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Abstract: Near-surface air temperature (Ta) is a key variable in global climate studies. Global
climate models such as ERA5 and CMIP6 predict various parameters at coarse spatial resolution
(>9 km). As a result, local phenomena such as the urban heat islands are not reflected in the model’s
outputs. In this study, we address this limitation by downscaling the resolution of ERA5 (9 km)
and CMIP6 (27 km) Ta to 1 km, employing two different machine learning algorithms (XGBoost
and Deep Learning). Our models leverage a diverse set of features, including data from satellites
(land surface temperature and normalized difference vegetation index), from ERA5 and CMIP6
climate models (e.g., solar and thermal radiation, wind), and from digital elevation models to develop
accurate machine learning prediction models. These models were rigorously validated against
observations from 98 meteorological stations in the East Mediterranean (Israel) using a standard
cross-validation technique as well as a leave-one-group-out on the station ID evaluation methodology
to avoid overfitting and dependence on geographic location. We demonstrate the sensitivity of the
downscaled Ta to local land cover and topography, which is missing in the climate models. Our
results demonstrate impressive accuracy with the Deep Learning-based models, obtaining Root Mean
Squared Error (RMSE) values of 0.98 ◦C (ERA5) and 1.86 ◦C (CMIP6) for daily Ta and 2.20 ◦C (ERA5)
for hourly Ta. Additionally, we explore the impact of the various input features and offer an extended
application for future climate predictions. Finally, we propose an enhanced evaluation framework,
which addresses the problem of model overfitting. This work provides practical tools and insights
for building and evaluating Ta downscaling models. The code and data are publicly shared online.

Keywords: air temperature; climate models; Deep Learning; land surface temperature; machine
learning

1. Introduction

Near-surface air temperature at 2 m height (Ta) is a key variable of critical importance
and plays a significant role in various fields, including agriculture ([1–3]), epidemiology
([4]), health ([5]), and urban planning. Additionally, predicting climate trends at a high
resolution is essential for developing climate change adaptation decision-support tools
(climate services). However, obtaining accurate high-resolution Ta data can be challenging.

Meteorological stations do provide continuous measurements of Ta; however, their
spatial distribution is irregular and coarse. To address this limitation, reanalysis data, a
process that standardizes weather models using ground-based observation data ([6]), can
be used. The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5
reanalysis provides hourly Ta data at a spatial resolution of 9 km. Additionally, ensemble
forecasting uses a set (or ensemble) of forecasts to indicate the range of possible future
states of the atmosphere. It runs multiple climate models with different initial conditions
and selects the scenario with the highest probability. The Coupled Model Intercomparison
Project Phase 6 (CMIP6) [7] is an ensemble of multiple climate models and re-analyses,
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offering climate change scenarios at a spatial resolution of 27 km. Despite these advances,
the spatial resolution of ERA5 Ta data is too coarse and remains inadequate for many
climate services. For example, local terrain effects are often missed in regions with rugged
topography, and in agricultural areas characterized by small field sizes, the coarse resolution
hinders precise climate analysis. Consequently, there is a growing need to enhance the
spatial resolution of ERA5 (and CMIP6) data. Sharpening climate models’ Ta data to 1 km
would contribute to the development of improved climate services and other applications.

Downscaling Ta can be performed by modeling the effect of different influencing
parameters. Specifically, vegetation cover impacts Ta through evapotranspiration where
the Normalized Difference Vegetation Index (NDVI) is often used to account for the impact
of vegetation ([4]). Land Surface Temperature (LST) impacts Ta through sensible and
latent heat fluxes ([8]), solar radiation through surface heating, and winds through vertical
mixing. Wind direction can influence Ta through temperature advection ([9]). For example,
in the Eastern Mediterranean, winds with a northern component often advect cold air,
while southeastern winds, which are common during transitional seasons, advect warm
air. Additionally, topographic height significantly affects Ta through adiabatic air vertical
motion ([10]). Topography in the Eastern Mediterranean varies significantly within short
distances, leading to drastic changes in the local temperature. For example, Mount Naftali,
at 436 m above sea level, experiences maximum summer temperatures around 30 ◦C, while
just about 2 km away in the Hula Valley, at 70 m above sea level, temperatures can reach
37 ◦C.

Multiple studies have undertaken the task of downscaling Ta using various methodolo-
gies, including statistical and classical (not neural-based) machine learning (ML) techniques
([4,11–16]). These studies exhibit diversity in terms of geographical coverage, choice of
algorithms (ranging from statistical and classical ML to Deep Learning), and the features
utilized in model training. While some investigations focused on daily downscaling resolu-
tions, either in terms of mean or min/max values, others delved into hourly downscaling
predictions. A prevalent trend emerged in recent research, highlighting the efficacy of ML
algorithms such as XGboost (XGB) and Random Forest (RF) in the Ta downscaling task.
Furthermore, there is a growing body of work introducing Deep Learning (DL) models,
including Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs),
demonstrating their potential and versatility in this context. These studies span various
regions worldwide, each presenting unique challenges and opportunities. To assess model
performance, these studies typically employed cross-validation techniques, involving ran-
dom data splitting for training and testing. The evaluation metrics commonly employed
to gauge the quality of downscaling predictions are Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and the R2 coefficient of determination. Table 1 summarizes
the RMSE values reported in these studies. As can be seen from the comparison table,
RMSE values for downscaling daily Ta range between 0.85 and 2.14 and 1.58 and 1.77 for
hourly predictions.

Table 1. Comparison of recent studies on Ta downscaling.

Reference Area Methods *
RMSE (◦C)

Hourly Daily

Sebbar 2023 [12] Morocco (High Atlas) MLR, SVR, XGB 1.61
Afshari 2023 [13] Germany (Urban) CNN 1.77
Zhou 2020 [4] Israel RF 1.58
Mouatadid 2017 [14] Canada ANN (DL) 0.85
Arumugam 2022 [16] India Linear regression 1.09
Zhang 2022 [11] Global SVCM-SP 1.75
Karaman 2023 [15] Turkey RF 2.14

* Methods: MLR—Multiple Linear Regression; CNN—Convolutional Neural Network; SVR—Support Vector Regres-
sion; XGB—Extreme Gradient Boosting; SVCM-SP—Spatially Varying Coefficient Models with Sign Preservation.
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Though previous research efforts have made valuable contributions to the field of
downscaling Ta, there are notable gaps in the existing body of work. There is a need
to compare the performance of different downscaling methods at both daily and hourly
resolutions and to consider additional features for model training, such as satellite data
and topographic information. Furthermore, while much attention has been given to
downscaling historical temperature data, there is a growing demand for downscaling future
climate predictions. Finally, there is room for improvement in the evaluation methodology
to avoid model overfitting and verifying the generalization of Ta downscaling models.

This study aims to address these challenges by comparing various downscaling meth-
ods, exploring the impact of additional features, extending the application to enable future
climate predictions, and enhancing the evaluation framework. Through this research, we
aspire to contribute to the advancement of downscaling techniques, ultimately providing
more accurate and reliable climate data for a wide range of applications.

The following sections of this paper detail our methodology, experiments, results,
and discussions, presenting a significant step forward in the field of downscaling air
temperature using machine and Deep Learning algorithms.

2. Data and Methods

In this section, we present the data and methods employed in our study, which
aims to compare machine-learning based methods for downscaling Ta. We compare the
performance of 6 different ML implementations consisting of two different ML algorithms
(XGBoost and Deep Learning) and two different time resolutions (hourly and daily) and
based on input data obtained from two different climate models (ERA5 and CMIP6). The
“ground truth” data target labels for training and testing the supervised ML models consists
of Ta observations from meteorological stations. Input features for the ML models consist of
climate (ERA5 and CMIP6), satellite, and topography data obtained from publicly available
resources. We compared the performance of the 6 different ML implementations using two
different evaluation methodologies. To extend the application of the various downscaling
models to future climate predictions of CMIP6, we used historical CMIP6 data and adjusted
the features appropriately. The overall flow chart describing the various implementations’
flow and architecture can be seen in Figure 1.

2.1. Study Area

The study area, located in the Eastern Mediterranean (Figure 2a), is characterized by
high spatial variability of climatic conditions ([17]) due to the region’s complex orography
(elevation: −430 up to 2814 m) and the spatial heterogeneity of land covers.

2.2. Data

The data for the supervised ML models consist of Ta observations as target values
(“ground truth”) and climate (ERA5 and CMIP6), satellite, and topography data used
as model input features. The grids were projected on the same coordinate system (CRS)
EPSG:4326.

2.2.1. Ground-Based Observations

We used Ta observations from the Israel Meteorological Service (IMS) and Ministry
of Agriculture (MOAG) meteorological stations. The IMS data were obtained via an
API [18] in 10 min temporal resolution and were resampled to hourly and daily temporal
resolutions. The MOAG hourly data were provided by the Ministry of Agriculture as a
CSV file. Figure 2b shows the geographical location of the 98 meteorological stations used
in this study. The station data include 12 years (2008–2019) of hourly Ta measurements
with a total of 10.3 million hourly samples from all stations. A total of 3.42 million hourly
samples were used for the historical (ERA5) model and 6.87 million for the future (CMIP6)
model. We used a different number of stations for each model with respect to the quality
and availability of the data from the stations and the climate models. Ta measurement
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errors (i.e., values above 50 ◦C or below −20 ◦C) were excluded from the datasets. On
top of that, we excluded stations with less than a minimum threshold (70%) of acceptable
data samples.
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2.2.2. ERA5 Climate Model Data

ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate
covering the period from January 1940 to the present. ERA5 is produced by the Copernicus
Climate Change Service (C3S) at ECMWF. ERA5 provides hourly estimates of a large
number of atmospheric, land, and oceanic climate variables on a 9 km grid. It combines
observational data from diverse sources, such as weather stations, satellites, and buoys, with
a numerical weather prediction model to generate a comprehensive and consistent analysis
of historical weather and climate conditions. With its high spatiotemporal resolution and
global coverage, ERA5 provides a valuable resource for downscaling Ta and capturing
detailed atmospheric information for machine and Deep Learning algorithms. ERA5 data
containing Ta, U&V wind components, downward surface solar and thermal radiation, and
net radiation were retrieved from the Climate Data Store (CDS) as netCDF files. Figure 3a
illustrates the outcome of the ERA5 daily Ta values for 9 September 2015.
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2.2.3. CMIP6 Climate Model Data

The Coupled Model Intercomparison Project (CMIP) is a project of the World Climate
Research Programme (WCRP) that provides climate projections to understand past, present,
and future climate changes ([19]). The CMIP and its associated data infrastructure have
become essential to the Intergovernmental Panel on Climate Change (IPCC) and other inter-
national and national climate assessments. CMIP6 historical data are available till the end
of 2014, and future data till the end of the 21st century under different Representative Con-
centration Pathway greenhouse gas concentration (not emissions) trajectories are adopted
by the IPCC. The data were obtained utilizing the Google Earth Engine (GEE) platform.

2.2.4. MODIS Satellite Data

The spatial resolution and coverage of the Moderate Resolution Imaging Spectrora-
diometer (MODIS) onboard the AQUA satellite, launched in 2002 as part of NASA’s Earth
Observing System, makes it a valuable resource for downscaling. We used the Shiff et al.
([20]) gap-filled MODIS LST dataset, which was found as the most suitable gap-filling
method for MODIS LST data ([21]). We added MODIS daily 1 km LST and 250 m NDVI to
the hourly dataset after up-sampling to hourly resolution using linear interpolation.
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2.2.5. Digital Elevation Model Data

As Ta is highly influenced by elevation, we obtained Digital Elevation Model (DEM)
data for the study area. We downloaded the Shuttle Radar Topography Mission (SRTM)
90 m resolution DEM from the GEE platform ([22]). These data were used to calculate the
mean elevation of all ERA5 (9 km) and CMIP6 (27 km) low-resolution (LR) grid cells in the
study area. Similarly, we calculated the mean elevation of all 1 km high-resolution (HR)
grid cells in the study area.

2.2.6. Corrected Ta Based on Height Difference and Adiabatic Lapse Rate

As the Ta values obtained from the climate models (ERA5 and CMIP6) are at a low
resolution (9 and 27 km), we included a naïve correction of the Ta values based on the height
difference between the mean height (h[LR]) of the low-resolution (LR) ERA5 or CMIP6 grid
and the mean height (h[HR]) of the high-resolution (HR) 1 km grid. The corrected Ta [HR]
value was calculated by using a vertical temperature gradient (dry adiabatic lapse rate) of
9.8 ◦C/1000 m as follows:

Ta [HR] = Ta [LR] − 9.8 × (h[HR] − h[LR]) (1)

The corrected values were used as an additional input feature to the supervised
machine learning models. Figure 3b illustrates the outcome of the ERA5 Ta correction for 9
September 2015.

2.3. Methods

In the following section, we describe the two chosen ML algorithms, the implementa-
tion details for the past and future models based on the corresponding climate data, as well
as the two evaluation methodologies that were used.

2.3.1. XGBoost Algorithm

One of the two algorithms employed in this study was XGBoost (Extreme Gradient
Boosting), a powerful ensemble learning algorithm widely recognized for its robust pre-
dictive capabilities. For our XGBoost model, we configured specific hyperparameters to
optimize its performance. We set the learning rate to 0.5 to control the step size at each
iteration, ensuring a balance between model convergence and accuracy. A maximum depth
of 6 branches was imposed on individual decision trees within the ensemble, regulating
model complexity. A gamma rate of 0.1 was applied to specify the minimum reduction in
loss required to make a new split, contributing to the overall model’s ability to generalize.
We employed 500 estimators, which represent the number of boosting rounds, allowing the
model to progressively learn and adapt. This customized configuration of XGBoost was
based on trial-and-error experimentation on our training data, enabling us to construct a
predictive model tailored to our specific research data and task.

2.3.2. Deep Neural Network

In our study, we employed a Deep Neural Network (DNN) as one of the two model-
ing approaches. This Deep Learning (DL) algorithm was implemented using Keras and
TensorFlow, known for their effectiveness in developing intricate neural architectures. The
Neural Network (NN) structured architecture consists of four fully connected layers, each
with a varying number of neurons, configured in the following order: 200, 200, 100, and
50 neurons. To introduce non-linearity and enhance the model’s expressive power, the
Leaky-ReLu activation function was applied to each of these hidden layers. For the final
dense layer, we used a single neuron, which aligns with our regression problem setting.

To initialize the weights in the NN layers, we employed a seeded Keras Glorot ini-
tializer, ensuring stability during training. Model performance was assessed using the
Root Mean Square Error (RMSE) metric, which is suitable for regression tasks. To optimize
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the model’s weights, we selected the Adam Optimizer, a popular choice for its ability to
efficiently handle large datasets and complex architectures.

During training, a batch size of 2000 was employed to balance computational efficiency
and convergence. To prevent overfitting and streamline model training, we incorporated
early stopping callbacks, which halted training when performance on a validation set
ceased to improve, thus preventing unnecessary iterations. This customized NN configura-
tion, with careful consideration of the architecture, activation functions, and optimization
techniques, was integral to our research methodology, enabling us to effectively tackle the
research questions at hand.

2.3.3. Models for Downscaling Historical Data

We used the ERA5 dataset as the historical climate model data. The training data of
the historical model refer to a period of five years (2015–2019). For each of the historic
ground observations, we collected ERA5, terrain, remote sensing, and temporal data to be
used as input features for the supervised regression model. LST and NDVI daily values
were up-sampled to hourly resolution using mean interpolation. Overall, the raw historical
data used to train the regression models include 3.2 million samples, each with 15 different
features (Table 2). Temporal features include the Day of Year (DOY, 0:364) and the Time
of Day (TOD, 0:23), both of which were subjected to a sin and cos based trigonometric
transformation [23], mapping each of them into two features in the range of [0, 1]. This
transformation aids in accounting for the cyclic nature of temporal variables. As a means
for the learning process to generalize to unseen stations, we excluded features that contain
station-specific information such as geographical coordinates or station ID.

Table 2. The features used to train the various models. The first 13 features were used in training
the models for downscaling historical data (ERA5); DOY and HOD were used in all models, and the
10 remaining features were used to train the models for downscaling future data (CMIP6).

Feature Name Short Name Resolutions Source Historic/Future

Air temperature (2 m) T2M

10 km/h ERA5

Historic

Surface solar radiation downwards SSRD
Surface thermal radiation downwards STRD
Surface thermal radiation (net) STRN
Surface solar radiation (net) SSRN
U component U_comp
V component V_comp
Wind speed WS
Wind direction WD

Diff (ERA5—MODIS) mean pixel height HeightD 1 km/-

NDVI NDVI 250 m/day
MODIS AQUALST LST 1 km/day

Day of Year DOY
BothHour of Day HOD -/h

Corrected Ta (lapse rate) T2M_cor 1 km/h

Daily mean near-surface wind speed DMNSWS

27 km/day CMIP6
Future

Surface downwelling shortwave radiation SDSR
Surface downwelling longwave radiation SDLW
Near-surface specific humidity NSSH
Near-surface relative humidity NSRH
Daily Ta DNSTA
Daily min Ta DMINSTA
Daily max Ta DMANSTA

Mean height in CMIP6 pixel MHCP
1 km/- 90 m DEMMean height in MODIS pixel MHMP
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RMSE was chosen to estimate the models’ performance. We applied both the XG-
Boost and the DNN algorithms for both daily and hourly temporal resolutions—a total of
4 models. The hourly dataset included 3.3 M samples and the daily dataset included 140 K
samples. The various ML algorithms were trained separately on hourly and daily data.
Grid search was executed for each model to minimize loss rates.

2.3.4. Models for Downscaling Future Data

To develop models suitable for the downscaling of CMIP6 climate scenario predictions,
we followed a methodology akin to the historical model training process outlined above
(Section 2.3.3). However, this necessitated specific adaptations to accommodate the char-
acteristics of future data predictions. Consequently, we tailored the input features for the
model, ensuring their alignment with the variables available in the CMIP6 climate scenario
data, while omitting features, such as NDVI observations, that do not apply in this context.
In this setting, we only run daily prediction models as the future climate predictions of
CMIP6 are not available at an hourly resolution.

The CMIP6 historical climate data, characterized by a spatial resolution of 27 km and
a daily temporal resolution, served as the foundation for our model training. We harnessed
a seven-year dataset spanning from 2008 to 2014, which encompassed 13 essential features.
The feature set comprised daily mean near-surface wind speed, surface downwelling short-
wave radiation, surface downwelling longwave radiation, near-surface specific humidity,
near-surface relative humidity, as well as daily Ta and daily minimum and maximum Ta.

In a similar manner to our approach for the ERA5-based models used in historical data
downscaling, we employed both XGBoost and DNN algorithms to assess the downscaling
of CMIP6 data.

2.3.5. Evaluation and Validation Methodology

As stated above, RMSE was chosen to estimate the models’ performance. To test
our models, we applied two different validation techniques. In alignment with previous
studies (see Table 1), we randomly split the data to a training set (80%) and a test set
(20%) for Cross Validation (CV). The training set was used to train the machine learning
model, while the performance was evaluated on the test set. It is important to note that in
this setting, observations from the same station (though from a different day and/or time)
appear in both the train and test set, and although we excluded features that contain station-
specific information such as geographical coordinates or station ID, the learning models
may be partially station-specific, and the learning process may not generalize properly
to unseen stations. Thus, we also implemented a more rigorous evaluation technique
consisting of K-fold cross-validation while leaving-one-group-out (LOGO) on the station
ID. These measures were instrumental in meticulously validating the model’s proficiency
in downscaling Ta data.

3. Results

Following the demonstration of the ERA5 Ta data for 1 September 2015 (Figure 3a)
and the downscaled Ta only with the topography (Figure 3b), Figure 3c demonstrated the
downscaled Ta of the ERA5 Daily NN model. Figure 4 is a zoomed-in view of the area of
Tel Aviv.

3.1. Historical (ERA5) and Future (CMIP6) Data Models

Table 3 summarizes the evaluation baseline results along with the results of the various
ML algorithms on the data from the two climate models on both daily and hourly temporal
resolution. Table 3a presents the baseline results obtained by running no downscaling
(original Ta) and downscaling by simply using the corrected Ta. For the historical data
models hourly dataset, the best-performing models on the test set obtained RMSE values
of 1.33 for the NN and 1.39 for the XGB model. The corresponding results when evaluating
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using the LOGO procedure were higher (i.e., lower prediction accuracy)—2.10 for the NN
and 2.65 for the XGB model.
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Table 3. (a). Baseline result metrics are included also for simply using the climate model original
resolution Ta and corrected Ta as predictions. (b). Random split Cross Validation (CV) and leave-one-
group-out based on station ID (LOGO) RMSE, MAE, and R2 values for XGboost and Neural Network,
for daily and hourly ERA5 (9 km, 2015–2019) datasets and daily CMIP6 (27 km, 2008–2014) datasets.

(a)

Climate
Model/Baseline

Daily Hourly

RMSE MAE R2 RMSE MAE R2

Historic
(ERA5)

Ta 1.70 1.28 0.93 2.84 2.20 0.86
Corrected

Ta
1.67 1.26 0.94 2.81 2.18 0.87

Future
(CMIP6)

Ta 2.84 2.21 0.86 -
Corrected

Ta
2.81 2.18 0.87 -

(b)

Climate
Model/Algorithm

CV LOGO

Daily Hourly Daily Hourly

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Historic
(ERA5)

XGB 0.79 0.58 0.99 1.39 1.00 0.97 1.50 1.55 0.95 2.77 2.14 0.87
NN 0.89 0.64 0.98 1.33 0.95 0.97 0.98 0.67 0.97 2.20 1.48 0.92

Future
(CMIP6)

XGB 1.24 0.88 0.96 - 2.14 1.62 0.88 -
NN 1.34 0.98 0.95 - 1.86 1.30 0.91 -

-Note that the models for downscaling future (CMIP6) data were run only at a daily resolution. Also, note that
lower RMSE and MAE values are better while higher R2 are better (with 1 indicating a perfect fit). RMSE and
MAE values are in ◦C.

As with the historic hourly dataset, the daily RMSE values were, as expected, lower
(better) than the hourly RMSE values. The best-performing models obtained RMSE values
of 0.79 for the NN and 0.82 for the XGB model. The corresponding results when evaluating
using the LOGO procedure were higher—0.90 for the NN and 1.44 for the XGB model.

RMSE results for the future daily models (CMIP6) were slightly higher—1.27 and 1.32
for the NN and XGB models and 1.56 and 2.05 when applying LOGO.
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To gain deeper insights into the model’s performance, we computed the average
RMSE across different diurnal (Time of Day, TOD) and seasonal (Day of Year, DOY) cycles
for the observations in the test dataset. In Figure 5a, the RMSE values for the hourly
historical (ERA5) NN model with LOGO are displayed over the course of the day, revealing
a fluctuating pattern with peaks occurring between 4 and 9 a.m. and from 3 to 6 p.m. In
Figure 5b, the corresponding RMSE values for this model are displayed over the course
of the year, revealing a peak in the spring in which RMSE values are comparatively high.
Figure 6a shows RMSE values over the DOY for the daily historic model. As can be seen
from the figure, higher RMSE values are obtained during spring and especially in autumn.
Figure 6b shows RMSE values over the DOY for the daily future CMIP6 model showing
high values at the end of winter.
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3.2. Feature Importance

Investigating the feature importance across the diverse models employed in our study
reveals valuable insights into their predictive capabilities and their contribution to the
model performance. Figure 7 shows the feature weights for the XGboost daily CMIP6 model.
The feature with the highest importance was near-surface relative humidity, followed by
surface downwelling shortwave radiation. For the historical hourly XGB model, the mean
height difference had the highest importance, followed by NDVI and LST (Figure 8b).
While Ta from reanalysis (T2M) and wind U component (U_comp) were the prominent
features for the historical daily XGB model (Figure 8a).

To further test the impact of the various types of features, we run the NN ERA5 Models
with LOGO evaluation with and without satellite and topography. Results without the
satellite features (LST and NDVI) were slightly worse with an RMSE of 2.24 (up from 2.20)
and an MAE of 1.47 (up from 1.50) for the hourly model and an RMSE of 1.06 (up from 0.99)
and an MAE of 0.70 (up from 0.67) for the daily model. Removing the topography-related
features had a stronger effect with an hourly RMSE of 2.45 (up from 2.20) and an MAE
of 1.75 (up from 1.50) and a daily RMSE of 1.12 (up from 0.99) and an MAE of 0.85 (up
from 0.67).
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4. Discussion
4.1. Results—Qualitative

Figure 3c shows the Ta NN ERA5 daily model predictions at 1 × 1 km resolution for 1
September 2015. A closer look at the effects of the land cover as captured by the MODIS
land surface temperature and NDVI features on the Ta predictions are presented in Figure 4.
Figure 4a presents the 9 × 9 resolution ERA5 Ta for the Tel Aviv area, showing uniform
Ta values; in Figure 4b, the ERA5 Ta values are corrected based only on the topography
and dry adiabatic lapse rate, showing higher Ta values in lower altitudes (Yarkon and
Ayalon rivers). Figure 4c presents the Ta NN ERA5 daily model predictions at 1 × 1 km
resolution revealing the urban heat island of Tel Aviv and the surrounding cities (higher
Ta) and especially in the densely populated city of Bnei Brak, with very low vegetation
cover. On the other hand, lower Ta can be seen along the Yarkon River and Yarkon Park
and along the Ayalon River and Ariel Sharon Park, the two main green corridors of the Tel
Aviv metropolitan. Note that the effects of the land cover (MODIS LST and NDVI) are more
dominant than the topography (as manifested in Figure 4b). This is a major contribution of
our suggested Ta downscaling.

4.2. Results—Quantitative

Overall, the quantitative results indicate that both the XGB and the NN-based models
downscaled Ta to 1 km at hourly and daily temporal resolution with high accuracy improv-
ing over RMSE results reported in similar Ta-downscaling studies. This implies the strength
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of our models and approach. It is important to note that given that the various studies
reported in Table 1 applied their models to different geographical areas and time points, one
cannot make an exact one-to-one comparison of the results. To facilitate such future work,
we share our models and data and are making them available to the academic community.

When comparing the two machine learning models NN and XGB, both models ob-
tained comparable results though the Deep Learning models consistently outperformed
the XGBoost-based ones. This is possibly due to the large amount of training data and the
strong capacity of NN to learn complex non-linear patterns and memorize information
from the training data. It is important to note that the NN models required significantly
more time to train.

The future (CMIP6) model’s performance was inferior to the ERA5 as expected due to
fewer input features and coarser resolution. However, this model still obtains good results
and can be used to be applied on future data.

Atmospheric processes’ spatial and temporal scales are related. This is manifested
in the feature importance that differs for the daily vs. hourly models. ERA5 coarse
temporal resolution (daily) Ta values are influenced by 9 km resolution ERA5 features,
i.e., temperature and wind U (east–west) component (Figure 8a), while the fine temporal
resolution (hourly, Figure 8b) Ta values are influenced by fine spatial resolution features
that capture the local conditions, i.e., topography and NDVI. LST is the third feature of
importance in both models.

The diurnal variations of RMSE over TOD (Figure 5a) show a peak at sunrise (6 a.m.)
when the maximal effect of nocturnal radiative cooling occurs. It is related to the spatial
distribution of the meteorological stations where stations in rural areas are strongly affected,
while most other stations (in proximity to urban areas) are less prone to this effect due
to the urban heat island effect. On top of that, stations in low altitudes, especially in
valleys, will experience in clear sky nights much lower temperatures than others in higher
altitudes or alternatively proximity to the seashore. The seasonal variations of RMSE
over DOY (Figures 5b and 6) show large variations in the spring and autumn when the
synoptic circulation patterns change from steady summer patterns [24] to more variable
winter patterns.

In terms of runtime, the models run on a server running Rocky 9.3 Linux with an
Intel(R) Xeon(R) E5-2650 v4 2.20 GHz CPU, 128 GB RAM and an NVIDIA GTX1080Ti GPU.
Code run using Python version 3.9.18, keras 3.1.1 (for the NN models) and scikit-learn 1.4.1
(for the XGBoost models). The XGBoost hourly models took on average ~10 s, while the
NN models took roughly 20 min to run. Similarly, the running time for the XGBoost daily
models took less than 2 s to train the models, while the NN models required over a minute
to run.

4.3. Methodology

Results when applying the LOGO evaluation methodology reveal higher RMSE (lower
model precision) compared to the evaluation based on the conventional train/test approach
as frequently employed in prior studies. It seems as if, despite the exclusion of station-
specific features, our models demonstrate challenges in achieving robust generalization to
unseen data points. This underscores the importance of adopting the LOGO methodology
for reporting downscaling evaluation results. It also underscores the need for further
research aimed at enhancing the adaptability of machine learning models to improve their
generalization capabilities in such settings.

5. Conclusions

In this study, we successfully addressed the limitations of coarse spatial resolution
global climate models, such as ERA5 and CMIP6, through the implementation of machine
learning-driven downscaling techniques to enhance the resolution of near-surface air
temperature (Ta) data. Leveraging a diverse array of features, including satellite data,
climate model outputs, and digital elevation models, we developed accurate downscaling
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models, with the Deep Learning model proving most effective. The downscaled Ta is
sensitive to small scale topographic features and to the effects of land cover that are missing
from the larger scale climate models’ Ta (ERA5, CMIP6), which is very much needed for
many applications such as climate services.

We strongly advocate for the adoption of the “leaving one group out” (LOGO) eval-
uation methodology when testing and reporting model results, as it provides a robust
validation approach enhancing the reliability of findings in climate-related studies. Addi-
tionally, we are committed to sharing our models and data with the academic community,
facilitating further research and a deeper understanding of local climate dynamics. These
resources offer invaluable insights for climate adaptation strategies and informed decision-
making processes. The corresponding code and data of this work are publicly shared online.
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