2.1. Landsat Operational Land Imager (OLI) Sensor

The Operational Land Imager (OLI) is on the Landsat 8 and Landsat 9 satellites.
Landsat 8 was launched in 2013 into a sun synchronous 705 km orbit with a 10:12 am
Equatorial overpass time and carries the OLI and the Thermal Infrared Sensor (TIRS) [56].
The Landsat 9 satellite was launched in 2021 into the same orbit with an 8-day phase
difference as Landsat 8 and carrying the same sensors; notably, the Landsat 9 OLI is a
clone of the Landsat 8 OLI [57]. The OLI acquires 30 m data in eight reflective wavelength
bands: coastal blue 0.43–0.45 µm, blue 0.45–0.51 µm, green 0.53–0.59 µm, red 0.64–0.67 µm,
near infrared (NIR) 0.85–0.88 µm, short-wave infrared (SWIR-1) 1.57–1.65 µm, SWIR-2
2.11–2.29 µm, and cirrus 1.36–1.38 µm. The TIRS acquires 100 m data in two thermal bands
(10.60–11.19 µm and 11.50–12.51 µm).

2.2. Landsat OLI Images and ARD

Landsat 8 OLI images and OLI ARD provided by the USGS [58] were used in this
study. The OLI images cover ~185 × 180 km and are defined in the Universal Transverse
Mercator (UTM) projection referenced by the Worldwide Reference System-2 (WRS-2) path
(along track direction) and row (across track direction) coordinate system [2]. The OLI
ARD are derived by application of the same processing algorithms as for the images but
are defined (without double resampling) in the Albers equal area projection in fixed non-
overlapping 5000 × 5000 30 m pixel (150 × 150 km) tiles referenced by horizontal (h) and
vertical (v) tile coordinates [55]. Each individual Landsat orbit overlapping an ARD tile
is stored independently. The geographic coordinates of each ARD tile pixel are fixed, and
only images that can be geolocated with <12 m RMSE are used to generate the ARD, and so
the ARD support straight-forward time-series analysis [55]. The Landsat 8 OLI images and
ARD are provided with per-pixel quality flags, including radiometric saturation and Fmask
cloud/shadow flags. The radiometric saturation flag defines the saturation status of each
band. The Fmask algorithm (described in Section 3.4) labels each 30 m pixel observation as
cloud, cloud shadow, cirrus, or clear.

The USGS has periodically reprocessed the Landsat archive in recognition of the need
for more consistently processed Landsat data. All USGS Landsat data released prior to 2017
are referred to as pre-Collection data. The Landsat images and ARD were reprocessed as
Collection 1 in 2017 and then reprocessed again as Collection 2 in 2020 [2]. The Collection
1 data were processed using more up-to-date calibration but have the same geolocation
as the pre-collection data. The Collection 2 data have a number of improvements over
Collection 1, summarized in [2], most notably improved geolocation due to the availability
of new European Space Agency ground control data [59,60]. These collection geolocation
differences are important because of the need to ensure meaningful alignment of the
annotated cloud/shadow data and Landsat 8 OLI data used in this study.

2.3. Annotated Cloud and Cloud Shadow Datasets

To undertake the training and accuracy assessment, a pool of 100 sets of annotated
Landsat 8 OLI data was used. The pool is globally distributed (Figure 1) and covers a range
of surface types and cloud covers. The pool is composed of (i) 27 USGS-supplied cloud and
shadow annotated Landsat 8 images [52], (ii) 69 annotated 1000 × 1000 Landsat 8 image
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subsets defined by the Spatial Procedures for Automated Removal of Cloud and Shadow
(SPARCS) dataset [17], and (iii) 4 annotated Landsat 8 images (a completely cloudy image,
a partially clear image acquired over an urban area, and two completely clear images) that
we annotated by careful visual inspection and that were selected to capture conditions
underrepresented in the USGS and SPARCS datasets. For convenience, we refer to these
four images as South Dakota State University (SDSU) images.
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Figure 1. Distribution of the annotated USGS images, SPARCS image subsets and SDSU images, each
composed of Collection 1 Landsat 8 OLI 30 m TOA reflectance bands and corresponding 30 m annota-
tions (cloud, thin cloud, cloud shadow, or clear). The USGS and SDSU images cover ~185 × 180 km
(typically 6200 × 6000 30 m pixels) and the SPARCS subsets cover 1000 × 1000 30 m pixels. The
circled USGS images show the five set aside annotated USGS Landsat 8 OLI evaluation images used
for accuracy assessment (Section 3.5). The locations of the Collection 2 ARD 5000 × 5000 30 m pixel
tiles are also shown (see Section 2.4).

The USGS and SPARCS annotations were derived from pre-Collection imagery, and
so, as they have the same geometry as Collection 1, we transferred their annotations to
the corresponding Collection 1 Landsat 8 OLI imagery. No Collection 2 images were used
to minimize any potential misregistration with the pre-Collection annotations. The four
SDSU annotations were purposefully generated using Collection 1 imagery to be consistent.
Small spatial coverage mismatches that can occur at the image swath edges between the
Collection-1 and pre-Collection data (due to differences in handling the staggered spectral
band readout at the image edges, see Figure 1c in [61]) were resolved by clipping so
that only the spatially intersecting areas of the pre-Collection and Collection-1 images
were retained.

The USGS annotated 32 Landsat 8 OLI images to define each 30 m pixel as cloud,
thin cloud, cloud shadow, or clear [52]. The dataset included images with missing cloud
shadow annotations, and five images had visually indistinguishable cloud and snow areas
that were unlikely to have been annotated perfectly, so they were discarded to leave a
total of 27 annotated USGS images (Figure 1, purple). Eight of the 27 USGS images had
cloud shadows not annotated over water, and two had thin clouds that were incorrectly
annotated, so we refined their annotations. The SPARCS annotations define 30 m pixels as
shadow, shadow over water, water, snow, land, cloud, or flooded [17]. We reclassified these
seven classes into four classes (cloud, thin cloud, cloud shadow, or clear) by combining the
water, land, flooded, and snow classes as clear, and combining the shadow and shadow
over water classes as cloud shadow. Ten of the SPARCS 1000 × 1000 30 m pixel subsets
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had unreliable annotations and were removed to leave 69 subsets (Figure 1 cyan). The
four SDSU annotated Landsat 8 images (Figure 1, green) were composed of a completely
cloudy image, two completely clear images, and a partially clear image over an urban area
and were included as these conditions were underrepresented in the USGS and SPARCS
annotated data. The completely cloudy image was sensed over the eastern U.S. and was
selected because it contained a variety of cloud spatial textures. The two completely clear
images were sensed over a low-reflectance forested area in the southeast U.S. and over a
highly reflective snow-covered area in northeast China. The partially clear urban image
was sensed over the Seoul metropolitan area in South Korea and contained a complex of
cloud, thin cloud, cloud shadow, and clear pixels.

2.4. Training Patch Extraction

A total of 16,861 512 × 512 30 m pixel training patches (Table 1) were extracted from the
100 annotated datasets. The patches were extracted by translating a 512 × 512 pixel window
in steps (i.e., strides) of every 256 pixels in the x and y axes, and only patches completely
containing observations (no unsensed pixels) were retained. This was straightforward to
implement for the SPARCS 1000 × 1000 30 m pixel square image subsets. However, due to
the inclined orientation of the Landsat images, the number of training patches that could be
extracted from the USGS and SDSU annotated imagery was maximized by staggering the
patch locations. Data augmentation techniques such as flipping and rotating patches [62]
were not used because they do not preserve the systematic westward offset of cloud
shadows relative to clouds observed in Landsat imagery. Each patch was composed of the
eight Landsat 8 OLI TOA reflectance (coastal blue, blue, green, red, NIR, SWIR-1, SWIR-2,
and cirrus) bands. The OLI radiometric saturation status was not considered as, unlike
earlier Landsat sensor data, the OLI reflective wavelength bands are rarely saturated [63].
The two TIRS thermal bands (10.60–11.19 µm and 11.50–12.51 µm), which are provided in
30 m resampled from the acquired 100 m resolution [2], were not used as we experimentally
found that their use negatively impacted the classification performance (discussion).

Table 1. Summary of the training 512 × 512 30 m pixel patches extracted from the annotated data.

Dataset Number of Landsat 8 Images Number of Patches

USGS 27 images 14,586
SPARCS 69 1000 × 1000 30 m pixel image subsets 621

SDSU 4 images 1654

2.5. Unannotated Landsat 8 ARD Time Series

Differences among the three algorithms (LANA, U-Net Wieland, and Fmask) were
examined considering all the Collection 2 Landsat 8 OLI ARD reflectance acquired in 2021
at four ARD tiles. The tiles (Figure 1 red) were selected across the conterminous United
States (CONUS) to encompass different land surfaces and cloudiness and to not coincide
with any of the 100 annotation data. Figure 2 illustrates the four tiles showing the median
red, green, and blue (true color) reflectance derived over the summer (May to September
2021). Table 2 summarizes for each tile the number of days in 2021 with tile observations,
i.e., when some or all of the 5000 × 5000 30 m ARD tile pixels were sensed by Landsat 8
(regardless of cloud or cloud shadow state), and the number of days varied among the four
tiles from 45 to 68 days. These count values are greater for the higher latitude tiles (smaller
vertical tile coordinate values) because the Landsat swaths converge further northward [64].
The total number of tile 30 m pixel Landsat 8 OLI observations (regardless of cloud and
shadow status) over the year varied from approximately >660 to >830 million tile pixel
observations. The percentage of tile pixel observations identified by the Fmask as cloud or
cloud shadow varied by a factor of three from 22.5% (Mexico/US) to 65.7% (Canada/US)
and was intermediate at 45.3% (Florida) and 46.9% (South Dakota) for the other two tiles.
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Figure 2. The four 5000 × 5000 30 m pixel ARD tiles used in the time-series analysis (a) tile h28v04
(Canada/US), (b) tile h05v13 (Mexico/US), (c) tile h15v06 (South Dakota), (d) tile h27v19 (Florida).
The median of the cloud-free red, green, blue (true color) Landsat 8 TOA reflectance sensed from
1 May to 30 September 2021 (with Fmask labeled clouds and cloud shadows masked out) is illustrated.
The colored boxes show 500 × 500 30 m subsets selected for detailed visual examination that are
illustrated in Section 4.

Table 2. Summary of the four Landsat ARD horizontal and vertical tile coordinates, the tile geo-
graphic locations, and the number of days that the tile was observed by Landsat 8 from 1 January
to 31 December 2021. The last two columns show the total number of tile 30 m pixel observations
(pixels with OLI reflectance), and the percentage labeled by the Collection 2 Fmask as cloud or cloud
shadow, for 1 January to 31 December 2021.

ARD Tile Location

Numbers of
Days in 2021

with
Observations

Total Number of
30 m Pixel

Observations
in 2021

Percentage of Tile 30 m
Pixel Observations in
2021 Flagged as Cloud

and Cloud Shadow

h28v04 Canada/US 45 819,622,208 65.75
h05v13 Mexico/US 46 765,724,406 22.54
h15v06 South Dakota 68 831,168,336 45.31
h27v19 Florida 46 653,119,627 46.93

The Canada/US and Mexico/US tiles were selected because they were found to be
the least and most observed ARD tiles across the CONUS based on examination of all the
Landsat 4, 5, and 7 ARD for 1982 to 2017 (36 years) [65]. The least observed tile (h28v04) is
located on the Canada–US border encompassing Quebec, Vermont, and New York states,
and includes forest, cropland, and urban land covers (greater Montreal area) and water,
including the St. Lawrence River flowing southwest to northeast and Lake Ontario in the
southwest (Figure 2a). The most observed tile (h05v13) is located on the Mexico–US border,
encompassing Baja California, Mexico, and southern California and Arizona, and includes
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areas of dryland shrubs, desert, and irrigated croplands (Figure 2b). Two ARD tiles that
we examined in previous studies [61,66,67] were also considered. They are an urban and
coastal tile (h27v19) encompassing the Miami metropolitan area, wetlands (the Everglades
water), and water (the Straits of Florida) (Figure 2d), and an agricultural tile (h15v06) in
South Dakota that is covered predominantly by cropland and grassland with the Missouri
river running from north to south and that is often snow covered in the winter (Figure 2c).

3. Methods
3.1. Learning Attention Network Algorithm (LANA)

Figure 3 illustrates the LANA structure used to classify each pixel of a 512 × 512 30 m
pixel patch as cloud, thin cloud, cloud shadow, or clear. Following the conventional U-Net
structure, the LANA has three main parts—an encoder, a bottleneck, and a decoder [34].
The encoder is directly connected to the input 8-band reflectance image patch. It consists of
four convolutional blocks, with each resulting in ck mk × mk feature maps storing feature
values (mk × mk × ck) (k = 1, 2, 3, and 4 representing the four convolutional blocks), where
mk = 512/2k. The feature map is reduced by a factor of two in each dimension because
2 × 2 max-pooling was used to suppress irrelevant information (by selecting the maximum
value from 2 × 2 windows across each feature map). The four ck values were set as 64,
128, 256, and 512, respectively, i.e., the feature map number increases with decreasing
feature map dimensions to maintain a similar amount of information typically used in
U-Net models [34,68]. Each convolution block consists of two 3 × 3 kernel convolution
layers, followed by a batch normalization layer. The bottleneck consists of one convolution
block with 1024 feature maps. The decoder consists of four convolutional blocks, each
starting with a transpose convolutional layer and resulting in ck ′ mk ′ × mk ′ feature maps
storing feature values (mk ′ × mk ′ × ck ′ ) (k′ = 1, 2, 3 and 4 representing the four decoder
convolutional blocks). The transpose convolution layer is used to increase the size of the
feature maps by 2 in each dimension. The transpose convolution layer is implemented
by inserting a column/row of 0 values after each column/row of feature maps to expand
by 2 in each dimension and then applying a 2 × 2 convolution. The four ck′ values
derived in the decoder were set as 512, 256, 128, and 64, respectively, to mirror the encoder
implementation. The feature maps derived from the last decoder convolution layer are
applied by a 1 × 1 convolution with a softmax activation function to derive the probability
of each class for each patch pixel. All the encoder, bottleneck, and decoder convolutional
layers used the rectified linear unit (ReLU) activation function so that any negative values
were set to zero and positive values remained unchanged [69].

The U-Net has skip connections (Figure 3 horizontal gray lines) in the encoder–decoder
architecture so that high spatial resolution information that is progressively smoothed in the
encoder layers is recovered in the decoder layers. Conventionally, U-Net skip connections
are used to copy feature maps from the encoder (Figure 3, light gray rectangles) to their
decoder block counterparts. The attention mechanism was implemented in the LANA by
transforming the encoder feature maps when they are copied to the decoder side in the
skip connections. The attention mechanism is described below.

The attention mechanism was developed to increase the effective receptive field in
convolutional networks [45,46]. In convolution-based structures, such as U-Net, the feature
values for a patch pixel location are determined by a small local spatial window around
the pixel, termed the receptive field. The receptive field contribution to the classification
output is greatest in the center and decreases rapidly towards the receptive field edges [44]
and can be modelled by the radius of a Gaussian function beyond which the contribution
is negligible [43]. For example, a U-Net with the same architecture as LANA but without
attention has a receptive field of 140 × 140 pixels and an effective receptive field that can
be approximated by a circular region with a radius of less than only 13 pixels [70]. The
receptive field size increases with the number of convolutional, max-pooling, and transpose
convolution layers [44,71,72]. The attention mechanism is implemented by transforming
each feature into a feature map to a new feature derived as a weighted combination of all
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the features in the feature map. The attention weights are defined using similarity scores
among the features in a linearly transformed space, and so this process is usually called
self-attention as the feature map itself is used to calculate the weights [45,46].
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Figure 3. The LANA structure used to classify 512 × 512 30 m pixel patches with eight Landsat
8 spectral bands into four classes: cloud, thin cloud, cloud shadow, and clear. The horizontal gray
arrows show skip connections used to copy feature maps from the encoder (light gray rectangles) to
their decoder block counterpart. The black curved arrows show the attention mechanism interactions.

The attention mechanism was implemented in the LANA (shown by the black curved
arrows in Figure 3) by transforming the encoder feature maps as they are copied to the
decoder side. There are c feature maps (for example, c = 64 in the top layer in Figure 3), and
each has two dimensions with m × m elements (for example, m = 512 in the top layer in
Figure 3). The transformed encoder feature map is derived [45] as:

f ′i = γWv(
m2

∑
j

aijWh f j) + fi (i = 1, 2, . . . , m2) (1)

aij =
exp

(
Wggj(Wf fi)

T
)

∑m2

i exp
(

Wggj(Wf fi)
T
) (2)

where f ′i and fi are feature vectors (each 1 × c) at position i (1, 2, . . ., m2) in the c feature maps
after and before applying the attention model, and γ is a learnable scalar value initialized
as 0 and is used to gradually increase the attention model contributions in the training. The
terms Wh (c × c) and Wv (c × c) are two learnable coefficient matrices, aij is the attention
weight indicating the extent to which the ith position attends to the jth position, gj is another
feature vector at position j (1 × c) from the decoder m × m × c feature maps that the encoder
feature maps are copied over, and W f (c × c) and Wg (c × c) are two learnable coefficient
matrices. The convolution block symbol k is omitted in Equations (1) and (2) as the attention
model was applied to all encoder feature maps derived from the four convolution blocks
(Figure 3). The bias coefficients normally following the weight coefficients are omitted
in the above equations for convenience. The attention model is memory intensive since
there are m2 × m2 aij attention weights that need to be computed and stored (which is
considerably greater than the number of coefficients needed to compute m2 × c feature
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maps). For example, for the first encoder layer using attention with m = 512 and c = 64,
the attention weights require m2/c = 4096 times more memory than the feature maps
themselves. For this reason, Wh and Wv are used to reduce the memory requirements
without significant performance decreases [45], with Wh compressing the input feature
vector to 1 × c (i.e., c < c) and then Wv expanding back to (1 × c). In this study, c was set as
c/8 following [45]. To further reduce memory requirements, we limited the feature map
dimensions (m) in the attention weights calculation to be no bigger than m = 64. Thus, the
feature maps after the first three convolutional blocks in Figure 3 (with 512 × 512, 256 × 256,
and 128 × 128 dimensions) were first compressed into m × m = 64 × 64 feature maps using
a max pooling operation (e.g., a 512 × 512 feature map was compressed to a 64 × 64 feature
map using 8 × 8 max pooling) before application of Wh, W f, and Wg. Accordingly, the Wv
convolution was replaced by an (m/m) × (m/m) transpose convolution for those derived
feature maps with max pooling compression.

3.2. LANA Training, Classification, and Implementation Environment

The LANA was initialized with random network coefficient values, and then the
mini-batch gradient descent was used to train the coefficients [54]. The network coefficients
were iteratively updated using the gradient values of a loss function determined with
randomly selected mini-batches of the training patches. A customized loss function was
implemented, defined as:

loss(X, Y) =
∑

npatch
i=1 ∑512×512

j loss(xi,j, yi,j)

npatch × 512 × 512
(3)

loss(xi,j, yi,j) = −∑4
k=1

[
(yi,j == k)× wk×pk,i,j

]
(4)

where X represents the npatch Landsat 8 TOA reflectance training patches, each composed
of 512 × 512 pixels and 8 spectral bands, Y represents the corresponding npatch annotated
512 × 512 patch values with each pixel annotated as cloud, thin cloud, cloud shadow,
or clear, xi,j and yi,j represent the TOA reflectance values and annotated label values,
respectively, at patch pixel location (i = 1, 2, . . ., 512 × 512; j = 1, 2, . . ., 512 × 512). The
value pk,i,j is extracted from the last layer of the U-Net (i.e., the softmax activation function
output) and defines the probability of class membership of pixel (i, j) in the patch for classes
(k = 1, 2, 3, 4), and wk is a vector describing the weight allocated to each of the four classes.
The weights wk=1,2,3,4 enable the loss function to be customized to the training data and are
helpful to increase the influence of minority classes derived from the trained model that can
be missed by machine learning models [50,51]. Specifically, the weights were implemented
so that rarer/minority classes have larger weights [73,74] as:

wk =
ntotal
4 nk

(5)

where ntotal is the total number of training pixels and nk is the number of training pixels
in class k. In this study, the annotated clear, cloud, thin cloud, and cloud shadow pixels
(considering all 16,861 patches, Table 1) occupied 71.90%, 17.06%, 7.15%, and 3.89% of the
total summed training patch area. Thus, the wk values were set as 6.42, 3.48, 1.46, and 0.35
for the cloud shadow, thin cloud, cloud, and clear classes, respectively.

The LANA coefficients were iteratively updated using the gradient values of the
loss function (Equations (3) and (4)) determined with a randomly selected mini-batch of
training patches extracted from the 16,861 patches (Table 1). In this process, mini-batches
of training data were passed in the forward propagation through the network, and then the
estimated error between the predicted and training data class labels was used to update
the coefficients during the back propagation [75]. An epoch of iterations is completed
when all the training patches are used, and many epochs are needed to update the network
coefficients until a satisfactory classification performance is obtained.
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The trained LANA model was applied to classify a Landsat OLI image in
512 × 512 30 m pixel windows that were translated in steps of 104 pixels (i.e., stride = 104)
in the image x and y axes. Only the central 408 × 408 pixels of each window classification
were retained, as the edge pixel results are less reliable [34]. The LANA was implemented
on a server with 4 NVIDIA Tesla V100 PCIe GPUs, each with 32GB memory (160 cores
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz and 3TB memory). The TensorFlow 2.7.0-Keras
framework [76] was used.

3.3. LANA Structure and Parameter Optimization

The LANA has 64, 128, 256, and 512 feature maps in the four convolution blocks of
the encoder (Figure 3). In addition, two less complex LANA structures with 48, 96, 192,
and 384 feature maps, and 32, 64, 128, and 256 feature maps, were considered. These three
structures are denoted as LANA (64), LANA (48), and LANA (32). The LANA (48) and
LANA (32) structures were selected as they are less complex and are based on previous
CNN structures used for Landsat 8 OLI cloud detection (Table A2 in Appendix A). The
total number of learnable coefficients for LANA (64), LANA (48), and LANA (32) were
31,309,552, 17,616,278, and 7,833,596, respectively.

The optimal LANA training parameters were found, considering the more complex
LANA (64) structure, by carefully tuning different candidate parameters. For this purpose,
the training patches (Table 1) were randomly split into two portions, 96% for training
(16,315 patches) and 4% (546 patches) for validation. The overall classification accuracy
derived by classifying the validation patches was examined as a function of epoch for
different training parameter settings. A total of 180 epochs were considered as fewer
epochs caused spatially inconsistent classification results among neighboring patches
(apparent as blocky effects) despite the accuracy metrics converging to similarly high
values after 100 epochs. The training parameters considered were the mini-batch size, the
initial learning rate, the learning rate decay strategy, the training optimizer algorithm, and
spatial dropout. These are described below.

Different mini-batch sizes (16, 32, or 64 patches) were examined as cloud detection
U-Net applications typically use mini-batch sizes ranging from 6 to 64 [33,36,38,77–80].
Smaller mini-batch sizes were not considered because we found they generally took longer
to train with no accuracy improvement compared to 16, 32, or 64 patches. Larger mini-
batch sizes were not used due to the resulting high GPU memory requirements [81].
Three initial learning rates (α = 0.001, 0.0005, or 0.0001) were considered, where α (the
learning rate) is a multiplicative factor applied to the gradient values of the loss function
after each mini-batch of training patches [82]. Two commonly used learning rate decay
methods were examined: step decay and cosine decay. The step decay method decreases
the initial learning rate by five times after training, for example, the first 60 epochs, and
another five times after, for example, 120 epochs [53,54]. The cosine decay method first
linearly increases the learning rate from 0 to the initial learning rate α (sometimes termed
linear warmup) and then decreases the learning rate following a cosine function from
cosine(0◦) × α = α (the epoch starting to decrease) to cosine(90◦) × α = 0 (the last epoch,
i.e., epoch 180 in this study) [83]. The purpose of a linear warmup is to stabilize the model
coefficient updates at the initial stage of model training, and the first 20 epochs were used
for warmup following [84,85]. Two training optimizer algorithms were used: Adam [86]
and RMSProp [87] that implement different methods to derive model coefficient-specific
learning rates. The use of spatial dropout [88] was also considered and is a variation of the
conventional dropout regularization technique designed for convolutional neural networks
(CNNs) [87]. In spatial dropout, instead of randomly dropping individual features, entire
feature maps are dropped. No dropout, and spatial dropout applied in three different ways
were considered, i.e., spatial dropout applied (i) only to the last convolutional layer (e.g.,
ref. [38]), (ii) to the last convolutional layer and all the decoder layers before the transpose
convolutions (e.g., ref. [89]), and (iii) to the last convolutional layer, all the decoder layers
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before transpose convolution, and all the encoder layers after the attention mechanism was
applied (e.g., ref. [39]).

3.4. Comparative Deep Learning Cloud and Shadow Classification Models and Fmask

For comparative purposes, the results of a conventional U-Net model developed for
Landsat cloud masking [36], referred to here as U-Net Wieland, and the Fmask cloud/shadow
results provided with the Landsat 8 OLI product were also evaluated. In general, cloud
masking algorithms are applied to top-of-atmosphere (TOA) reflectance and not to atmo-
spherically corrected reflectance, i.e., surface, reflectance. This is because atmospheric
correction over cloud and cloud edges is often unreliable due to difficulties in aerosol char-
acterization over bright objects and adjacency effects [90–92]. The LANA, U-Net Wieland,
and Fmask results were all derived using top-of-atmosphere (TOA) reflectance.

The U-Net Wieland model was selected from four conventional U-Net models pub-
lished in the recent literature that detect cloud and cloud shadows using the OLI visible,
NIR, and SWIR bands (Table A1 in Appendix A) [32,36,38,39]. The SWIR bands on Landsat
are useful for cloud shadow detection as atmospheric scattering is smaller in the SWIR
than in the shorter wavelength bands [93], and shaded surfaces often have more contrasted
SWIR reflectance relative to neighboring unshaded surfaces than in the visible bands [94].
Further, the SWIR is useful for differentiating between clouds and snow [95,96]. None of
the four conventional U-Net models had unambiguously defined structures and param-
eterizations. Therefore, the Wieland U-Net model was selected because it was the only
one with a publicly available trained model. The U-Net Wieland model classifies each
30 m pixel as cloud, cloud shadow, snow/ice, water, and land. The model was trained
by its authors using 256 × 256 30 m patches extracted from the SPARCS data and using
six Landsat 8 bands (blue, green, red, NIR, SWIR-1, and SWIR-2) [36]. The model had a
91.0% reported overall accuracy when evaluated using SPARCS annotations not used in
the training.

The Fmask OLI cloud detection algorithm [21] uses all the reflective wavelength bands
(as does LANA) and also brightness temperatures derived from the TIRS thermal bands.
The algorithm applies a series of empirically derived thresholds to different bands and
reflectance band ratios to classify each OLI 30 m pixel as cloud or clear. The reflectance
band thresholds are fixed and defined separately for land and water pixel observations
(also based on thresholds), whereas the brightness temperature thresholds are based on
the image brightness temperature histogram. The Collection 1 Fmask was validated using
seven Landsat 8 images annotated by the authors, with a reported accuracy of 89.0% [21].
The Collection 2 Fmask uses the USGS Landsat Collection 1 C Function of Mask (CFMask)
algorithm version 3.3.1 that was validated using 32 USGS and 79 SPARCS Landsat 8
annotated datasets with a reported overall accuracy of 85.1% [22]. The Fmask cirrus cloud
detection is derived by a spectral test applied to the OLI 1.360–1.390 µm (cirrus band)
TOA reflectance with thresholds adjusted for column water vapor effects [97] defined
as a function of the surface elevation using a recent global digital elevation model [98].
Pixels classified by the Fmask as cloud may also be labelled as cirrus, but not always. The
Fmask cloud shadow algorithm uses a hybrid approach. First, the detected cloud pixels
are clustered into cloud objects that are then projected to the west using different cloud
base heights (range constrained by the brightness temperature) that are then compared
with potential shadow objects derived using the NIR TOA reflectance. The Collection
2 cirrus mask was validated using 1800 globally distributed pixels annotated into cirrus
and non-cirrus classes, with a reported 86.5% classification accuracy [99].

3.5. Accuracy Assessment

As reported above, accuracy assessment is undertaken by comapring the classification
results with independently annotated evaluation data that were not used in the training. For
patch-based accuracy assessment, care should be taken to ensure that the annotated training
and evaluation patches do not overlap spatially to ensure that they are independent [100].
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This was the case for the Landsat cloud/shadow masking studies summarized in the
Appendix A. However, some studies used training and evaluation patches selected from
the same image (categorized as the “same image origin” in the Appendix A), which may
inflate the reported accuracy as the evaluation and training patches may share similar cloud
and surface conditions. Therefore, in this study, care was taken to ensure that the training
and evaluation patches were taken from different images and over locations that did not
spatially overlap.

To assess the LANA accuracy, it was trained independently five times, each time using
99 of the 100 datasets (composed of the 27 USGS images, 69 SPARCS subsets, and 4 SDSU
images, Table 1) and classifying the single left-out dataset to assess the accuracy of the
resulting classifications. Summary accuracy statistics were then derived by building a single
confusion matrix populated with the five sets of classification results. In this way, each
time, the majority of the training data were used to train the LANA model, and sensitivity
to using different training data was captured. It was not practical, given compute resource
limitations, to undertake this more than five times. The overall classification accuracy, the
class-specific user’s and producer’s accuracies, sometimes referred to as precision and recall,
respectively, and the F1-score, which is the harmonic mean of the user’s and producer’s
accuracies [101], were extracted from the confusion matrix. They are calculated as:

O =
ncorrect

nevaluation
(6)

Pc =
nc

correct
nc

evaluation
(7)

Uc =
nc

classified
nc

evaluation
(8)

Fc =
2 × Pc × Uc

Pc + Uc
(9)

where O is the overall accuracy, ncorrect is the number of correctly classified pixels, and
nevaluation is the number of pixels in the evaluation images, Pc, Uc, and Fc are the producer’s
accuracy, user’s accuracy, and F1-score for class c, nc

correct is the number of correctly classified
pixels for class c, nc

classified is the number of pixels classified as class c, and nc
evaluation is the

number of pixels in the evaluation images annotated as class c.
The five left-out datasets used to undertake the accuracy assessment were selected

from the 27 annotated USGS Landsat 8 OLI images, as the SPARCS subsets are smaller
than Landsat images and the four SDSU Landsat images contain completely clear and
completely cloudy images that may bias the overall accuracy results. The locations of
the five annotated evaluation Landsat 8 OLI images are illustrated in Figure 1 and are
characterized by (i) thin cloud over the Pacific Ocean and the Hawaii islands of O’ahu,
Moloka’i, Lana’i, and Maui; (ii) a spatially extensive cloud covering half the image over
a dryland shrub area near Oak Valley, southern Australia; (iii) spatially adjacent thin and
thick clouds over grasslands and savannas in Algeria; (iv) many small scattered and also
larger clouds near Pormpuraaw, Northern Australia, over complex grassland, inland water,
forest, and bare land cover; and (v) clouds over farmland and highly reflective desert
around the Nile River in Sudan.

The accuracy of the U-Net Wieland and of the Fmask cloud/shadow mask results
provided with the Landsat 8 OLI imagery was also quantified considering the same five
annotated Landsat 8 OLI evaluation images. The classification legends of LANA (cloud,
thin cloud, cloud shadow, and clear), U-Net Wieland (cloud, cloud shadow, snow/ice,
water, land), and Fmask (cloud, cirrus, cloud shadow, and clear) are different. Therefore,
to provide meaningful accuracy comparison among the three algorithms, their different
legends were harmonized to the same three classes: cloud, cloud shadow, and clear. To
undertake this harmonization, (i) the LANA cloud and thin cloud classes were considered
to be “cloud”, (ii) the U-Net Wieland snow/ice, water, and land classes were considered
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to be “clear”, and (iii) the Fmask cirrus class was ignored. This is acceptable as the U-Net
Wieland legend does not have a thin cloud class, and the U-Net Wieland classes (cloud,
cloud shadow, and clear) are mutually exclusive and completely exhaustive. Similarly,
the Fmask cloud, cloud shadow, and clear classes are mutually exclusive and completely
exhaustive, and the Fmask cirrus and cloud classes are independent.

3.6. Assessment on Unannotated Data: Landsat 8 ARD Time-Series Evaluation

In addition to the formal accuracy assessment, a time-series evaluation was undertaken
to examine the prevalence of undetected clouds and cloud shadows and to undertake
quality assessment of the LANA, U-Net Wieland, and Fmask results considering a year
of Collection 2 Landsat 8 TOA reflectance (1 January to 31 December 2021) over the four
CONUS ARD tiles (Table 2, Figure 2). For ease of interpretation, any ARD tile pixel
observations flagged as radiometrically saturated in any of the OLI reflective wavelength
bands (blue, green, red, NIR, SWIR1, or SWIR2) or that were flagged by the Fmask as cirrus
were not considered. For the time-series evaluation, the LANA model was trained using all
100 annotated datasets (Table 1).

At each ARD tile pixel, the temporal smoothness of the annual surface reflectance
time series, considering only observations classified as “clear”, was quantified using a
band-specific temporal smoothness index. The index was defined for each ARD tile 30 m
pixel time series and Landsat spectral band λ as:

TSIλ =

√√√√√∑n−2
i=1

[
ρi+1

λ − (ρi+2
λ −ρi

λ)×(dayi+1−dayi)
dayi+2−dayi

− ρi
λ

]2

m − 2
(10)

where m is the total number of reflectance observations classified as “clear” at the ARD
tile pixel location over the year (1 January to 31 December 2021), and ρi

λ is the OLI surface
reflectance observed on dayi for a given OLI band λ. For the LANA and Fmask algorithms,
“clear” was defined by their clear classes. For the U-Net Wieland algorithm, “clear” was
defined as the snow/ice, water, and land classes. The TSIλ was used previously to evaluate
the consistency of MODIS [102], Landsat and Sentinel-2 [103], and PlanetScope [104],
reflectance time series. The TSIλ is zero valued for time series sensed without noise and
over an unchanging surface and will be greater if any clouds or cloud shadows are present
that failed to be detected correctly. The TSI was derived considering only sequences of
successive pixel observations satisfying (dayi+2–dayi) ≤ 32 to reduce the impact of land
surface changes that will inflate the TSI values [104].

In addition, at each ARD tile pixel, the annual percentage of observations classified as
“clear” was derived as:

Pclear = m/n × 100 (11)

where Pclear is the percentage of pixel observations classified as “clear” by a particular
algorithm, n is the total annual number of Landsat 8 OLI observations of the tile pixel over
the year, and m is the total number of observations classified by the algorithm as “clear”.
Tile-level maps and the mean TSIλ and Pclear values for each tile were derived. The tile
average Pclear values for the three algorithms were compared to check if the TSIλ values for
each algorithm were derived using similar amounts of “clear” observations and so could
be meaningfully compared.

In addition, the algorithm classification results were examined in detail at two
500 × 500 30 m pixel subsets extracted from each tile and encompassing different land
cover. For each subset, two days in 2021 were selected based on selecting the day with
the most different classification results between the (i) LANA and Fmask, and (ii) LANA
and U-Net Wieland algorithms. The true color Landsat 8 OLI reflectance for each date was
examined to contextualize the three algorithm classification results.
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4. Results
4.1. LANA Structure and Parameter Optimization

Recall that the training patches (Table 1) were randomly split into two portions: 96%
were used for training (16,315 patches), and 4% (546 patches) were used to assess the
accuracy of a particular LANA structure and parameterization (Section 3.3). The overall
classification accuracy was derived for each training epoch by applying the trained LANA
model to the validation patches. The percent correct (0–100%) derived considering the
four LANA classes (cloud, thin cloud, cloud shadow, and clear) was used as the overall
classification accuracy metric. Figure 4 shows the overall classification accuracies for
different parameter combinations (i.e., of the optimal mini-batch size, initial learning rate,
learning rate decay strategy, training optimizer algorithm, and spatial dropout) plotted as a
function of training epoch using the more complex LANA (64) structure. The accuracies
increase as a function of epoch and plateau at around 170 epochs. The black line shows
the optimal parameter set, and the colored lines show other parameter combination results
where one parameter was different from the optimal set. The accuracies for every possible
combination of parameters are not plotted, as they differed by <1% by epoch 180. The
optimal parameter set (black line) had a 97.69% overall classification accuracy by epoch 180
with 0.4–1.3% higher accuracy than the alternative results (colored lines).
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4. Results 
4.1. LANA Structure and Parameter Optimization 

Recall that the training patches (Table 1) were randomly split into two portions: 96% 
were used for training (16,315 patches), and 4% (546 patches) were used to assess the ac-
curacy of a particular LANA structure and parameterization (Section 3.3). The overall 
classification accuracy was derived for each training epoch by applying the trained LANA 
model to the validation patches. The percent correct (0–100%) derived considering the 
four LANA classes (cloud, thin cloud, cloud shadow, and clear) was used as the overall 
classification accuracy metric. Figure 4 shows the overall classification accuracies for dif-
ferent parameter combinations (i.e., of the optimal mini-batch size, initial learning rate, 
learning rate decay strategy, training optimizer algorithm, and spatial dropout) plo ed as 
a function of training epoch using the more complex LANA (64) structure. The accuracies 
increase as a function of epoch and plateau at around 170 epochs. The black line shows 
the optimal parameter set, and the colored lines show other parameter combination re-
sults where one parameter was different from the optimal set. The accuracies for every 
possible combination of parameters are not plo ed, as they differed by <1% by epoch 180. 
The optimal parameter set (black line) had a 97.69% overall classification accuracy by 
epoch 180 with 0.4–1.3% higher accuracy than the alternative results (colored lines). 

The same parameterization sensitivity approach was also applied to the LANA (32) 
and LANA (48) structures, which provided no more than 0.5% (to one decimal place) 
lower overall accuracy than the LANA (64) model by epoch 180 (results not illustrated). 
The classification differences between these three structures had only a marginal visual 
impact on the classification results, including instances that are typically difficult to clas-
sify, e.g., discrimination between cloud and snow, or between cloud shadow and water. 
However, the LANA (64) structure was selected for the rest of this research as it provided 
the highest statistical validation dataset accuracy. 
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Figure 4. The overall accuracy of the 4% validation dataset as a function of training epoch
((top): Epochs 1–180; (bottom) epochs: 171–180) for different training parameters using the LANA
(64) structure (shown in Figure 3). The black line shows the optimal parameter set results (see text)
and the colored lines show the results for parameter combinations where one parameter was different
to the optimal set.
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The same parameterization sensitivity approach was also applied to the LANA (32)
and LANA (48) structures, which provided no more than 0.5% (to one decimal place) lower
overall accuracy than the LANA (64) model by epoch 180 (results not illustrated). The
classification differences between these three structures had only a marginal visual impact
on the classification results, including instances that are typically difficult to classify, e.g.,
discrimination between cloud and snow, or between cloud shadow and water. However,
the LANA (64) structure was selected for the rest of this research as it provided the highest
statistical validation dataset accuracy.

In summary, the final structure and parameterization used to train the LANA model
were based on the LANA (64) structure, i.e., using 64, 128, 256, and 512 feature maps
in the four convolution blocks of the encoder (Figure 3), requiring 31,309,552 learnable
coefficients. The optimal parameter set was defined using mini-batch size = 64, initial
learning rate = 0.0005, learning rate decay strategy = cosine decay, training optimizer
algorithm = RMSProp, and spatial dropout applied to the last convolutional layer and all
the decoder layers before the transpose convolutions.

4.2. Accuracy Assessment

Table 3 summarizes the classification accuracy of the four classes (cloud, thin cloud,
cloud shadow, and clear) for the LANA considering the five set aside annotated USGS
Landsat 8 OLI evaluation images. The overall accuracy (i.e., percent correct) of the four
classes and class-specific user’s, producer’s, and F1-score accuracies are summarized.
Producer’s and user’s accuracies correspond to 1-omission error and 1-commision error,
respectively, and the F1-score is the harmonic mean of these two error estimates.

Table 3. LANA overall accuracy (%), and class specific producer’s accuracy (%), user’s accuracy (%),
and F1-scores derived from the five set aside USGS Landsat 8 OLI annotated images (>205 million
annotated 30 m pixels) for the four LANA classes.

Metric Cloud Thin Cloud Cloud Shadow Clear

Overall accuracy 77.91
Producer’s accuracy 96.99 29.47 65.62 86.09

User’s accuracy 70.10 67.60 51.21 92.15
F1-score 0.8139 0.4104 0.5753 0.8902

The LANA had a 77.91% overall accuracy and class-specific accuracies that increased
from the thin cloud to cloud shadow, to cloud, and then to the clear class. The thin
cloud class had the lowest F1-score (0.4104), which is expected given the considerable
variation in the transparency of thin clouds, and this is indicated by the low thin cloud
producer accuracy (29.47%) indicating that LANA had significant thin cloud omission
errors. The cloud shadow class had the next lowest F1-score (0.5753), with user’s and
producer’s accuracies of 51.21% and 65.62%. The cloud and clear classes had relatively
high F1-scores (0.8139 and 0.8902) as they are easy to classify due to their distinct spectral
or spatial features.

Table 4 summarizes the classification accuracies for the three algorithms with classes
harmonized to the same three classes, i.e., cloud, cloud shadow, and clear (Section 3.5),
so that they could be meaningfully compared. As expected from statistical theory, using
fewer classes resulted in higher overall classification accuracies, and the LANA overall
accuracy was higher considering three classes (88.84%, Table 4) compared to using three
classes (77.91%, Table 3). Considering the three classes, LANA had the highest (88.84%)
overall accuracy, followed by Fmask (85.91%), and then U-Net Wieland (85.19%).
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Table 4. LANA, Fmask, and U-Net Wieland overall accuracy (%), and class specific producer’s
accuracy (%), user’s accuracy (%), and F1-scores derived from the five set aside annotated USGS
Landsat 8 OLI evaluation images (>205 million annotated 30 m pixels). The accuracy metrics
were derived considering three classes (shadow, clear, and cloud). The model results are listed in
descending overall accuracy order. Note that the LANA cloud and thin cloud classes were both
considered to be “cloud”, the U-Net Wieland snow/ice, water, and land classes were considered to
be “clear”, and the Fmask cirrus class was not assessed.

Metric Cloud Cloud Shadow Clear

LANA

Overall accuracy 88.84
Producer’s accuracy 93.79 65.62 86.09

User’s accuracy 91.08 51.21 92.15
F1-score 0.9242 0.5753 0.8902

Fmask

Overall accuracy 85.91
Producer’s accuracy 86.57 60.67 88.13

User’s accuracy 93.30 36.30 88.05
F1-score 0.8981 0.4542 0.8809

U-Net
Wieland

Overall accuracy 85.19
Producer’s accuracy 89.31 50.88 84.66

User’s accuracy 86.11 53.30 87.79
F1-score 0.8768 0.5206 0.8619

The three algorithms are listed in Table 4 in descending order of algorithm overall
classification accuracy. The class-specific accuracies may not follow the same pattern.
Despite this, the LANA had the highest F1-scores for all three classes. The difficulty in
reliably classifying cloud shadows is apparent in Table 4, which had the lowest F1-scores
for the three algorithms (0.5753, 0.4542, and 0.5206 for LANA, Fmask, and U-Net Wieland,
respectively). The Fmask had the greatest cloud shadow commission error with a 36.30%
user’s accuracy, and the U-Net Wieland had the greatest cloud shadow omission errors
with a 50.88% producer’s accuracy. For the clear class, the F1-scores for LANA, Fmask,
and U-Net Wieland were 0.8902, 0.8809, and 0.8619, respectively. The U-Net Wieland had
the greatest clear class commission error (87.79% user’s accuracy) and the greatest clear
class omission error (84.66% producer’s accuracy). For the cloud class, the F1-scores for
LANA, Fmask, and U-Net Wieland were 0.9242, 0.8981, and 0.8768, respectively. The U-Net
Wieland had the greatest cloud commission error (86.11% user’s accuracy), and the Fmask
had the greatest cloud omission error (86.57% producer’s accuracy).

4.3. Assessment on Unannotated Data: Landsat 8 ARD Time-Series Evaluation
4.3.1. Florida Tile

Figure 5 shows the number of Landsat 8 OLI non-cirrus and non-saturated observa-
tions flagged as “clear” from 1 January to 31 December 2021 at each 5000 × 5000 30 m
Florida ARD tile pixel for each algorithm. Differences among the illustrated algorithm
“clear” observation counts reflect differences in the algorithm cloud and shadow screening
over the year. The Figure 5 bottom row illustrates, for context, the total annual number
of observations (regardless of the cirrus or saturation state) and the annual number of
non-cirrus and non-saturated observations (n). The patterns in the annual number of
observations are related to the Landsat orbit and sensing geometry, whereby the edges of
adjacent orbits overlap increasingly poleward, and the orbits are not oriented north–south
because of the 98.22◦ inclined Landsat orbit and because the Landsat ARD are defined in
the Albers projection [65]. The western side of the Florida tile has more annual observations
(~45) than the eastern side (~22) due to overlapping swaths from adjacent Landsat orbits.
Over the year, 16.31% of the tile pixel observations were cirrus contaminated or saturated,
and this occurred (from examination of the bottom row of Figure 5) relatively evenly across
the tile.
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Figure 5. The annual number of Landsat 8 OLI non-cirrus and non-saturated observations flagged as
“clear” from 1 January to 31 December 2021 by the three algorithms at each 5000 × 5000 30 m ARD
pixel of the Florida tile (h28v04, illustrated in Figure 2d). The bottom row shows the annual number
of Landsat 8 OLI observations, regardless of the cirrus or saturation state, and the annual number of
non-cirrus and non-saturated (n) observations at each ARD pixel. The white and black squares show
500 × 500 30 m pixel subsets (also shown in Figure 2d), for which algorithm classification results are
illustrated in Figures 6 and 7.
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Figure 6. Two dates (columns) of the Fmask, LANA, and U-Net Wieland classification results (rows) 
for a 500 × 500 30 m pixel Florida tile subset over land (subset boundary shown black in Figures 2d 
and 5). The top row shows the true color (red, green, blue) 30 m reflectance for context. The left and 
right columns show the dates in 2021 with the most different classification results between LANA 
and Fmask, and between LANA and U-Net Wieland, respectively. The LANA algorithm results are 

Figure 6. Two dates (columns) of the Fmask, LANA, and U-Net Wieland classification results
(rows) for a 500 × 500 30 m pixel Florida tile subset over land (subset boundary shown black in
Figures 2d and 5). The top row shows the true color (red, green, blue) 30 m reflectance for context.
The left and right columns show the dates in 2021 with the most different classification results between
LANA and Fmask, and between LANA and U-Net Wieland, respectively. The LANA algorithm
results are shown colored as cloud (dark blue), thin cloud (light blue), cloud shadow (black), and
clear (green). The Fmask and U-Net Wieland results harmonized to three classes are shown similarly
colored as cloud (dark blue), cloud shadow (black), and clear (green).
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Table 5 summarizes, for each algorithm, the Florida tile-averaged TSIλ and Pclear
values. The tile-averaged Pclear values summarize the average percentage of pixel observa-
tions classified as “clear” over the year and are similar for the three algorithms, ranging
from 65.35% (Fmask) to 69.57% (U-Net Wieland). This indicates that the TSIλ values are
calculated using similar amounts of “clear” observations, and so the three algorithm TSIλ
values can be meaningfully compared. The TSIλ will be smaller if clouds/shadows present
in the time series are correctly detected, and it will be greater if there are omission errors.
The LANA had the smallest tile average TSIλ value for all the Landsat bands except for the
SWIR-2 band, where the U-Net Wieland had a marginally smaller (0.003) value. The Fmask
had consistently the highest TSIλ values.

Table 5. Tile average TSIλ (Equation (10)) and Pclear (Equation (11)) values for the three algorithms
over the Florida tile (h28v04, illustrated in Figure 2d). The smallest average TSIλ values for each
Landsat band (indicative of lower cloud/shadow omission errors) are highlighted in bold. Over the
year, 16.31% of the tile observations were cirrus contaminated or saturated.

Average TSIλ
Average Pclear (%)

Blue Green Red NIR SWIR-1 SWIR-2

LANA 0.0312 0.0213 0.0202 0.0201 0.0176 0.0145 67.04%
Fmask 0.0667 0.0556 0.0566 0.0586 0.0373 0.0273 65.35%

U-Net Wieland 0.0314 0.0223 0.0211 0.0222 0.0178 0.0142 69.57%

Figures 6 and 7 show Florida tile 500 × 500 30 m pixel classification results located
over predominantly land and over water (Figure 2d squares). Two dates of Landsat 8 OLI
reflectance (shown in the figure top rows) from 2021 were selected where the LANA
classification results were most different to the Fmask (left column) and the U-Net Wieland
(right column) classification results.

The Figure 6 subset is over a region of low and high reflectance, including bare ground,
infrastructure, and ponds. The cloud-free left image had significant cloud and cloud
shadow Fmask commission errors that are largely not apparent in the other algorithm
classification results. The Fmask also had more cloud commission errors than the other
algorithms for the right image that contained cloud and shadows. Some LANA thin cloud
classification results occurred around the thick cloud classified pixels in the right image.
All three algorithms misclassified some pond margins as cloud, and this was particularly
evident in the Fmask and U-Net Wieland results.

The Figure 7 subset is over open water in the Gulf of Mexico (Figure 2d white square),
and both selected images were completely cloud covered. The Fmask failed to detect any
clouds in the left image and incorrectly classified about a third of the subset in the right
image as cloud shadow. The U-Net Wieland algorithm incorrectly classified about half of
the right image as cloud-free. The LANA correctly classified most of the pixels as cloud,
except for misclassifying a small portion of thin cloud pixels in the right image as clear.

4.3.2. Canada/US Tile

Figure 8 shows the results, as shown in Figure 5, for the Canada/US ARD tile. This
tile was the CONUS ARD tile with the fewest cloud-free surface observations based on
examination of the CONUS Landsat 4, 5, and 7 ARD for 1982 to 2017 [65]. The pixels in the
central part of the tile had more annual non-cirrus and non-saturated observations flagged
as “clear” (n~45) than nearer the tile edges (n~22) for the reasons discussed with respect to
Figure 5. The three sets of clear observation counts are similar except for the Fmask results,
which have a distinct near-horizontal line. The line occurs on the along-track boundary
between successive Landsat 8 OLI 185 × 185 km images and likely occurs because, unlike
the other algorithms, the Fmask uses an image histogram to derive some cloud-detection
thresholds. A small part of the Richelieu River located in the northeast part of the tile had
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fewer U-Net Wieland clear observations that, on close inspection, were found to be due to
misclassification of the river (low reflectance) as cloud shadow. Over the year, 33.56% of
the tile pixel observations were cirrus contaminated or saturated, and this occurred (from
examination of the bottom row of Figure 8) primarily in the southern part of the tile.
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Figure 8. The annual number of Landsat 8 OLI non-cirrus and non-saturated observations flagged
as “clear” from 1 January to 31 December 2021 by the three algorithms at each 5000 × 5000 30 m
ARD pixel of the Canada/US tile (h28v04, illustrated in Figure 2a). The bottom row shows the
annual number of Landsat 8 OLI observations, regardless of the cirrus or saturation state, and the
annual number of non-cirrus and non-saturated (n) observations at each ARD pixel. The white and
black squares show 500 × 500 30 m pixel subsets (also shown in Figure 2a), for which algorithm
classification results are illustrated in Figures 9 and 10.
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for a 500 × 500 30 m pixel Canada/US tile subset over forest (subset boundary shown black in
Figures 2a and 7). The top row shows the true color (red, green, blue) 30 m reflectance for context.
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The left and right columns show the dates in 2021 with the most different classification results between
LANA and Fmask, and between LANA and U-Net Wieland, respectively. The LANA algorithm
results are shown colored as cloud (dark blue), thin cloud (light blue), cloud shadow (black), and
clear (green). The Fmask and U-Net Wieland results harmonized to three classes are shown similarly
colored as cloud (dark blue), cloud shadow (black), and clear (green).
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Figure 10. As Figure 9 but for a 500 × 500 30 m pixel Canada/US tile subset over a water and
cropland mixed area (subset boundary shown in white in Figures 2a and 8).

Table 6 summarizes the tile-averaged TSIλ and Pclear values. The tile-averaged Pclear
values range from 51.55% (Fmask) to 54.31% (U-Net Wieland), indicating that the algorithm
TSI values can be meaningfully compared and are low because this tile is particularly cloudy.
The LANA algorithm had the lowest tile-averaged TSIλ values (i.e., least cloud/shadow
omission errors), whereas the Fmask had the highest TSIλ values for all bands.

Table 6. Tile average TSIλ (Equation (10)) and Pclear (Equation (11)) values for the three algorithms
over the Canada/US tile (h28v04, illustrated in Figure 2a). The smallest average TSIλ values for each
Landsat band (indicative of lower cloud/shadow omission errors) are highlighted in bold. Over the
year, 33.56% of the tile observations were cirrus contaminated or saturated.

Average TSIλ
Average Pclear (%)

Blue Green Red NIR SWIR-1 SWIR-2

LANA 0.0421 0.0397 0.0405 0.0553 0.0289 0.0220 52.32
Fmask 0.0840 0.0773 0.0771 0.0767 0.0393 0.0310 51.55

U-Net Wieland 0.0452 0.0428 0.0432 0.0578 0.0292 0.0225 54.31

Figure 9 shows detailed results over a forested area (Figure 2a black square) for two
dates of Landsat 8 OLI reflectance, including snow with no cloud (left column) and complete
cloud cover (right column). The Fmask algorithm had significant cloud and cloud shadow
commission errors in the snow cloud-free data (left column) that were not apparent in the
other two algorithm results. The completely cloudy image (right column) was correctly
classified by all the algorithms except U-Net Wieland, which detected no clouds.

Figure 10 shows detailed results over a cropland region with water bodies to the east
and west (Figure 2a, white square). The two image dates were completely cloud covered
and sensed in the late summer (left column, 27 September 2021) and winter (right column,
15 February 2021), and large regions were incorrectly classified by the Fmask and U-Net
Wieland algorithms on these dates, respectively. In the late summer (left column), the
LANA algorithm classified a few shadowed cloud pixels (i.e., cloud shadow over cloud) as
thin cloud.

4.3.3. Mexico/US Tile

Figure 11 shows the Mexico/US ARD tile pixel clear observation counts. This tile was
the CONUS ARD tile with the greatest number of cloud-free surface observations based on
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examination of all the CONUS Landsat 4, 5 and 7 ARD for 1982 to 2017 [65]. Consequently,
the tile had more clear counts (n values as great as 45) than the three other tiles, and the
tile-averaged Pclear values were high (>83%) (Table 7). The three algorithms have similar
count values except for a region in the south central part of the U-Net Weiland tile results
that has very low counts, which is due to a U-Net Weiland cloud commission error over
bright desert. The inclined Landsat orbit is particularly apparent in the CONUS southwest
due to the Albers ARD map projection [65].
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Figure 11. The annual number of Landsat 8 OLI non-cirrus and non-saturated observations flagged
as “clear” from 1 January to 31 December 2021 by the three algorithms at each 5000 × 5000 30 m
ARD pixel of the Mexico/US tile (h05v13, illustrated in Figure 2b). The bottom row shows the
annual number of Landsat 8 OLI observations, regardless of the cirrus or saturation state, and the
annual number of non-cirrus and non-saturated (n) observations at each ARD pixel. The white and
black squares show 500 × 500 30 m pixel subsets (also shown in Figure 2b), for which algorithm
classification results are illustrated in Figures 12 and 13.
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black in Figures 2b and 10). The top row shows the true color (red, green, blue) 30 m reflectance
for context. The left and right columns show the dates in 2021 with the most different classification
results between LANA and Fmask, and between LANA and U-Net Wieland, respectively. The LANA
algorithm results are shown colored as cloud (dark blue), thin cloud (light blue), cloud shadow
(black), and clear (green). The Fmask and U-Net Wieland results harmonized to three classes are
shown similarly colored as cloud (dark blue), cloud shadow (black), and clear (green).
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Figure 13. As Figure 12 but for a 500 × 500 30 m pixel Mexico/US tile subset over a desert and
cropland mixed area (subset boundary shown in white in Figures 2b and 10).

Table 7. Tile-averaged TSIλ (Equation (10)) and Pclear (Equation (11)) values for the three algorithms
over the Mexico/US tile (h05v13, illustrated in Figure 2b). The smallest average TSIλ values for each
Landsat band (indicative of lower cloud/shadow omission errors) are highlighted in bold. Over the
year, 11.54% of the tile observations were cirrus contaminated or saturated.

Average TSIλ
Average Pclear (%)

Blue Green Red NIR SWIR-1 SWIR-2

LANA 0.0113 0.0136 0.0174 0.0234 0.0257 0.0245 83.75%
Fmask 0.0121 0.0149 0.0190 0.0253 0.0277 0.0265 87.57%

U-Net Wieland 0.0117 0.0141 0.0179 0.0238 0.0258 0.0244 87.15%

The tile-averaged Pclear values are similar among the algorithms, ranging from 83.75%
(LANA) to 87.57% (Fmask), indicating that the algorithm TSI values can be meaningfully
compared and that the tile is not particularly cloudy (Table 7). The tile-averaged TSIλ
values are all relatively similar for the three algorithms, likely because clouds occur less
frequently over this tile. Despite this, the LANA algorithm had the lowest tile-averaged
TSIλ values (least cloud/shadow omission errors) for all the Landsat bands except for the
SWIR-2 band, which was slightly lower for the U-Net Wieland algorithm.

Figure 12 shows detailed results (Figure 2b, black square) for a 500 × 500 30 m pixel
tile subset covered mainly by desert with a small portion of irrigated cropland. The left
image is covered by thin and thick cloud and a large portion is incorrectly classified as clear
or as cloud shadow by the Fmask, while the algorithms did not have this issue. The LANA
thin cloud classification appears to broadly capture the thin cloud distribution. The right
image is completely cloud covered and is detected as such by all the algorithms except
U-Net Wieland, which has significant cloud-omission errors.

Figure 13 shows detailed Mexico/US tile classification results over a desert area with
some irrigated cropland and relatively low, or no, cloud cover. The left image contains
isolated small (few 30 m pixel diameter) “popcorn” clouds that cast distinct shadows that
are classified correctly by all the algorithms, although the Fmask captures fewer. The left
image also has some apparent thin clouds around thick clouds (on the northern border)
that LANA correctly classified as thin cloud. The left image has mountain relief shadows
that are particularly apparent as the image was acquired in January under low sun position
conditions. The Fmask has extensive cloud and cloud shadow commission errors, and the
U-Net Weiland algorithm has cloud shadow commission errors. The right image is cloud
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free and is correctly classified by the three algorithms except U-Net Weiland, which had
isolated cloud shadow commission errors.

4.3.4. South Dakota Tile

Figure 14 shows the South Dakota ARD tile annual number clear observation counts.
There are two stripes of overlapping Landsat swaths due to the geographic location of the
ARD tile relative to the Landsat orbit paths. There are no significant spatial differences
among the three algorithms except that, on close inspection, the Fmask results have fewer
observations over the Missouri river which is due to cloud commission errors (that are
more apparent in the detailed Figure 16 classification results). The tile-averaged Pclear
values (Table 8) are similar for the three algorithms, ranging from 72.04% (LANA) to 74.83%
(U-Net Wieland), indicating that the algorithm TSIλ values can be meaningfully compared.
The LANA had the smallest tile-averaged TSIλ value for the visible and NIR bands, and
for the SWIR bands, the U-Net Wieland values were slightly smaller (<0.003). The Fmask
consistently had the greatest tile-averaged TSIλ values (i.e., most cloud/shadow omission
error) for all the bands, and the values were two times larger than the LANA values for the
visible and NIR bands.

Table 8. Tile average TSIλ (Equation (10)) and Pclear (Equation (11)) values for the three algorithms
over the South Dakota tile (h15v06, illustrated in Figure 2c). The smallest average TSIλ values for
each Landsat band (indicative of lower cloud/shadow omission errors) are highlighted in bold. Over
the year, 26.45% of the tile observations were cirrus contaminated or saturated.

Average TSIλ
Average Pclear (%)

Blue Green Red NIR SWIR-1 SWIR-2

LANA 0.0742 0.0712 0.0731 0.0663 0.0555 0.0424 72.04%
Fmask 0.1514 0.1393 0.1398 0.1131 0.0664 0.0475 72.15%

U-Net Wieland 0.0782 0.0754 0.0772 0.0709 0.0534 0.0413 74.83%

Figure 15 shows detailed South Dakota results for a 500 × 500 30 m tile subset bound-
ing the Missouri River that bisects a region of rangeland with cropland on the northern
riverbank. The left image is cloud-free except for a belt of small clouds on the western side
that cast distinct shadows that are captured by all three algorithms, although the Fmask
overly detected the shadows and the clouds. Notably, the Fmask has extensive cloud and
associated cloud shadow errors over the river that are not apparent in the other algorithm
results. LANA classified the edges of the thick cloud as thin cloud in the left image. The
right image is completely cloud covered and is correctly classified by all the algorithms
except for U-Net Wieland, which has extensive cloud omission errors.

Figure 16 shows detailed results over cropland sensed under complex mixed cloud
conditions (left column) and complete cloud cover (right column). For the left image, all
three algorithms have cloud shadow commission errors, particularly Fmask, but due to the
complexity of the data, it is hard to interpret the different algorithm results in more detail.
The right image was correctly classified by the Fmask and LANA as cloud, but the U-Net
Wieland has cloud omission errors in the south.
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pixel of the South Dakota tile (h15v06, illustrated in Figure 2c). The bo om row shows the annual 
number of Landsat 8 OLI observations, regardless of the cirrus or saturation state, and the annual 
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Figure 14. The annual number of Landsat 8 OLI non-cirrus and non-saturated observations flagged
as “clear” from 1 January to 31 December 2021 by the three algorithms at each 5000 × 5000 30 m
ARD pixel of the South Dakota tile (h15v06, illustrated in Figure 2c). The bottom row shows the
annual number of Landsat 8 OLI observations, regardless of the cirrus or saturation state, and the
annual number of non-cirrus and non-saturated (n) observations at each ARD pixel. The white and
black squares show 500 × 500 30 m pixel subsets (also shown in Figure 2c), for which algorithm
classification results are illustrated in Figures 15 and 16.
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Figure 15. Two dates (columns) of the Fmask, LANA, and U-Net Wieland classifications results (rows)
for a 500 × 500 30 m pixel South Dakota tile subset over Missouri River (subset boundary shown
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in black in Figures 2c and 14). The top row shows the true color (red, green, blue) 30 m reflectance
for context. The left and right columns show the dates in 2021 with the most different classification
results between LANA and Fmask, and between LANA and U-Net Wieland, respectively. The LANA
algorithm results are shown colored as cloud (dark blue), thin cloud (light blue), cloud shadow
(black), and clear (green). The Fmask and U-Net Wieland results harmonized to three classes are
shown similarly colored as cloud (dark blue), cloud shadow (black), and clear (green).
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Figure 15. As Figure 15, but for a 500 × 500 30 m pixel South Dakota tile subset over a cropland area 
(subset boundary shown in white in Figures 2c and 14). 
Figure 16. As Figure 16, but for a 500 × 500 30 m pixel South Dakota tile subset over a cropland area
(subset boundary shown in white in Figures 2c and 14).

5. Discussion and Conclusions

Landsat cloud and cloud shadow detection has a long heritage based on the application
of empirical spectral tests to single image pixels, including the Fmask algorithm that is
used to generate the cloud/shadow mask provided with the standard Landsat products [2].
Cloud and cloud shadow detection is challenging, particularly for thin clouds and cloud
shadows that can be spectrally indistinguishable from clear land and water surfaces,
respectively. Recently, deep convolutional neural network models have been developed for
Landsat Operational Land Imager (OLI) cloud and cloud shadow detection (Appendix A).
They take advantage of both spectral and spatial contextual information and are trained and
applied to image patches rather than to single pixels. The convolutional operation typically
uses small spatial dimension convolution kernels that may not model spatial dependence
between thin cloud and cloud pixels or between cloud and cloud shadow pixels that occur
across the image patch. This study presented the learning attention network algorithm
(LANA) that uses the conventional U-Net deep learning architecture with a spatial attention
mechanism to capture information further from each patch pixel. The LANA includes
a customized loss function to increase the influence of the cloud shadow and thin cloud
minority classes using weights defined by the relative class presence in the model training.
The LANA classifies each pixel in 512 × 512 30 m pixel patches as cloud, thin cloud, cloud
shadow, or clear, and was trained using 100 annotated Landsat 8 OLI datasets, including
27 USGS 185 × 185 km images (of which we refined eight to improve the annotations),
69 SPARCS image subsets, and four images that we annotated to augment the USGS and
SPARCS training.

It is well established that deep learning results can vary considerably, regardless of
the training data used, depending on the deep learning model structure and the parame-
terization [53,105]. The optimal LANA structure and parameterization presented in this
study was found by undertaking a sensitivity analysis considering different feature map
sizes and optimizers, as well as a range of learning rates, mini-batch sizes, and spatial
dropout implementations. The final LANA structure used (Figure 3) was composed of
64, 128, 256, and 512 feature maps in four encoder convolution blocks (31,309,552 learn-
able coefficients) with an attention mechanism applied to the encoder feature maps when
they were copied to the decoder side in the skip connections. The LANA was trained
using 16,861 512 × 512 30 m pixel annotated patches, and the final implementation used
a mini-batch size of 64 patches, a 0.0005 initial learning rate with a cosine learning rate
decay strategy, the RMSProp optimizer algorithm, and spatial dropout applied to the last
convolutional layer and to all the decoder layers before the transpose convolutions.
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The LANA classification results were compared with the Fmask results available in the
Landsat products and, in addition, with the results of the U-Net Wieland model that was
developed and trained by [36]. The LANA classifies 30 m pixels into four classes (cloud,
thin cloud, cloud shadow, and clear) and had a 77.91% overall classification accuracy, with
class-specific accuracy increasing sequentially from thin cloud (F1-score 0.4104) to cloud
shadow (0.5753), cloud (0.8139), and clear (0.8902) classes (Table 3). The very low F1-score
of the thin cloud and shadow classes highlights the difficulty in detecting reliably thin
clouds and cloud shadows due to the considerable spatial and spectral variability of these
classes, which is evident in the 500 × 500 pixel subsets illustrated in Section 4.3.

The LANA, Fmask, and U-Net Wieland algorithms have different class legends, and,
in order to provide meaningful intercomparison, the three algorithm classification results
were harmonized to the same three classes, i.e., cloud, cloud shadow, and clear (Section 3.4).
Considering the three classes, the LANA model had the highest (88.84%) overall accuracy,
followed by Fmask (85.91%), and then U-Net Wieland (85.19%) (Table 4). The LANA had
the highest F1-score accuracies for the three classes, which were >0.89 (clear), >0.91 (cloud),
and >0.57 (cloud shadow). The Fmask and U-Net Wieland algorithm F1-score accuracies
were lower for all three classes, particularly for cloud (Fmask 0.90, U-Net Wieland 0.88)
and cloud shadow (Fmask 0.45, U-Net Wieland 0.52).

In addition to the accuracy assessment, a time-series evaluation was undertaken
by applying each algorithm to a year of Collection 2 Landsat 8 OLI reflectance at
four 5000 × 5000 30 m pixel CONUS ARD tiles. The ARD tiles encompassed different
land surfaces and degrees of cloudiness and did not spatially coincide with the training
data. At each ARD tile pixel, the temporal smoothness (TSIλ) of the annual surface re-
flectance time series, considering only observations classified as “clear”, was quantified to
provide insights into the prevalence of undetected clouds and cloud shadows, including
sub-pixel clouds and shadows. The percentage of tile pixel observations classified as “clear”
was similar for the three algorithms and so the algorithm TSIλ values could be meaningfully
compared. The LANA had the smallest tile-averaged TSIλ values for 20 of the 24 (four tiles
and six OLI bands/tile) TSIλ comparisons, and the U-Net Wieland had marginally smaller
values than the LANA for the remaining four comparisons. The Fmask had the greatest
tile-averaged TSIλ values for all bands for three of the ARD tiles, and for the other ARD
tile (over Mexico/US that was the least cloudy), the Fmask had the greatest tile-averaged
TSIλ values for three of the six bands considered. The TSIλ results indicate that the LANA
had the lowest prevalence of undetected clouds and cloud shadows, whereas the Fmask
had the greatest prevalence. This was also reflected in the class specific accuracy results.
Among the three algorithms, the LANA had the smallest cloud and cloud shadow omission
errors with 93.79% and 65.62% producer’s accuracies, respectively, whereas the Fmask had
the greatest cloud omission error (86.57% producer’s accuracy) and the second greatest
cloud shadow omission error (60.67% producer’s accuracy) (Table 3). The U-Net Wieland
had the greatest cloud shadow omission error (50.88% producer’s accuracy). The U-Net
Wieland had 89.31% cloud producer’s accuracy.

Detailed 500 × 500 30 m pixel ARD tile pixel subsets of the three algorithm classifica-
tion results were compared qualitatively with the OLI reflectance for two dates selected
based on the most different classification results between the LANA and each of the other
two algorithms. The qualitative results were broadly consistent with the class specific
accuracy assessment findings. The LANA algorithm typically performed better than Fmask
and U-Net Wieland. Notably, the U-Net Wieland often failed to detect cloud and cloud
shadows, and the Fmask occasionally missed obvious clouds and aggressively detected
cloud shadows, which is reflected by it having the greatest cloud shadow commission error
(36.30% user’s accuracy). These detailed visual assessments, and the ARD tile counts of
annual “clear” observations, reinforce the need for cloud algorithm quality assessment.
Formal accuracy assessment relies on a limited sample of validation data that may not
adequately capture artefacts in the classification results, such as the Fmask stripe between
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successive Landsat images acquired in the same orbit and the U-Net Weiland cloud com-
mission errors over bright desert, evident in Figures 9 and 12, respectively.

The results presented in this study demonstrate that the LANA provides more reliable
and accurate cloud and cloud shadow classification than the other algorithms. The Fmask
and U-Net Wieland overall classification accuracies reported in this study are lower than
those reported by the original algorithm publications. This is for several reasons. The U-Net
Wieland authors reported a 91.0% accuracy for five classes (cloud shadow, cloud, water,
land, and snow/ice), however, they used training and evaluation patches selected from
the same images [36]. The Fmask Collection 1 overall accuracy was reported as 89.0% for
three classes (cloud, cloud shadow, and clear) [21], and for Collection 2, it was reported as
85.1% [22]. The reported Fmask Collection 2 overall accuracy is close to the 85.91% Fmask
accuracy reported in this study. Notably, however, we found that the 32 USGS annotated
Landsat 8 OLI images used by [21] to validate the Collection 2 Fmask included images with
missing cloud shadow annotations, and five images had visually indistinguishable cloud
and snow areas that were unlikely to have been annotated perfectly. This underscores
the need for high-quality annotation data that, ideally, should be derived at a higher
resolution than the cloud/shadow results, as clouds and shadows occur at the sub-pixel
level. International benchmarking and algorithm inter-comparison exercises, such as the
Cloud Mask Intercomparison eXercise (CMIX) [106], are encouraged to generate annotated
datasets that can be used for accuracy assessment and to investigate other ways of assessing
cloud/shadow algorithms, although obtaining contemporaneous higher spatial resolution
cloud/shadow information is challenging.

The LANA was implemented using the eight Landsat 8 OLI 30 m reflective bands and
will also work for Landsat 9, which has the same reflective wavelength OLI bands and
was launched successfully, after a short delay, in September 2021 [2]. The Landsat thermal
bands were not used, even though clouds are often colder than land surfaces [107,108].
We found that including the two Landsat 8 thermal bands did not improve the LANA
classification accuracy. This is likely because the emitted thermal radiance across a patch
can vary rapidly due to factors, including the solar irradiance history, the surface type (e.g.,
specific heat capacity), wetness (rain and dew), and wind, which control latent and sensible
heat fluxes. Further, cloud top temperatures can vary considerably, including with respect
to cloud height, cloud optical depth, and ambient atmospheric temperature [109,110]. We
also found that dropping the shorter wavelength OLI blue bands that are highly sensi-
tive to aerosol scattering and that are difficult to reliably atmospherically correct [93,111]
did not, like for other recent Landsat 8 OLI studies [67], significantly change the LANA
classification accuracy.

Finally, we note that the LANA could be applied to other satellite sensors. The older
Landsat sensor series have different spectral bands and spectral response functions [112],
potentially complicating transfer learning approaches that have been developed for other
Landsat deep learning applications [33,100]. In particular, the Landsat Multispectral Scan-
ner (MSS) onboard Landsat 1–3 carried no blue or SWIR bands and had a coarser resolu-
tion [113,114], and research using the LANA for MSS cloud and cloud shadow masking is
recommended. For reliable application to MSS, and to other sensor data, the LANA model
should preferably be retrained. For example, the Sentinel-2 MultiSpectral Instrument (MSI)
has similar but different spectral bands to the Landsat 8/9 OLI [115], and we note that
Sentinel-2 cloud annotations are available [116,117], but no such datasets exist for MSS, and
improved MSS cloud and cloud shadow masking is considered a future priority for the
next Landsat collection [2].
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Appendix A

Table A1. Summary of the Landsat 8 cloud/shadow detection literature describing algorithms using
fully convolutional network (FCN). The letters V, N, S, and T in the Input bands column indicate
visible, near infrared (NIR), shortwave infrared (SWIR), and thermal bands, respectively. The 95-cloud
dataset in the training data column was made by Mohajerani and Saeedi (2021) using 95 images. Note
that only the model developed by Wieland (2019) is publicly available.

Literature Patch Size Cloud/Cloud
Shadow Training Data Base Model Input Bands

Evaluation and
Training Patch
Independence

Chai et al.,
2019 [39] 512 × 512 Cloud and

shadow USGS SegNet V, N, S, T Same image origin

Li et al.,
2019 [77] 512 × 512 Cloud and

shadow* USGS Seminal FCN V Different images

Zhang et al.,
2019 [35] 300 × 300 Cloud and

shadow SPARCS U-Net V, N Different images

Shao et al.,
2019 [89] 128 × 128 Cloud Made by

authors
Seminal FCN &

DeepLab V, N, S, T Different images

Yang et al.,
2019 [118] 321 × 321 Cloud USGS Seminal FCN &

DeepLab V Different images

Jeppesen et al.,
2019 [38] 256 × 256 Cloud USGS and

SPARCS U-Net V, N, S, T Different datasets

Wieland et al.,
2019 [36] 256 × 256 Cloud and

shadow SPARCS U-Net V, N, S Same image origin

Francis et al.,
2019 [119] 86 × 86 Cloud USGS U-Net V, N, S, T Different images

Hughes and
Kennedy
2019 [32]

256 × 256 Cloud and
shadow SPARCS U-Net VNST Different images

https://zenodo.org/record/7865321
https://github.com/hankui/LANA-cloud-mask-codes-for-Landsat-8-9
https://github.com/hankui/LANA-cloud-mask-codes-for-Landsat-8-9
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Table A1. Cont.

Literature Patch Size Cloud/Cloud
Shadow Training Data Base Model Input Bands

Evaluation and
Training Patch
Independence

Mateo-García
et al., 2020 [33] 256 × 256 Cloud USGS U-Net VN Different images

Yin et al.,
2020 [120] 512 × 512 Cloud USGS U-Net VNST Different images

Jiao et al.,
2020 [121] 512 × 512 Cloud and

shadow Fmask U-Net VN and VNS Different images

Guo et al.,
2020 [122] 384 × 384 Cloud 95-Cloud U-Net and Oktay

attention VN Different images

Guo et al.,
2021 [123] 384 × 384 Cloud 95-Cloud and

SPARCS
U-Net and

channel attention VN Different images
and datasets

Mohajerani and
Saeedi 2021 [42] 192 × 192 Cloud and

shadow*

95-Cloud,
USGS and
SPARCS

U-Net VN Different images
and datasets

López-
Puigdollers

et al., 2021 [124]
256 × 256 Cloud

95-Cloud,
USGS and
SPARCS

U-Net VN and VNS Different images
and datasets

Yao et al.,
2021 [40] 512 × 512 Cloud USGS and

SPARCS
Deeplab and

channel attention VN Different datasets

Wang and Shi
et al., 2021 [125] 256 × 256 Cloud USGS Deeplab and

channel attention Not specified Same image origin

Hu et al.,
2021 [37] 256 × 256 Cloud and

shadow SPARCS UNet and self
attention Not specified Same image origin

Zhang et al.,
2021 [126] 512 × 512 Cloud SPARCS UNet V Same image origin

Hu et al.,
2022 [127] 512 × 512 Cloud USGS UNet and self

attention V Same image origin

Lu et al.,
2022 [128] 256 × 256 Cloud and

shadow SPARCS UNet and
transformer V Same image origin

Francis et al.,
2022 [129] 263 × 263 Cloud USGS and

SPARCS DeepLabv3+ All
combination Dataset

Zhang et al.,
2022 [130] 384 × 384 Cloud USGS U-Net and Oktay

attention V Same image origin

Guo et al.,
2022 [131] 512 × 512 Cloud USGS and

SPARCS DeepLab VN

(i) Same image
origin and

(ii) different
datasets

Li et al.,
2022 [132] 384 × 384 Cloud 95-Cloud and

SPARCS U-Net Not specified

(i) Same image
origin and

(ii) different
datasets

Li et al.,
2022 [117] 384 × 384 Cloud

Wuhan
University

Cloud datasets
U-Net VNS

NA (weekly
supervised

method)
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Table A1. Cont.

Literature Patch Size Cloud/Cloud
Shadow Training Data Base Model Input Bands

Evaluation and
Training Patch
Independence

Buttar and
Sachan 2022 [133] 384 × 384 Cloud 95-Cloud U-Net VN Same image origin

Ma et al.,
2023 [134] 512 × 512 Cloud USGS and

WHUS2-CD+
CNN and

Transformer V, N Different images

Pang et al.,
2023 [135] 256 × 256 Cloud USGS FCN, U-Net,

SegNet, DeepLab V, N, S Different images

Yao et al.,
2023 [136] 512 × 512 Cloud USGS Deeplabv3+ Not specified Same image origin

Chen et al.,
2023 [137] 224 × 224 Cloud and

shadow SPARCS ResNet18 Not specified Different images

Gong et al.,
2023 [138] 384 × 384 Cloud GF1-WHU Swin Transformer V, N Different images

Li et al.,
2023 [139] 256 × 256 Cloud USGS U-Net V, N Different images

Chen et al.,
2023 [140] 512 × 512 Cloud

Landsat
generated by
the authors

Attention CNN V, N Different images

Table A2. The training and structure parameters of the four U-Net models for OLI cloud and shadow
detection that were designed to detect both cloud and cloud shadows, and that used the SWIR bands.

LANA Wieland et al.,
2019 [36]

Jeppesen et al.,
2019 [38]

Hughes and
Kennedy 2019 [32] Chai et al., 2019 [39]

No. of parameters ~35 million ~8 million ~8 million ~20 million ~35 million
Regularization Spatial dropout None Dropout and L2 Spatial dropout Dropout

Optimizer RMSProp Adam Adam Adam RMSProp
Batch size 64 10 16–40 Not specified 2
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