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Abstract: The canopy height model (CHM) derived from LiDAR point cloud data is usually used
to accurately identify the position and the canopy dimension of single tree. However, local invalid
values (also called data pits) are often encountered during the generation of CHM, which results in
low-quality CHM and failure in the detection of treetops. For this reason, this paper proposes an
innovative method, called “pixels weighted differential gradient”, to filter these data pits accurately
and improve the quality of CHM. First, two characteristic parameters, gradient index (GI) and Z-score
value (ZV) are extracted from the weighted differential gradient between the pit pixels and their
eight neighbors, and then GIs and ZVs are commonly used as criterion for initial identification of
data pits. Secondly, CHMs of different resolutions are merged, using the image processing algorithm
developed in this paper to distinguish either canopy gaps or data pits. Finally, potential pits were
filtered and filled with a reasonable value. The experimental validation and comparative analysis
were carried out in a coniferous forest located in Triangle Lake, United States. The experimental
results showed that our method could accurately identify potential data pits and retain the canopy
structure information in CHM. The root-mean-squared error (RMSE) and mean bias error (MBE) from
our method are reduced by between 73% and 26% and 76% and 28%, respectively, when compared
with six other methods, including the mean filter, Gaussian filter, median filter, pit-free, spike-free
and graph-based progressive morphological filtering (GPMF). The average F1 score from our method
could be improved by approximately 4% to 25% when applied in single-tree extraction.

Keywords: LiDAR; canopy height model; gradient; pit filling; forest

1. Introduction

Airborne LiDAR point cloud data is widely utilized for measuring the geometric
characteristics of tree canopies [1–5], significantly enhancing the accuracy of estimating
forest canopy cover [6–8], forest biomass [9], and carbon sinks [10]. In particular, the canopy
height model (CHM), which is derived from LiDAR point clouds, is valuable for accurately
estimating the true physical height of trees within forested areas [11,12]. This capability
greatly contributes to the efficient extraction of individual tree parameters [13–15].

However, data pits, which are usually hidden in CHM, are a common problem that
significantly impacts the quality of CHM [16]. These pits typically manifest as randomly
distributed anomalies in pixels with very low height values within the canopy, making
them readily visible in CHM images [17]. Several factors contribute to the occurrence
of these pits. For example, during the acquisition of LiDAR point cloud data, LiDAR
pulses penetrate the canopy to hit branches below the canopy and low shrubs; signals
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returned from the ground and the interpolation of these laser points to generate the CHM
unavoidably produce data pits [18–20]. Laser points with large elevation errors around
overlapping airstrips also lead to data pits [21]. In addition, when the LiDAR point cloud is
converted to raster data via interpolation, some points with similar x and y coordinates but
with multiple elevation values can form data pits [22]. On the other hand, the density of
the point cloud is another factor as well [23,24]. Pitted pixels compromise CHM accuracy,
disrupt canopy surface integrity, hinder visual canopy recognition, and impact the precision
of single-tree canopy extraction and crown width estimation, leading to errors in treetop
extraction [25]. It has been widely accepted that one of the reasons for the underestimation
of tree height is due to such pits [26]; improvement of the quality of CHMs is of great
significance for subsequent research applications [27].

Researchers have proposed various methods to remove data pits in the LiDAR canopy
height model. The major methods can be broadly categorized into two types: one is raster
data postprocessing [28] and the other is point cloud preprocessing [29–31]. In the point
cloud-based approach, pit-free CHMs are generated by directly processing the point cloud.
Gaveau et al. [26] used only the first echoes from the LiDAR point cloud to construct
the CHM. They considered that the first echo signals better represent the canopy surface
information but do not detect the signals from the ground after these points and can
penetrate the canopy, which becomes a potential source of error. Chen et al. [30] used the
statistical Z-score [32] to remove pits for the first time. Khosravipour et al. [29] utilized
all echo signals to generate a spike-free DSM that significantly reduced the data pits issue
compared to using only the first echo. Hao et al. [31] proposed a graph-based progressive
morphological filtering to filter out most of the non-crown points so that they could use
the remaining canopy points to generate a CHM; this method reduces the data pits issue
while retaining most of the canopy details. Zhang et al. developed a cloth simulation-
based algorithm [33] to construct pit-free CHM from airborne LiDAR data. Parameters
are usually involved in these methods, reducing the generalizability of the methods to
cope with different datasets. Moreover, the point cloud preprocessing does not focus on
correcting the values of error points. Instead, the number of point clouds is changed to
avoid data pits during the CHM generation process. Consequently, researchers would like
to recommend raster data postprocessing method for filtering data pits on CHM. Raster
data are processed by constructing the CHM and then filling the pits using various image
processing methods. The simplest global filters are applied to reduce the data pits issue,
such as mean filtering and Gaussian filtering. These methods are simple and fast but alter
the normal pixels in the CHM grayscale image and tend to result in an underestimation
of canopy height [34]. Thus, it is preferable to detect pits before filling them. Ben-Arie
et al. [28] filtered pits by setting a threshold and then using the median value within the
window to fill the pits, but a single threshold makes it difficult to exclude the range of
canopy gaps, resulting in altered values for non-pit pixels. Zhao et al. [20] improved Ben-
Arie’s method by proposing the concept of canopy control to limit the canopy range, which
improved the efficiency of detecting canopy pits. However, it is difficult to detect crowns
with large differences in crown size under a fixed window [35]. Liu et al. [35] improved the
CHM by using multiscale operators to overcome the window problem; the disadvantage
of this is that multiple parameters need to be determined artificially in each multiscale
operator, which makes the method rely more on manual experience and trial and error.

As outlined above, most of the studies attempted to detect data pits using single
threshold or window filter but ignored the similarity between data pits and canopy gap.
Therefore, this paper develops a novel method to improve the identification accuracy of
data pits, which utilizes pits parameters and canopy range constraints to establish pit
filtering criterion. This paper is organized as follows: Section 2 describes the methods
proposed in this paper; the experiments and analysis are presented in Section 3; and the
conclusions are given in Section 4.
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2. Development of a Weighted Differential Gradient Method

In this study, a new method is proposed for the identification of data pits to improve
the accuracy of CHM. A flowchart illustrating the method proposed in this paper is shown
in Figure 1; it consists of original CHM input, calculation of characteristic parameters,
establishment of criterion for data pits, identification of data pits and filling them, and the
refined CHM.
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Figure 1. The flowchart of the proposed method.

2.1. Characteristic Parameters for Canopy Pits Identification

Assuming that Figure 2a is the canopy of a tree, where the pixel with gray 0 is
considered as potential pit to be identified. Further, assuming that the canopy dimension is
m×n, which represents the rows and columns of the canopy image, respectively (m = 24,
n = 22 in Figure 2a). In order to describe our method, a pit with a size of one pixel
(i.e., called “pit pixel”) is selected (see Figure 2a), and a 3 × 3 window centralized at the
pit pixel Ci,j is selected (see Figure 2b). The nine pixels within the window are represented
by {C(i−1,j+1), C(i,j+1), C(i+1,j+1), C(i−1,j), C(i,j), C(i+1,j), C(i−1,j−1), C(i,j−1), C(i+1,j−1)}. With
the nine pixels, two characteristic parameters, the Z-score, ZV(i,j), and gradient index, GIi,j,
can be calculated as follows:

ZV(i,j) =
C(i,j) − M1

(i,j)

M2
(i,j)

, i = 1, . . . , m; j = 1, . . . , n (1)

GI(i,j) =

m
∑

i=1

n
∑

j=1

(
w(i,j) × C(i,j)

)
W

, i = 1, . . . , m; j = 1, . . . , n (2)

where M1
(i,j) and M2

(i,j) represent the median and median absolute deviation of pixel
grays within the window, respectively. w(i,j) and W represent the gradient weights of
the eight pixel grays in the window and their sums, respectively. The parameters can be
calculated as follows [25]:

M1
(i,j) = median(Cx), x = 1, . . . , 9 (3)

M2
(i,j) = M1

(i,j)(C(i,j) − M1
(i,j)), i = 1, . . . , m; j = 1, . . . , n (4)

w(i,j) = exp(dx), i = 1, . . . , m; j = 1, . . . , n; x = 1, . . . , 8 (5)

W =
m

∑
i=1

n

∑
j=1

w(i,j), i = 1, . . . , m; j = 1, . . . , n (6)
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where dx represents the pixel gradient within the window, which is calculated as follows:

d1 =
∣∣∣C(i−1,j+1) − C(i,j)

∣∣∣, d2 =
∣∣∣C(i,j+1) − C(i,j)

∣∣∣
d3 =

∣∣∣C(i+1,j+1) − C(i,j)

∣∣∣, d4 =
∣∣∣C(i−1,j) − C(i,j)

∣∣∣
d5 =

∣∣∣C(i+1,j) − C(i,j)

∣∣∣, d6 =
∣∣∣C(i−1,j−1) − C(i,j)

∣∣∣
d7 =

∣∣∣C(i,j−1) − C(i,j)

∣∣∣, d8 =
∣∣∣C(i+1,j−1) − C(i,j)

∣∣∣
, i = 2, . . . , m − 2; j = 2, . . . , n − 2 (7)

The pixel gradient in Equation (7) is indeed calculated using the gray differential between
the pit pixel and their eight neighborhood pixels. Usually, the Z-score is used for detecting
outliers [32], and the pit pixels of CHM are exactly considered as the outlier in gray.
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2.2. Establishment of Canopy Constraints for the Weighted Differential Gradient

The method above assumed the gray with 0 as a pit pixel. In fact, the gray with 0 in
a CHM does not really represent the pit pixel (see Figure 3), since the canopy gap pixels
also present on a CHM with a similar gray to pit pixels. In order to disguise them, a
canopy constraint C f

(i,j)(i = 1, . . . , m; j = 1, . . . , n) is proposed. This constraint is based so
that a pit appearing on a CHM shows an abrupt height change, i.e., its height suddenly
becomes lower than the ones surrounding pixels within CHM, even is sometime close to
zero. Combining the gradient differential information of the pit pixels and the canopy
constraints, the criteria for potential pit pixels are expressed as follows:

Cpits
(i,j) =

{
ZV(i,j) < GI(i,j)
C f
(i,j) > TC

, i = 1, . . . , m; j = 1, . . . , n (8)

where Cpits
(i,j) is the pit in the canopy range and TC is a given threshold that should theoret-

ically be the minimum under branch height within the measurement area. If the height
value in the CHM is greater than TC, it is considered to be a canopy region, and vice versa.
This threshold has an impact on the accuracy of detection of canopy extent, with larger
ones potentially failing to detect potential canopy areas, while smaller ones will detect
information below the canopy. C f

(i,j) is the canopy coverage constraint, which is calculated
as follows:

C f
(i,j) = k1Cr

c0.25(i,j) + k2Cc0.5(i,j) + k3Cr
c1(i,j) + k4Cr

c2(i,j)
(i = 1, . . . , m; j = 1, . . . , n)

(9)
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where Cr
c0.25(i,j), Cc0.5(i,j), Cr

c1(i,j), Cr
c2(i,j) are CHM raster images of four different spatial

resolutions, which are selected with 2.0 m, 1.0 m, 0.5 m, and 0.25 m in this paper for
constructing canopy coverage constraints. Theoretically, if a canopy is visible in the raster,
its spatial resolution should be lower than half of the canopy dimension [36]. On one hand,
the four resolutions of CHMs are chosen to ensure that the canopy is visible in the raster
and the resolution is multiplicative. On the other hand, it is difficult to deal with crowns
of different sizes and canopy gaps in a single-resolution CHM image in a fixed-window
convolutional operation. K represents the fusion weights, which are set on the basis of
experience and to not exceed one in total. If many large canopies exist, the weights of
the CHMs with resolutions of 1.0 m and 2.0 m can be set to a heavy value to reduce the
information loss on the edges of large canopies. If many small canopies exist, the weights
of the CHM with 0.25 m resolution can be set to heavier values to ensure the accuracy of
the canopy range constraints.
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Before calculating the canopy constraints, the CHMs involved in constructing the
constraints must perform a morphological closure operation to recover the crown [20].
Therefore, a morphological closure operator is applied to the original CHM to recover the
canopy shape (see Figure 4). Assuming that the raw CHM image is S, a morphological
closure operation is performed with an approximate circular structural element E [37,38],
as follows:

Cc = S × E (10)

where Cc is the processed CHM; E is the raw CHM; and S is the approximate circular
structure element.
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The operation of Equation (10) was applied to the CHM raster images of 0.25 m, 0.5 m,
1.0 m, and 2.0 m, respectively. The use of near-circular structural elements is based on the
assumption that the shape of the canopy is observed as a near circle or an ellipse from
directly above. The obtained CHMs are denoted, respectively, as {Cc0.25, Cc0.5, Cc1, Cc2}.
Once the operation is completed, resampling {Cc0.25, Cc1, Cc2} using the bilinear interpo-
lation method is performed to improve the accuracy of pits detected in CHM [39] and to
reduce the error introduced by interpolation. Therefore, the bilinear resampling method is
applied in resampling {Cc0.25, Cc1, Cc2} into CHM with 0.5 m resolution and is denoted as{

Cr
c0.25, Cr

c1, Cr
c2
}

. Finally, the resampled CHM raster images are merged using Equation (9).

2.3. Filling the Pits

Once the pits on the crown are found, a reasonable value is needed to fill them; if this
value of filling is too large, it may cause misidentification of the treetop and if this value is
too small, it will not function to optimize the CHM. To solve this problem, in this paper,
we smoothed the canopy height models using median filtering. Using the corresponding
value in the median filter instead of the pit value, as follows:

Cpits
(i,j) = Cmedian

(i,j) (11)

3. Experiments and Analysis
3.1. Experimental Data and Preprocessing
3.1.1. LiDAR Data

In this paper, airborne LiDAR point cloud data from Triangle Lake, 38 km west of
Oregon on the Pacific coast of the northwestern United States, are used to validate the
effectiveness of the methodology, as shown in Figure 5. The study area is a hilly landscape
with a ground slope of 0◦–58◦, and the main tree species are coniferous trees and pines,
of which the most important species are fir, hemlock, and red cedar trees. Airborne laser
point cloud data were acquired by a Cessna 337 Skymaster civil aircraft carrying an Optech
Gemini Airborne Laser Terrain Mapper (ALTM) system. According to the analysis and
acquisition of LiDAR data completed by the National Center for Airborne Laser Mapping
(NCALM) in 2013 [40] the forest structure in the study area is complex. The data were
collected with an average flight speed of 60 m/s, a scan angle of about 30◦, and a flight
altitude of 600 m. Data contain four echoes and point cloud density of about 14.35 pts/m2.
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Three test areas were selected to verify our method, as shown in Figure 6. Each test
area is a square with 100 × 100 m2. Due to the difficulty of obtaining accurate field survey
data for comparison analysis, the visualization software Cloud Compare v2.13 [41] and
ArcGIS10.6.1 were used to manually extract the reference treetop data and were recorded
as the reference tree heights, which are used for evaluating the performance of the method
proposed in this paper [42–44]. The characteristics of the reference data are listed in Table 1.

Table 1. The reference data extracted manually from the study area.

Test Area Number of Trees
Tree Height(m)

Point Density (pts/m2)
Average of Height Std of Height

1 191 43.39 5.28 16.02
2 104 36.32 4.53 13.18
3 75 35.92 6.69 11.64
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Three test areas to verify the advantages and superiority of method proposed in this
paper. Three test areas differed in stem density, with test area 1 having the highest, test
area 3 the lowest, and test area 2 being in between. A higher stem density means that the
lower and middle trees are more heavily shaded, and some of the lower canopy may be too
shaded to be observed. The experiment was carried out in MATLAB R2020b using an Intel
(R) Core (TM) i7-4710MQ CPU with the memory of 8 GB. The processing time was 3 min
and 10.4 s.

3.1.2. Data Preprocessing

Two main methods were applied to generate CHM from laser point cloud data: one
was to obtain the difference between the canopy surface model DSM (digital surface model)
and the ground digital elevation model DEM (digital elevation model) and the other is to
use the classified ground points to normalize the elevation of the point cloud data, and to
then obtain the CHM from the rasterization [45]. In this paper, we directly rasterize the nor-
malized point cloud to generate CHM (as shown in Figure 7), which aims to reduce the loss
of canopy information as interpolated only once. Figure 8 shows the CHM raster images at
different resolutions. What can be observed is that the data pits issue becomes increasingly
obvious as the spatial resolution gradually increases. The classification of ground points was
performed using TerraSolidV13 software, and then the height normalization was completed by
subtracting the height value of the nearest ground point found from the height value of each
non-ground point. Considering the influence of point cloud density and canopy crown width
of the survey area on the CHM resolution [36], inverse distance weight (IDW) method [46,47]
are used for the normalized point cloud to generate CHMs with spatial resolutions of 2.0 m,
1.0 m, 0.5 m, and 0.25 m for subsequent operations.



Remote Sens. 2024, 16, 1304 8 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 21 
 

 

Three test areas to verify the advantages and superiority of method proposed in this 
paper. Three test areas differed in stem density, with test area 1 having the highest, test 
area 3 the lowest, and test area 2 being in between. A higher stem density means that the 
lower and middle trees are more heavily shaded, and some of the lower canopy may be 
too shaded to be observed. The experiment was carried out in MATLAB R2020b using an 
Intel (R) Core (TM) i7-4710MQ CPU with the memory of 8 GB. The processing time was 3 
min and 10.4 s. 

3.1.2. Data Preprocessing 
Two main methods were applied to generate CHM from laser point cloud data: one 

was to obtain the difference between the canopy surface model DSM (digital surface 
model) and the ground digital elevation model DEM (digital elevation model) and the 
other is to use the classified ground points to normalize the elevation of the point cloud 
data, and to then obtain the CHM from the rasterization [45]. In this paper, we directly 
rasterize the normalized point cloud to generate CHM (as shown in Figure 7), which aims 
to reduce the loss of canopy information as interpolated only once. Figure 8 shows the 
CHM raster images at different resolutions. What can be observed is that the data pits 
issue becomes increasingly obvious as the spatial resolution gradually increases. The clas-
sification of ground points was performed using TerraSolidV13 software, and then the 
height normalization was completed by subtracting the height value of the nearest ground 
point found from the height value of each non-ground point. Considering the influence of 
point cloud density and canopy crown width of the survey area on the CHM resolution 
[36], inverse distance weight (IDW) method [46,47] are used for the normalized point 
cloud to generate CHMs with spatial resolutions of 2.0 m, 1.0 m, 0.5 m, and 0.25 m for 
subsequent operations. 

 
Figure 7. The LiDAR point cloud data preprocessing: (a) raw LiDAR point cloud data, (b) classified 
point cloud data, and (c) normalized point cloud data. 
Figure 7. The LiDAR point cloud data preprocessing: (a) raw LiDAR point cloud data, (b) classified
point cloud data, and (c) normalized point cloud data.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 8. CHM at different spatial resolutions: (a) is with 2.0 m spatial resolution; (b) is 1.0 m spatial 
resolution; (c) is with 0.5 m spatial resolution; and (d) is with 0.25 m spatial resolution. 

3.2. Automatically Identifying and Filling Pits Pixels for CHM 
(1) Experiment with Test Area 1 

The automatic filling pits pixel for CHM is finished through the following 3 steps. 
Step 1: Extracting two characteristic parameters, GI and ZV, for canopy pit recogni-

tion. Applying the weighted differential gradient method can extract them, and since the 
extraction process is an automated computation between image pixels, this step does not 
require human input parameters, Figure 9 shows the extraction results of test area 1. 

 
Figure 9. Extraction of characteristic parameters: (a) CHM, (b) GI, and (c) ZV; (a1–c1) zoom display; 
(a2–c2) pixel values in the window. 

Figure 8. CHM at different spatial resolutions: (a) is with 2.0 m spatial resolution; (b) is 1.0 m spatial
resolution; (c) is with 0.5 m spatial resolution; and (d) is with 0.25 m spatial resolution.

3.2. Automatically Identifying and Filling Pits Pixels for CHM

(1) Experiment with Test Area 1

The automatic filling pits pixel for CHM is finished through the following 3 steps.
Step 1: Extracting two characteristic parameters, GI and ZV, for canopy pit recogni-

tion. Applying the weighted differential gradient method can extract them, and since the
extraction process is an automated computation between image pixels, this step does not
require human input parameters, Figure 9 shows the extraction results of test area 1.
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As shown in Figure 9, when a 3 × 3 window centered on the pit pixel on the CHM
image is moved, the characteristic parameters of the neighboring pixels can be computed
using Equations (1) and (2). The values of the window are c1 = 41.49, c2 = 42.5, c3 = 43.22,
c4 = 42, c5 = 6.5, c6 = 43.07, c7 = 40.68, c8 = 42.43, and c9 = 43.29. The gradients for the
pixels within the window can be calculated using Equation (8), i.e., d1 = 2.125, d2 = 1.711,
d3 = 1.157, d4 = 1.849, d5 = 4.2, d6 = 0.778, d7 = 3.8, and d8 = 2.56. The gradient weights of
the pixels are determined using Equations (5) and (6), i.e., w1 = 8.37, w2 = 5.53, w3 = 3.17,
w4 = 6.35, w5 = 66.36, w6 = 2.18, w7 = 44.92, and w8 = 13, and then the gradient weights
are assigned to the corresponding neighborhoods pixels for calculating GI, while the ZV is
calculated from the median and median absolute deviation within the window. Similarly,
the characteristic parameters of the other test areas can be calculated as well.

Step 2: Calculating the canopy constraint to distinguish either canopy gaps or pit
pixels. Considering that canopies with different crown widths can be searched, CHMs at
different resolutions, whose spatial resolution size should be lower than half of the crown
width are merged. Secondly, the CHM with spatial resolutions of 0.25 m, 0.5 m, 1.0 m,
and 2.0 m are subjected to the operation using Equation (10), and the weight K in the
fusion process is set to 0.25, 0.5, 0.125, and 0.125, respectively, on the basis of the several
trial-and-error experimental attempts. Finally, the pit pixels on canopy were distinguished
according to Equation (8). The filtered canopy pit pixels are displayed in Figure 10. As can
be seen in Figure 10b, our method is able to distinguish the pits from the canopy gaps well
in the high stem density area and thus can improve the accuracy of the canopy pit filling.

Step 3. The process of filling pits is finished by replacing the values of these pit pixels
with local median values. Figure 11 shows the comparison between before and after filling
of the pits for test area 1. From the 3D CHM, it can be seen that the canopy structure
information is incomplete before pit filling (Figure 11a), but the overall CHM becomes
smoother after pit filling (Figure 11b).
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(2) Experiment with Test Area 2 and Test Area 3

Similar operations were carried out for test area 2 and test area 3. The results of the
extracted two characteristic parameters, GI and ZV, for canopy pit recognition are depicted
in Figure 12 for test area 2 and in Figure 13 for test area 3.
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Also, the same operations for discrimination of the pit pixels on canopy were carried
out; the results are depicted in Figures 14 and 15.
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Figure 15. Merging CHMs with different spatial resolutions: (a) represents a merged images at
2.0 m (a1), 1.0 m (a2), 0.5 m (a3), 0.25 m (a4); (b) represents the distinguished canopy pit pixels.

Finally, the operation of filling the pits is similar to the one above. The results are
shown in Figure 16 for test area 2 and Figure 17 for test area 3.
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3.3. Comparison and Analysis
3.3.1. Visual Evaluation

The CHM created before and after processing was visually compared, which is the
most direct way to compare the quality of the canopy height model, since a high-quality
canopy height model should have no or few pits on the canopy.

The pit-filling results of the different algorithms were visually compared; they can
be visually compared from a view of the local canopy. We selected the local canopies of
different results, as shown in Figures 18–20. On the raw CHM (Figures 18(a1)–20(a1)), it can
be seen that the pixel distribution of pits on the surface of the canopy is inhomogeneous.
After the pit-filling process, the surface of the canopy in CHM becomes smoother, but there
are differences in the performance of different methods. The median filter is effective in
filling data pits but the CHM is over smoothed, causing the edges of the canopy to become
blurred. In contrast to the other two window filtering algorithms, the data pits smoothed
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by the Gaussian and mean filters are too blurred and not well filled. The pit-free algorithm
removes most of the pits but in the lower part of the canopy the pits do not seem to be well
filled. GPMF and our method have the best performances of all the methods, followed by
the spike-free algorithm.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 21 
 

 

smoothed by the Gaussian and mean filters are too blurred and not well filled. The pit-
free algorithm removes most of the pits but in the lower part of the canopy the pits do not 
seem to be well filled. GPMF and our method have the best performances of all the meth-
ods, followed by the spike-free algorithm. 

 
Figure 18. Comparison analysis between the CHMs with 0.5 m resolution created by six pit-filling 
algorithms in test area 1: (a) is the original CHM, (b) is from the mean filter method, (c) is from the 
Gaussian filter, (d) is from the median filter, (e) is from the pit-free algorithm, (f) is from the spike-
free algorithm, (g) is from the GPMF algorithm, and (h) is from the method proposed in this paper. 
(a1–h1) zoom display. 

 
Figure 19. Comparison analysis between the CHMs with 0.5 m resolution created by six pit-filling 
algorithms in test area 2: (a) is the original CHM, (b) is from the mean filter method, (c) is from the 
Gaussian filter, (d) is from the median filter, (e) is from the pit-free algorithm, (f) is from the spike-

Figure 18. Comparison analysis between the CHMs with 0.5 m resolution created by six pit-filling
algorithms in test area 1: (a) is the original CHM, (b) is from the mean filter method, (c) is from
the Gaussian filter, (d) is from the median filter, (e) is from the pit-free algorithm, (f) is from the
spike-free algorithm, (g) is from the GPMF algorithm, and (h) is from the method proposed in this
paper. (a1–h1) zoom display.
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Figure 19. Comparison analysis between the CHMs with 0.5 m resolution created by six pit-filling
algorithms in test area 2: (a) is the original CHM, (b) is from the mean filter method, (c) is from
the Gaussian filter, (d) is from the median filter, (e) is from the pit-free algorithm, (f) is from the
spike-free algorithm, (g) is from the GPMF algorithm, and (h) is from the method proposed in this
paper. (a1–h1) zoom display.
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Comparing the experimental results of the three different test areas, the performance
of the window filter algorithms is not sensitive to the sparseness of the canopy as the mean,
Gaussian, and median are global filters. Their performances in filling data pits are thus
not improved. The pit-free algorithm performed better in the dense canopy plot than in
the sparse plots, which may be due to the poor pit-filling ability for a single threshold
for the lower and middle canopy. The spike-free algorithm, GPMF, and our method have
better performance and fill almost all the pits on the surface of the canopy. This was similar
to global filtering and performs well in CHMs with different sparsity levels. Figure 21
shows a 0.5 m wide canopy profile that we used to compare the effects of different methods
of pit filling. The canopy on the raw CHM showed height anomalies, while the CHM
processed by pit-filling algorithm has a profile that is closer to the real shape of the tree
crown. Compared with the results of other methods, our method is better to keep the
original canopy structure and edge information while filling data pits. Despite the reduced
canopy density, our method is still effective for pit filling.
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3.3.2. Quantitative Evaluation

This paper introduces root-mean-square error (RMSE), mean bias error (MBE), and
coefficient of determination (R2) metrics for quantitatively evaluating the quality of the
CHMs created before and after filling pits [48]. The formulae are as follows:

RMSE =

√√√√√ n
∑

i=1
(xi − x̂i)

2

n
(12)

MBE =

n
∑

i=1
(xi − x̂i)

n
(13)

R2 = 1 −

n
∑

i=1
(xi − x̂i)

2

n
∑

i=1
(xi − xi)

2
(14)

where n represents the number of observation objects, i.e., the number of pixels involved
in the processing; xi is the true height of the observation object; x̂i is the height of the
observation object after processing; and xi is the mean of the observation object.

The results are shown in Table 2. The CHM processed changes from the height of the
reference because these methods lose information or overestimate the canopy during the
calculation process. Window filtering changes the canopy height of CHM, which is related
to the fact that they result in over canopy smoothing. The raw CHM is similar to the CHM
height after processing with the pit-free algorithm proposed by Ben-Arie (2009) [28], but
compared with the reference data, both of them still cause a not-so-small change to the
crown height. The spike-free algorithm proposed by Khosravipour (2016) [29] can retain
the information of the crown height and edge but it still underestimates the reference data
(MBE > 0.1). GPMF and our method perform better, and the changes to the crown height
are small (R2 close to 1 and RMSE less than 0.4).

Table 2. The height difference of CHMs from the different methods relative to the reference data.

Methods
Evaluation Parameters

R2 RMSE MBE

Test Area 1

Raw CHM 0.79 1.30 1.20

Mean filter 0.83 1.17 0.62

Gaussian filter 0.87 1.05 0.88

Median filter 0.92 0.67 0.48

Pit free 0.94 0.70 0.28

Spike free 0.98 0.37 0.16

GPMF 0.98 0.30 0.13

Our method 0.99 0.29 0.06

Test Area 2

Raw CHM 0.72 1.48 1.40

Mean filter 0.78 1.31 1.00

Gaussian filter 0.76 1.36 0.77

Median filter 0.89 1.12 0.53

Pit free 0.86 1.05 0.60

Spike free 0.98 0.41 0.16

GPMF 0.98 0.33 0.13

Our method 0.98 0.31 0.12
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Table 2. Cont.

Methods
Evaluation Parameters

R2 RMSE MBE

Test Area 3

Raw CHM 0.80 1.17 1.54

Mean filter 0.87 1.08 0.94

Gaussian filter 0.89 1.00 0.79

Median filter 0.92 0.88 0.56

Pit free 0.93 0.77 0.44

Spike free 0.98 0.47 0.14

GPMF 0.99 0.30 0.18

Our method 0.98 0.36 0.12

To further evaluate the method proposed in this paper, the processed CHMs were
applied in individual tree extraction on three test areas. Based on an assumption that
the highest point of the canopy is the treetop, local maximum filtering [49], an effective
method commonly used in single-tree extraction. Then, the number of extracted single
trees are compared with the reference data. Three indicators are introduced to measure the
extraction results using the criteria described by Eysn et al. (2015) and others, the rate of
trees detected (recall, R), the rate of correct detection (precision P), and precision grade F
value (F1 score) [50]. These metrics are defined by the following equations:

R =
TP

TP + FN
× 100% (15)

P =
TP

TP + FP
× 100% (16)

F = 2 × P × R
P + R

× 100% (17)

where TP is the number of trees correctly detected, FN is the number of trees not detected,
and FP is the number of trees incorrectly detected.

Table 3 shows the accuracy of individual tree detection, the average F1 score of our
method was 87.3% in three test areas, which was the best performance out of seven other
CHMs. The precision and recall of our method were almost the best; however, GPMF was
better than our method in test area 1, where trees were dense. In test area 1, the F1 score
of spike free and GPMF were higher than our method by 0.02. Our method achieved the
best performance in test area 2 and test area 3, with the highest F1 score close to 0.9 out
of all methods. These findings illustrate that the CHMs processed by our method overall
exhibited good performance in terms of individual tree detection.

Table 3. Accuracy comparison of CHM individual tree extraction after methods processing.

Methods Indicator Test Area 1 Test Area 2 Test Area 3

Raw CHM

P 0.69 0.71 0.61

R 0.75 0.75 0.64

F1 score 0.72 0.73 0.62

Mean filter

P 0.79 0.79 0.80

R 0.76 0.75 0.70

F1 score 0.77 0.77 0.75

Gaussian filter

P 0.79 0.78 0.83

R 0.78 0.77 0.75

F1 score 0.78 0.77 0.79
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Table 3. Cont.

Methods Indicator Test Area 1 Test Area 2 Test Area 3

Median filter

P 0.77 0.73 0.76

R 0.86 0.88 0.89

F1 score 0.81 0.80 0.82

Pit free

P 0.85 0.86 0.82

R 0.85 0.87 0.89

F1 score 0.85 0.86 0.86

Spike free
P 0.86 0.82 0.82

R 0.85 0.88 0.84

F1 score 0.85 0.85 0.83

GPMF

P 0.86 0.82 0.87

R 0.85 0.89 0.92

F1 score 0.85 0.85 0.89

Our method

P 0.83 0.89 0.89

R 0.84 0.86 0.93

F1 score 0.83 0.88 0.91

The performance of the raw CHM is worst due to the presence of a large number of
pits on its canopy surface, so the treetop points were difficult to be detected, resulting in a
low F1 score of 70.5%. In window filter algorithms, the F1 score of the median method is
better than that of the mean and Gaussian method. The precision and recall of window
filters were still low because the over smoothing of the CHMs resulted in blurring the
canopy structure and omission of the treetop. In addition, the median filtering algorithm
produces many approximations of pixel values on the surface of the canopy, which gives
the method a lower precision than that of both mean and Gaussian methods. The pit-free
method produced slightly better F1 score than the spike-free method in three test areas.

3.4. Discussion

To demonstrate the advantages of our method in different types of forests over other
methods, the experiment in mixed forests was conducted, where the tree species are more
diverse (Figure 22). Comparing the results before and after pit filling, it can be demonstrated
that our method still performs well for pit filling in CHM, and the filling effect for conifers
is better than for other tree species; moreover, our method not only fills pits effectively but
also retains the crown edge information better.
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This study aims to propose an effective pit-filling approach to enhance the accuracy
of CHM. Weighted differential gradient method for filling pits in LiDAR canopy height
model can take advantage of the a priori knowledge of forests by using the gradient
differential information and robust Z-score values of the canopy as a judgment criterion
for pits and adding canopy constraints. Both the gradient index and the robust Z-score
value are automated calculation processes and do not need to be considered as added more
parameters. The canopy constraint is actually the canopy area, and pixels with canopy gaps
are easily misidentified as pits in CHM, which can easily lead to overfilling if they are not
distinguished. The method proposed in this paper has been evaluated from both a visual
comparison and a quantitative assessment, and the experimental results show that it has
good results in CHM pit removal.

4. Conclusions

A pit identification and filling method for the LiDAR canopy height model (CHM) has
been proposed in this paper. The proposed method first finds the pits hidden in the CHM
and then fills them using the proposed algorithm. This method uses gradient differential
information between the pit pixels and their eight neighbors, and the gradient index and
Z-score values as criteria to identify the pits in CHM. For a canopy area, the CHMs with
different spatial resolutions are merged by using the developed image processing algorithm.
The innovation of this study is as follows: (1) The gradient differential information between
the pit pixels and their eight neighbors are used to recognize the pits. (2) An image
processing algorithm is proposed to merge the CHMs with different spatial resolutions.

To evaluate the performance of the method proposed in this paper, the experiments
and analyses were conducted in three coniferous test areas with different forest conditions.
The verified results demonstrated that the method proposed in this paper has good results
in removing the pits and retains the structural details of the canopy well. The method
reaches an average RMSE of 0.32 m and the average bias of 0.12 m. In addition, the method
proposed in this paper also outperforms the other methods in terms of treetop detection,
with an average F1 score of 87.8%. Therefore, it can be concluded that the method proposed in
this paper can effectively fill the pitted points and has largely improved the accuracy of CHM.

However, the proposed model still requires improvement in the future. For example, the
construction of canopy constraints requires a fusion of CHMs with different spatial resolutions,
and the setting of the weights for fusion still relies on manual judgment. Therefore, our future
work will focus on parameter adaptivity and improving the universality of the method.
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26. Mielcarek, M.; Stereńczak, K.; Khosravipour, A. Testing and evaluating different LiDAR-derived canopy height model generation
methods for tree height estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 132–143. [CrossRef]

27. Barnes, C.; Balzter, H.; Barrett, K.; Eddy, J.; Milner, S.; Suárez, J.C. Individual tree crown delineation from airborne laser scanning
for diseased larch forest stands. Remote Sens. 2017, 9, 231. [CrossRef]

28. Ben-Arie, J.R.; Hay, G.J.; Powers, R.P.; Castilla, G.; St-Onge, B. Development of a pit filling algorithm for LiDAR canopy height
models. Comput. Geosci. 2009, 35, 1940–1949. [CrossRef]

https://doi.org/10.3390/f14061159
https://doi.org/10.1016/j.rse.2022.113362
https://doi.org/10.1016/j.rse.2023.113968
https://doi.org/10.1016/j.rse.2020.111696
https://doi.org/10.1016/j.agrformet.2019.01.033
https://doi.org/10.1109/TGRS.2019.2938017
https://doi.org/10.1080/17538947.2021.1921862
https://doi.org/10.1016/j.scitotenv.2021.146816
https://doi.org/10.1016/j.rse.2017.09.007
https://doi.org/10.1016/j.fecs.2023.100135
https://doi.org/10.1016/j.geog.2022.11.008
https://doi.org/10.1080/01431161.2018.1508916
https://doi.org/10.1080/01431161.2019.1698075
https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-67-2020
https://doi.org/10.1016/j.jag.2020.102273
https://doi.org/10.1080/2150704X.2014.938180
https://doi.org/10.5194/isprs-archives-XLI-B8-585-2016
https://doi.org/10.14358/PERS.80.9.863
https://doi.org/10.1080/01431161.2013.779398
https://doi.org/10.1139/juvs-2017-0030
https://doi.org/10.1002/ecs2.4209
https://doi.org/10.1101/2024.01.11.575266
https://doi.org/10.1080/14498596.2012.759092
https://doi.org/10.1016/j.jag.2018.05.002
https://doi.org/10.3390/rs9030231
https://doi.org/10.1016/j.cageo.2009.02.003


Remote Sens. 2024, 16, 1304 20 of 20

29. Khosravipour, A.; Skidmore, A.K.; Isenburg, M. Generating spike-free digital surface models using LiDAR raw point clouds: A
new approach for forestry applications. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 104–114. [CrossRef]

30. Chen, C.; Wang, Y.; Li, Y.; Yue, T.; Wang, X. Robust and parameter-free algorithm for constructing pit-free canopy height models.
ISPRS Int. J. Geo-Inf. 2017, 6, 219. [CrossRef]

31. Hao, Y.; Zhen, Z.; Li, F.; Zhao, Y. A graph-based progressive morphological filtering (GPMF) method for generating canopy height
models using ALS data. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 84–96. [CrossRef]

32. Rousseeuw, P.J.; Hubert, M. Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 73–79.
[CrossRef]

33. Zhang, W.; Cai, S.; Liang, X.; Shao, J.; Hu, R.; Yu, S.; Yan, G. Cloth simulation-based construction of pit-free canopy height models
from airborne LiDAR data. For. Ecosyst. 2020, 7, 1. [CrossRef]

34. Song, Q.; Xiang, M.; Hovis, C.; Zhou, Q.; Lu, M.; Tang, H.; Wu, W. Object-based feature selection for crop classification using
multi-temporal high-resolution imagery. Int. J. Remote Sens. 2019, 40, 2053–2068. [CrossRef]

35. Liu, L.; Lim, S.; Shen, X.; Yebra, M. A multiscale morphological algorithm for improvements to canopy height models. Comput.
Geosci. 2019, 130, 20–31. [CrossRef]

36. Yin, D.; Wang, L. Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote
Sens. Environ. 2019, 223, 34–49. [CrossRef]

37. Qiao, L.; Gao, D.; Zhao, R.; Tang, W.; An, L.; Li, M.; Sun, H. Improving estimation of LAI dynamic by fusion of morphological
and vegetation indices based on UAV imagery. Comput Electron Agr. 2022, 192, 106603. [CrossRef]

38. Holmgren, J.; Lindberg, E.; Olofsson, K.; Persson, H.J. Tree crown segmentation in three dimensions using density models derived
from airborne laser scanning. Int. J. Remote Sens. 2022, 43, 299–329. [CrossRef]

39. Rizaev, I.G.; Pogorelov, A.V.; Krivova, M.A. A technique to increase the efficiency of artefacts identification in lidar-based canopy
height models. Int. J. Remote Sens. 2016, 37, 1658–1670. [CrossRef]

40. Marshall, J.A.; Roering, J.J.; Gavin, D.G.; Granger, D.E. Late Quaternary Climatic Controls on Erosion Rates and Geomorphic
Processes in Western Oregon, USA. Geol. Soc. Am. Bull. 2017, 129, 715–731. [CrossRef]

41. Cloud Compare. Available online: http://www.cloudcompare.org/main.html (accessed on 25 March 2022).
42. Zhen, Z.; Quackenbush, L.J.; Zhang, L. Impact of tree-oriented growth order in marker-controlled region growing for individual

tree crown delineation using airborne laser scanner (ALS) data. Remote Sens. 2014, 6, 555–579. [CrossRef]
43. Zhen, Z.; Quackenbush, L.J.; Stehman, S.V.; Zhang, L. Agent-based region growing for individual tree crown delineation from

airborne laser scanning (ALS) data. Int. J. Remote Sens. 2015, 36, 1965–1993. [CrossRef]
44. Granholm, A.H.; Lindgren, N.; Olofsson, K.; Nyström, M.; Allard, A.; Olsson, H. Estimating vertical canopy cover using dense

image-based point cloud data in four vegetation types in southern Sweden. Int. J. Remote Sens. 2017, 38, 1820–1838. [CrossRef]
45. Oh, S.; Jung, J.; Shao, G.; Shao, G.; Gallion, J.; Fei, S. High-resolution canopy height model generation and validation using USGS

3DEP LiDAR data in Indiana, USA. Remote Sens. 2022, 14, 935. [CrossRef]
46. Chen, G.; Zhao, K.; McDermid, G.J.; Hay, G.J. The influence of sampling density on geographically weighted regression: A case

study using forest canopy height and optical data. Int. J. Remote Sens. 2012, 33, 2909–2924. [CrossRef]
47. Zhou, G.; Song, B.; Liang, P.; Xu, J.; Yue, T. Voids filling of DEM with multiattention generative adversarial network model.

Remote Sens. 2022, 14, 1206. [CrossRef]
48. Quan, Y.; Li, M.; Hao, Y.; Wang, B. Comparison and evaluation of different pit-filling methods for generating high resolution

canopy height model using UAV laser scanning data. Remote Sens. 2021, 13, 2239. [CrossRef]
49. Bonnet, S.; Lisein, J.; Lejeune, P. Comparison of UAS photogrammetric products for tree detection and characterization of

coniferous stands. Int. J. Remote Sens. 2017, 38, 5310–5337. [CrossRef]
50. Eysn, L.; Hollaus, M.; Lindberg, E.; Berger, F.; Monnet, J.M.; Dalponte, M.; Pfeifer, N. A benchmark of lidar-based single tree

detection methods using heterogeneous forest data from the alpine space. Forests 2015, 6, 1721–1747. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jag.2016.06.005
https://doi.org/10.3390/ijgi6070219
https://doi.org/10.1016/j.jag.2019.03.008
https://doi.org/10.1002/widm.2
https://doi.org/10.1186/s40663-019-0212-0
https://doi.org/10.1080/01431161.2018.1475779
https://doi.org/10.1016/j.cageo.2019.05.012
https://doi.org/10.1016/j.rse.2018.12.034
https://doi.org/10.1016/j.compag.2021.106603
https://doi.org/10.1080/01431161.2021.2018149
https://doi.org/10.1080/2150704X.2016.1160299
https://doi.org/10.1130/B31509.1
http://www.cloudcompare.org/main.html
https://doi.org/10.3390/rs6010555
https://doi.org/10.1080/01431161.2015.1030043
https://doi.org/10.1080/01431161.2017.1283074
https://doi.org/10.3390/rs14040935
https://doi.org/10.1080/01431161.2011.624130
https://doi.org/10.3390/rs14051206
https://doi.org/10.3390/rs13122239
https://doi.org/10.1080/01431161.2017.1338839
https://doi.org/10.3390/f6051721

	Introduction 
	Development of a Weighted Differential Gradient Method 
	Characteristic Parameters for Canopy Pits Identification 
	Establishment of Canopy Constraints for the Weighted Differential Gradient 
	Filling the Pits 

	Experiments and Analysis 
	Experimental Data and Preprocessing 
	LiDAR Data 
	Data Preprocessing 

	Automatically Identifying and Filling Pits Pixels for CHM 
	Comparison and Analysis 
	Visual Evaluation 
	Quantitative Evaluation 

	Discussion 

	Conclusions 
	References

