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Abstract: This study presents the first azimuth cutoff analysis in Synthetic Aperture Radar (SAR)
altimetry, aiming to assess its applicability in characterizing sea-state dynamics. In SAR imaging,
the azimuth cutoff serves as a proxy for the shortest waves, in terms of wavelength, that can be
detected by the satellite under certain wind and wave conditions. The magnitude of this parameter is
closely related to the wave orbital velocity variance, a key parameter for characterizing wind-wave
systems. We exploit wave modulations exhibited in the tail of fully-focused SAR waveforms and
extract the azimuth cutoff from the radar signal through the analysis of its along-track autocorrelation
function. We showcase the capability of Sentinel-6A in deriving these two parameters based on
analyses in the spatial and wavenumber domains, accompanied by a discussion of the limitations.
We use Level-1A high-resolution Sentinel-6A data from one repeat cycle (10 days) globally to verify
our findings against wave modeled data. In the spatial domain analysis, the estimation of azimuth
cutoff involves fitting a Gaussian function to the along-track autocorrelation function. Results reveal
pronounced dependencies on wind speed and significant wave height, factors primarily determining
the magnitude of the velocity variance. In extreme sea states, the parameters are underestimated
by the altimeter, while in relatively calm sea states and in the presence of swells, a substantial
overestimation trend is observed. We introduce an alternative approach to extract the azimuth
cutoff by identifying the fall-off wavenumber in the wavenumber domain. Results indicate effective
mitigation of swell-induced errors, with some additional sensitivity to extreme sea states compared
to the spatial domain approach.

Keywords: SAR altimetry; azimuth cutoff; wave orbital velocity; fully-focused SAR waveforms; sea
state

1. Introduction

A thorough understanding of sea-state conditions requires accurate measurements of
ocean-surface parameters on a global scale. Over the past few decades, satellite altimeters,
including both Low Resolution Mode [1] and Synthetic Aperture Radar (SAR) [2], have
played a crucial role in providing geophysical parameters, such as wind speed, significant
wave height, and sea surface heights. Despite advancements, accurate characterization of
the sea state remains challenging. Explicit evidence of this is the primary error source in
sea surface height, referred to as sea-state bias [3–6]. Several methods rely on parametric
models expressing this bias as a function of wind speed and significant wave height [6–14].
Although significant improvements have been reported over the years, persisting errors still
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exist, typically a few percentages of the significant wave height, a magnitude considered
substantial within the sea level error budget [15].

Considering that different scales of ocean waves respond uniquely to variations in
wind, currents, and other oceanic processes, including wave breaking, a more diverse set of
observations is essential for an accurate characterization of ocean surface dynamics. Several
studies have reported the sensitivity of SAR altimeter responses to sea surface motion [16–20].
Notably, a recent study demonstrated the possibility of extracting vertical wave particle
velocity information from the radar signal [21]. Wave orbital velocity primarily results
from the fast vertical motions of long and mid-wavelength wind waves and less from
swells. For instance, a 500 m swell system with a 3 m significant wave height contributes
approximately 0.1 m2 s−2 to the total variance of the wave orbital velocity, while a moderate
wind sea system, featuring an 11 m/s wind speed, 80 m wavelength, and 2 m wave height,
contributes approximately 0.6 m2 s−2—six times more than the swell system [22]. On the
other hand, the normalized radar cross section (NRCS), derived from waveform power,
is mostly sensitive to mid to short-wavelength wind waves which strongly contribute to
the mean square slope, a parameter describing the sea surface roughness [23,24]. Using
parametrizations, the NRCS is coupled to near-surface winds [25,26]. Significant wave
height encompasses contributions from long wind waves and swell, yet discriminating
between these two wave systems remains a challenge. Given that higher velocity variance
is associated with increased wind speed and larger wind waves, it becomes evident that
incorporating this parameter can aid in distinguishing between wave components and,
consequently, contribute to effectively constraining wind-wave systems.

Side-looking SAR systems have demonstrated their capability to extract wave orbital
velocity information from the NRCS using image processing techniques [27]. These instru-
ments image waves by leveraging Doppler misregistrations, resulting from the relative
motion of the satellite and surface targets [28]. In side-looking SAR, the primary intensity
modulation mechanism, known as velocity bunching, originates from Doppler misregistra-
tions [28–30]. Scatterers move toward or away from the satellite, causing displacements
in the SAR image. The magnitude of these displacements depends on the line-of-sight
velocities of the wave particles and the range-to-platform velocity ratio [30–32]. The rel-
atively high velocities of wind waves lead to large and random scatterer displacements,
causing a blurring effect in the SAR images [33] and effectively degrading the resolution in
azimuth [28,34,35]. By quantifying this resolution loss, the so-called velocity variance of the
wave field can be estimated. This quantification is typically realized by fitting a Gaussian
function to the along-track autocorrelation, resulting in the estimation of the azimuth cutoff
wavelength, a measure for the shortest waves that can be detected [32]. The relationship
between azimuth cutoff and velocity variance has been exploited to constrain the wind-
wave system using data from SAR imaging satellites, including Sentinel-1, ERS1/2, and
Envisat [22,27,36,37].

Although SAR altimeters have not been originally designed for wave imaging appli-
cations, recent studies reported their ability to capture long waves, such as swells [19,38],
using focusing algorithms [39,40]. In particular, the trailing edge of the waveforms ex-
hibits intensity modulations induced by long waves that can be exploited to compute
SAR altimetry directional spectra [19], comparable to the methods applied to Sentinel-1
images [41–43]. Altimeters, however, experience due to their steep incident angles addi-
tional strong modulations from range bunching and a cutoff in the cross-track direction,
depending on the significant wave height [19,44]. This leads to a two-dimensional filter
with a width and length depending on the significant wave height and velocity variance, re-
spectively. Figure 1 displays four Sentinel-6A fully-focused SAR waveform-tail radargrams
acquired under different wind and wave conditions. These radargrams are created by
considering solely the trailing edge of multilooked waveforms, generated using a posting
rate of 680 Hz, where intensity modulations are evident. In relatively moderate sea states
and in the presence of swells, wave-like patterns are captured (top panels). As wind and
significant wave height increase, the random wave orbital motion induces large scatterer
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misregistrations, resulting in a blurring effect (bottom panels), the nature of which proved
to be more complex compared to SAR imaging due to the different measurement geometry,
primarily related to the near-zero incident angle of SAR altimeters [44].
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Figure 1. Examples of Sentinel-6A fully-focused SAR waveform-tail radargrams. Wind and wave
conditions, given in the title of each panel, obtained from collocated ERA5 products.

In this work, we conduct the first azimuth cutoff analysis in SAR altimetry aiming to
enhance our understanding of the SAR altimeters’ capabilities in providing an additional
metric for characterizing sea-state dynamics. This article is organized as follows. Section 2
discusses the processing steps of both the altimeter data, from Level-1A products to fully-
focused SAR waveform-tail radargrams, and the European Centre for Medium-Range
Weather Forecasts Reanalysis v5 (ERA5) and Météo France Wave Model (MFWAM) data
used to evaluate our results. In Section 3, we describe the method used for the azimuth
cutoff estimation in the spatial domain, evaluate our results against wave models, and
identify sensitivities in this approach. In Section 4 we introduce an alternative method
conducted in the wavenumber domain and perform a comparative analysis between the
altimeter and wave model-derived parameters, similar to Section 3. In Section 5, we proceed
with a qualitative comparison of the azimuth cutoff and velocity variance parameters with
sea-state conditions and identify associated limitations in both methods. In Section 6 we
discuss the main findings and provide recommendations for future research.

2. Data

This section is divided into two parts. The first part outlines the settings used for
the focusing processing of the altimeter radar signal and the post-processing of the fully-
focused SAR radargrams. The second part details the wave model parameters used to
support our analysis.

2.1. Sentinel-6A Data Processing

Our analysis concerns processing of Level-1A data of one Sentinel-6A repeat cycle
(No. 77), spanning from 11–21 December 2022. To produce Level-1b fully-focused SAR
multilooked waveforms, which are the input for our methods, we use the Omega–Kappa
focusing algorithm [40] implemented in an updated version of the Standalone Multimission
Altimetry Processor [45]. The Omega–Kappa algorithm has demonstrated a substantial
reduction in computational time by operating in the frequency domain, as opposed to the
back-projection method that originally introduced the fully-focused processing technique
in SAR altimetry [39]. The fully-focused SAR multilooked waveforms are obtained by
(a) averaging consecutive single looks (i.e., 13 individual FFSAR waveforms) from a 9 kHz
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posting rate onto 680 Hz, corresponding to an approximately 12 m along-track spacing,
(b) zero-padding in range by a factor of 2 to double the sampling rate of the waveform gate
samples, and (c) using a Doppler bandwidth factor of 0.6 to effectively remove the aliased
part of the Sentinel-6 spectrum [46].

The azimuth cutoff analysis is performed by considering only the trailing edge, where
intensity modulations are observed. It is a fact that the fully-focused SAR processing algo-
rithm enables the generation of high-resolution along-track independent looks theoretically
equal to half of the antenna length [39], while the nominal cross-track ground resolution
is uneven across the bins and increases as it obtains distance from the nadir. We generate
fully-focused SAR waveform-tail radargrams with dimensions of approximately 10 km in
azimuth and 4.5 km in range. The range window corresponds to bins between 140 to 250, with
the leading edge being around bin 100, and an off-nadir cross-track distance between 5 km and
9.5 km. Note that considering bins close to the leading edge, where the ground sampling
resolution decreases, introduces the risk of averaging out wavelengths of the order of a few
hundreds, thus affecting the cutoff estimation. As a last step, we fit a fifth-order polynomial
model in the along-track for each range bin separately, and then subtract it from the initial
signal, aiming to remove trends related to wind speed anomalies occurring within the
10 km segment in along-track.

2.2. Wave Models

Due to the limited availability of in situ data in open oceans, we use ERA5 and
MFWAM parameters for evaluation purposes [47–49]. The use of two different products
enables the cross evaluation of the results, taking into account that modeled data of different
spatial and temporal resolutions can capture different aspects of oceanic conditions. In
particular, we use wave spectra-derived integrated parameters, including significant wave
height, peak wave period, mean zero-up crossing period, and mean wave direction obtained
at spatial and temporal resolutions of 0.08 degrees every 3 hours from MFWAM and
0.50 degrees every hour from ERA5. To help in the interpretation of the results, we
additionally use ERA5 wind speed estimates. The gridded parameters are bilinearly
interpolated to the along-track Sentinel-6A measurement locations. Focusing our work
on open oceans, we mask out areas where extremely calm sea states are expected, such as
gulfs and inland waters. We empirically identify these areas by setting a lower peak wave
period threshold at 8 seconds, using as reference the corresponding ERA5 parameter.

Figure 2 illustrates the global maps of the interpolated MFWAM (top panels) and
ERA5 (bottom panels) significant wave height and mean zero-up crossing period to the
Sentinel-6A tracks. These two parameters are used for the estimation of the model-derived
azimuth cutoff and wave orbital velocity variance, as shown later. In terms of geographical
patterns, the models display a high degree of resemblance. Table 1 provides correlation
coefficients and statistics of the differences of these wave parameters between the models.
Notably, the significant wave height and mean zero-up crossing period reveal a high
correlation of 0.96 and 0.88, respectively. MFWAM parameters tend to be slightly higher;
on average 0.12 m for the significant wave height and 0.35 s for the mean zero-up crossing
period. Moreover, the standard deviation remains at relatively low levels at 0.38 m and
0.59 s, which represent 13% and 9% of the mean significant wave height and mean zero-up
crossing period values, respectively, underlining the credibility of the evaluation process.

Table 1. Statistics of the differences and correlation coefficients between ERA5 and MFWAM wave
parameters.

MFWAM−ERA5 Mean Std. Dev. Corr. Coef.

Significant wave height [m] 0.12 0.38 0.96
Mean zero-up crossing period [s] 0.35 0.59 0.88
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Figure 2. Interpolated significant wave height (left column) and mean zero-up crossing period
(right column) parameters of MFWAM (top row) and ERA5 (bottom row) to Sentinel-6A tracks.

Discrepancies between the models can be attributed to several factors. Firstly, each model
is expected to capture different scales of oceanic features based on their spatial and temporal
resolutions. Secondly, distinct parametrization techniques contribute to model differences.
And, thirdly, assimilation strategies vary significantly. MFWAM assimilates significant wave
height observations from the altimeters Jason-3, SARAL, CryoSat-2, Sentinel-3 A/B, CFOSAT,
and Sentinel-6A, as well as ocean-wave spectra from Sentinel-1 [50]. The ERA5 assimilates
observations from SARAL and CryoSat-2 based on the operational stream [49].

The ocean surface wave orbital velocity variance σ2
υ,m is approximated as a function of

significant wave height, Hs, and mean zero-up crossing period, T02, as [51]:

σ2
υ,m =

(
π

2
Hs

T02

)2
(1)

To properly interpret this parameter we have to consider that both ERA5 and MFWAM
have an upper frequency limit of approximately 0.55 and 0.58 Hz, respectively. This indicates
that waves with wavelengths shorter than approximately 5 m are not resolved. To quantify
the impact of this limitation, Figure 3 shows the ratio of the wave orbital velocity variance
for waves exceeding this frequency limit, denoted as σ2

υww,h f
, to the total wind-driven velocity

variance, denoted as σ2
υww . These variables have been derived using Elfouhaily wind-generated

wave spectra [52] in various fetches, while their ratio is presented as a function of wind speed.
The fetch represents the distance over which the wind has been consistently blowing in
a constant direction. Wind waves shorter than 5 m appear to have a rather significant
contribution to the total velocity variance up to moderate wind conditions, exceeding 50% in
cases characterized by relatively low wind conditions (<5 m/s).

Although our dataset mainly features moderate and high sea states, approximately
20% of the instances involve conditions with relatively low winds. In order to ensure a
comprehensive representation of the total wave orbital velocity variance across all examined
sea states, we incorporate the contribution of waves shorter than 5 m wavelengths into the
model-derived estimates by implementing a spectral integration technique. Initially, the
high-frequency wave orbital velocity variance (>0.55 and >0.58 Hz for ERA5 and MFWAM,
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respectively) is quantified using the wind-driven Elfouhaily wave model [52]. Subsequently,
this is summed with the estimates derived from the ERA5 and MFWAM wave models.
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Figure 3. Ratio of the σ2
υww,h f

wave orbital velocity variance of high-frequency waves (>0.58Hz) to the

σ2
υww

total wave orbital velocity variance versus wind speed. The colors represent the different fetches.

3. Azimuth Cutoff Analysis in the Spatial Domain

As mentioned earlier, random motions in the line-of-sight result in random scatterer
displacements. These displacements cause a resolution loss that depends on range, R, and
platform velocity, V. The measure describing the shortest detectable wavelength, known as
azimuth cutoff λc, can be expressed as [27,32,43,53]:

λc = π
R
V

√
σv2 (2)

where σ2
v is the line-of-sight-projected wave orbital velocity variance of the ocean surface.

Theoretically, the wave orbital velocity variance can be computed using the integral of the
two-dimensional wave spectrum, S(kx, ky) as:

σv
2 =

∫
ω2S(kx, ky)dkydkx (3)

where ω represents the angular velocity computed as
√

gk assuming deep water conditions,

with k =
√

k2
x + k2

y the norm of the two-dimensional wavenumber (kx, ky) and g the
gravitational constant. Now, to estimate the azimuth cutoff we implement a method in
the spatial domain by minimizing the differences between the along-track autocorrelation
function of a fully-focused SAR waveform-tail radargram and a Gaussian function as
described in [32] and given as:

∆ε =
∫

dy

{
Rxx(y)− e

−
(

πy
λc,SAR

)2}
(4)

where Rxx(y) is the autocorrelation function in the along-track direction y, which is
obtained by first computing the along-track autocorrelation for each range bin in the
waveform-tail radargram separately and then averaging them over all selected bins.

Figure 4 shows the along-track autocorrelation function of a fully-focused SAR waveform-
tail radargram. The scene is characterized by moderate wind and wave conditions, featuring
long swells with a period of 14.5 s propagating at an angle with respect to the satellite azimuth
direction. A closer examination of the autocorrelation shape reveals its decomposition into the
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summation of two distinct spread functions. In the proximity of zero-lag, the narrow point
spread function is associated with speckle noise, while the wider Gaussian function’s width is
related to the azimuth cutoff [32]. To ensure an accurate estimate of the azimuth cutoff, the
zero-lag is excluded from the model fitting process, as illustrated in Figure 4. As a last step,
we estimate the velocity variance by simply rewriting Equation (2) to

σ2
v,SAR =

(
λcV
πR

)2
(5)
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Figure 4. Example of the along-track autocorrelation function, depicted in gray color, of a Sentinel-6A
(S6A) fully-focused SAR waveform-tail radargram acquired for a scene characterized by moderate
wind and wave conditions. The blue dashed line represents the Gaussian function. The yellow
dash-dotted lines represent the Sentinel-6A azimuth cutoff estimate. Sea-state conditions are obtained
from ERA5 products.

Figure 5 provides a comparative illustration of the azimuth cutoff between Sentinel-6A
and ERA5 (top-panels) and Sentinel-6A and MFWAM (bottom panels). The azimuth cutoff
estimates for the wave models are derived from Equation (2) with the substitution of σ2

v by
Equation (1). Values below 50 m are excluded as the Gaussian fitting is poorly conditioned.
Both models exhibit similarly high levels of agreement with Sentinel-6A, with MFWAM
revealing a smaller dispersion, indicating a closer match to the satellite-derived values. The
color gradations correspond to wind speed and significant wave height in the left and right
panels, respectively. The azimuth cutoff is notably correlated to sea state, exhibiting a clear
increase with increasing significant wave height. To aid in the interpretation of observed
trends, the altimeter-derived azimuth cutoff estimates are grouped into intervals of 50 m
based on the modeled data and then averaged. The binned points are illustrated with the
square markers linked with solid gray lines. An overestimation trend for values below
350 m and 400 m for ERA5 and MFWAM, respectively, is observed. This observation is most
likely related to the significant amount of sporadic extremes in low azimuth cutoff model-
derived estimates, identified for low-to-moderate sea states. For wavelengths above 350 m,
the values are consistently underestimated compared to ERA5, while the underestimation
trend in the MFWAM comparison is significantly smaller, noticeable only above 600 m.
Based on ERA5 estimates, the same trend appears to relate to an increase in wind speed and
wave height, in particular, above approximately 10 m/s and 3 m, but this is only confirmed
by MFWAM when the wind speed and the wave height exceeds approximately 15 m/s and
5 m, respectively.
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Figure 5. Scatter plots of the azimuth cutoff estimated by Sentinel-6A in comparison to ERA5 (top panels)
and MFWAM (bottom panels). In the left and right panels, color gradations correspond to wind speed and
significant wave height, respectively. The square markers linked with solid gray lines depict the average
value of points grouped every 50 m considering wave model-derived intervals. The gray dashed lines
represent the scenario where the azimuth cutoff of the satellite and wave model would align perfectly.

To further support the interpretation of these results we perform a sensitivity analysis
based on different wind and wave conditions, the outcome of which is provided in Table 2.
Overall, the altimeter azimuth cutoff estimates reveal moderate correlations between
0.6 and 0.7 with respect to ERA5 and MFWAM, respectively. The standard deviation of
the differences is approximately 100 m, indicating a notable dispersion in the estimates.
The method tends to overestimate the azimuth cutoff in relatively calm sea states (positive
mean values), while the opposite holds for high sea states (negative mean values), as shown
also in Figure 5. It is noticeable that for significant wave heights below 2 m and above
5 m there is a weak correlation between model and satellite-derived azimuth cutoff values,
indicating the sensitivity of the Gaussian method in these oceanic conditions. It is worth
noting that comparable findings have emerged from applying this method to Envisat’s SAR
images [27]. In order to gain a better understanding of the nature of these observations, we
discuss some problematic autocorrelation examples in the following section.

Table 2. Spatial domain analysis: statistics of the azimuth cutoff differences and correlation coeffi-
cients between Sentinel-6A and wave models based on a sensitivity analysis of the former to changes
in wind speed, significant wave weight and a combination thereof. The values outside and inside
parentheses represent ERA5 and MFWAM results, respectively.

Category Points Mean [m] Std. Dev. [m] Corr. Coef.

All data 318,590 (318,541) −16.47 (−10.59) 101.84 (96.70) 0.67 (0.71)

Wind speed [m/s]
U10 < 5 68,811 (68,794) 62.18 (63.08) 91.07 (93.67) 0.51 (0.51)
5 < U10 < 15 237,359 (237,327) −32.65 (−27.71) 90.23 (86.14) 0.65 (0.70)
U10 > 15 12,420 (12,420) −143.04 (−90.81) 95.64 (88.83) 0.65 (0.72)
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Table 2. Cont.

Category Points Mean [m] Std. Dev. [m] Corr. Coef.

Significant Wave Height [m]
Hs < 2 78,345 (79,377) 12.19 (32.99) 95.17 (107.22) 0.07 (0.01)
2 < Hs < 5 224,755 (217,442) −22.73 (−23.13) 100.29 (87.98) 0.48 (0.56)
Hs > 5 15,490 (21,722) −70.62 (−44.83) 117.93 (90.75) 0.29 (0.48)

Significant Wave Height [m] and Wind Speed [m/s]
2 < Hs and U10 < 5 36,167 (33,907) 52.80 (70.36) 94.28 (104.95) 0.14 (0.03)
2 < Hs < 5 and 5 < U10 < 15 188,088 (178,709) −35.72 (−36.46) 91.30 (80.13) 0.51 (0.58)
Hs > 5 and U10 > 15 8226 (8043) −126.12 (−87.94) 98.00 (77.78) 0.51 (0.70)

Gaussian Fitting Limitations and Sensitivities

Figure 6 presents along-track autocorrelation examples for two cases, each accompa-
nied by the corresponding fully-focused SAR waveform-tail radargram. The top panels
illustrate a scenario in which the SAR altimeter underestimates the azimuth cutoff. In
this instance, the wave model indicates a significant wave height of 5.2 m and a wind
speed of 15.3 m/s based on ERA5 parameters. While the Gaussian function appears to
provide a reasonable fit to the autocorrelation, the azimuth cutoff appears to be signifi-
cantly underestimated by 157 and 204 m with respect to the MFWAM and ERA5 estimates,
respectively. Considering that underestimation of wave orbital velocity variance is also
expected, given the way we infer it through Equation (2), one possible explanation for this
observation is linked to the ocean surface geometry. In particular, a recent study reported
that a nadir-looking system can capture only a fraction of the total distribution of vertical
wave particle velocities, leading to its underestimation when velocity-slope dependencies
are omitted [21], as is the case in our method. Note that, as the examined oceanic condi-
tions correspond to wind seas characterized by large steepness, wave breaking can also
contribute to additional errors.
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Figure 6. Examples of Sentinel-6A fully-focused SAR waveform-tail radargrams (left panels) and
their along-track autocorrelation functions (right panels), illustrated in gray color. The blue dashed
line represents the Gaussian function. The yellow, pink, and brown dash-dotted lines represent the
Sentinel-6A, ERA5 and MFWAM azimuth cutoff estimates, respectively. Sea state conditions are
obtained from ERA5 products.

Conversely, cases of extreme overestimation are mostly observed where the scene is
characterized by relatively low wind speed and in the presence of swells. An example
is given in the bottom panels of Figure 6. This case concerns a scene with significant
wave height and wind speed of 2 m and 5 m/s, respectively, while the peak wave period
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of 12 s indicates the presence of swells traveling at 71 degrees angle with respect to the
satellite azimuth direction. These long waves exhibit well-modulated patterns and appear
to dominate the shape of the autocorrelation, causing it to widen the main lobe. Again,
although the Gaussian function describes well the main lobe, the method cannot determine
properly the azimuth cutoff, exhibiting differences on the order of 500 m for both models.

To investigate the sensitivity to swell presence, Figure 7 provides four examples where
long waves propagate at different angles with respect to the satellite azimuth direction.
The autocorrelation appears to become a sinc-shaped function, with the size of the side
lobes dependent on the direction and magnitude of swells, leading to either narrowing
or stretching the width of the main autocorrelation lobe. The projected wavelength of
swell waves propagating near the cross-track direction will cause a signal projected in the
along-track that is larger than that of a swell wave propagating in the along-track direction.
For a similar cutoff the cross-track propagating swell waves will therefore widen the main
lobe more than along-track propagating swell waves. In fact, it is probably unlikely that
cross-track waves will make the main lobe more narrow as its projected wavelength is also
substantially larger than the along-track cutoff. In contrast, waves propagating along-track
exhibit a more sinc-like behavior. Even though the wavelength of the visible waves must
be larger than the cutoff, thus an overestimation might be expected, fitting a Gaussian into
the sinc-shaped signal might lead to an underestimation.
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Figure 7. Examples of along-track autocorrelation functions, depicted in gray color, concerning SAR
waveform-tail radargrams dominated by swells traveling in the cross-track direction (top left), at
angle (top right and bottom left) and in the along-track direction (bottom right). The blue dashed
line represents the Gaussian function. The yellow, pink, and brown dash-dotted lines represent the
Sentinel-6A, ERA5 and MFWAM azimuth cutoff estimates, respectively. Sea-state conditions are
obtained from ERA5 products.

The swell sensitivity has also been addressed in an analogous study that analyzed
SAR images acquired by Envisat [27]. Note that side-looking SAR systems have a different
geometry. The autocorrelation of nadir-looking altimeters is likely more sensitive to swell
than side-looking SAR systems. A large fraction of the long-wave variability in backscatter,
that causes the cutoff to be visible in the autocorrelation, originates from near-cross-track
moving wind waves. The limited cross-track resolution of nadir-looking altimeters filters
these short wind waves, while the signals of swell are stronger than those in side-looking
SAR system due to the enhanced range bunching. Nevertheless, waves traveling closer to the
cross-track direction were reported to cause larger discrepancies compared to those traveling
closer to the along-track direction, an observation in line with our findings (refer to Figure 7
and bottom panels of Figure 6). In the same study, the authors tried to correct the overall
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errors by applying empirical corrections to the estimates, taking into account parameters such
as wind speed, normalized variance, and sigma naught (i.e., backscattering coefficient). Biases
could largely be removed with this parametrization, but the precision remained rather poor.
In the presence of swell, the shape of the autocorrelation is contaminated and in most cases
not suitable for cutoff estimation through Gaussian fitting. Therefore, we make a first attempt
to estimate the azimuth cutoff from the wavenumber domain.

4. Azimuth Cutoff Analysis in the Wavenumber Domain

In the wavenumber domain, the azimuth cutoff λ f is associated with a fall-off wavenum-
ber ky f =

2π
λ f

, a parameter we aim to extract from the one-dimensional spectrum computed
from the along-track autocorrelation, which will be referred to as spectral autocorrelation
function. Figure 8 illustrates an example of how we estimate the fall-off wavenumber. The
method constructs as follows. The spectral autocorrelation, shown in gray color, is com-
puted by applying a Discrete Fourier Transform to the along-track autocorrelation function.
The fall-off wavenumber, illustrated by the yellow circular marker, is approximated by
identifying the intersection point between a model fitted to the spectral autocorrelation
function and a threshold, that empirically is defined to be five times the median spectral
along-track autocorrelation function. This threshold appears to effectively identify the
point where the signal’s background noise starts (around |ky| = 0.02 rad/m in Figure 8),
providing a first-order approximation of the fall-off width [54].

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
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ky
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  = 0.0202 rad/m

Figure 8. Example of the spectral autocorrelation function (gray solid line). The yellow circular marker
represents the fall-off wavenumber identified as the intersection point between the gray dotted line,
depicting the threshold line equal to five times the median spectral along-track autocorrelation function,
and the blue solid line representing the seventh-order polynomial model. The pink and brown dash-
dotted lines represent the fall-off wavenumber estimates from ERA5 and MFWAM, respectively. The
yellow dash-dotted represents the Sentinel-6A fall-off wavenumber obtained from the spatial domain-
derived azimuth cutoff estimate. Sea-state conditions are obtained from ERA5 products.

A seventh-order polynomial model is fitted to the decaying part of the spectral auto-
correlation function. The spectral autocorrelation function exhibits oscillations, that initially
reduced the fitting efficiency. To address this issue without altering its shape, a low-pass
moving-average filter with a window size of 5 is applied as a pre-processing step. Lastly, we
evaluate the fitting performance using 20, 50, and 100 samples, with sample 1 correspond-
ing to the spectral peak. Table 3 presents the root mean square error (RMSE) of the azimuth
cutoff differences between Sentinel-6A and wave models for all the examined scenarios,
identifying the optimal case when 50 samples are used. Consequently, we continue the
wavenumber domain analysis with this configuration.
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Table 3. Root mean square errors (RMSE) of the azimuth cutoff differences between Sentinel-6A
(S6A) and wave model-derived values, calculated for varying numbers of samples considered in the
spectral autocorrelation fitting.

Azimuth Cutoff Differences [m]
RMSE

20 50 100

S6A-ERA5 102.15 93.32 106.69
S6A-MFWAM 99.05 88.63 96.23

Upon closer examination of the example presented in Figure 8, the sea-state conditions
are characterized by a significant wave height of 2.4 m and a wind speed of 5.0 m/s. Swell
waves with a peak period of 12.5 s are traveling at 68 degrees angle with respect to the
satellite azimuth direction. The azimuth cutoff estimate in the wavenumber domain aligns
well with the model-derived ones, exhibiting differences of 4 and 7 m with respect to
MFWAM and ERA5, respectively. In contrast, the spatial domain analysis exhibits a notable
deviation of 253 and 256 m from MFWAM and ERA5 estimates, respectively, which is
primarily attributed to the presence of swells, as discussed earlier. To further investigate the
applicability of this method in various sea states we conduct a sensitivity analysis, similar
to the spatial domain case.

Table 4 provides statistics of the differences between wave model and Sentinel-6A
derived azimuth cutoff estimates. Azimuth cutoff estimates below 50 m are treated as
outliers and excluded, similar to the spatial domain analysis. It is worth noting that
this exclusion constitutes about 2% of the total dataset, hence, we do not foresee any
notable impact on our comparisons between the methods. Examining the results obtained
considering the entire dataset, the azimuth cutoff correlation between satellite and wave
models increases by 10%, reaching 0.8 compared to the 0.7 calculated in the spatial domain
analysis, revealing a strong positive linear relationship between the variables. The standard
deviation dropped to approximately 80 m, indicating a smaller dispersion of the satellite
estimates compared to the model-derived ones. Examining the sensitivity of the method on
different sea states, we observe that the correlations are higher for low-to-moderate winds,
while the estimates agree significantly better for both low, moderate and high significant
wave height scenarios. In cases of extreme wind seas, exceeding 15 m/s, the correlation
is notably reduced. This observation could be attributed to a weaker linear relationship
between the wave model and satellite-derived values obtained in the wavenumber domain.

Table 4. Wavenumber domain analysis: statistics of the azimuth cutoff differences and correlation
coefficients between Sentinel-6A and wave models based on a sensitivity analysis of the former to
changes in wind speed, significant wave weight and a combination thereof. The values outside and
inside parentheses represent ERA5 and MFWAM results, respectively.

Category Points Mean [m] Std. Dev. [m] Corr. Coef.

All data 311,640 (311,594) −41.68 (−38.53) 83.50 (79.98) 0.79 (0.81)

Wind speed [m/s]
U10 < 5 66,918 (66,902) −17.93 (−18.94) 58.16 (57.01) 0.68 (0.73)
5 < U10 < 15 232,486 (232,456) −43.010 (−41.03) 84.24 (82.20) 0.71 (0.73)
U10 > 15 12,236 (12,236) −146.30 (−98.16) 100.79 (104.69) 0.20 (0.26)

Significant Wave Height [m]
Hs < 2 75,068 (73,463) −21.9 (−9.87) 75.83 (71.60) 0.51 (0.52)
2 < Hs < 5 221,198 (216,403) −40.26 (−38.98) 79.66 (76.09) 0.74 (0.76)
Hs > 5 15,374 (21,728) −158.71 (−131.49) 79.38 (70.04) 0.58 (0.62)

Significant Wave Height [m] and Wind Speed [m/s]
Hs < 2 and U10 < 5 34,721 (32,190) −14.5 (−1.55) 61.11 (58.01) 0.47 (0.47)
2 < Hs < 5 and 5 < U10 < 15 185,075 (177,970) −42.65 (−40.34) 82.21 (79.52) 0.68 (0.69)
Hs > 5 and U10 > 15 8139 (8050) −180.21 (−139.01) 83.70 (81.39) 0.33 (0.30)
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5. Discussion

Figures 9 and 10 present global maps of the azimuth cutoff and velocity variance param-
eters, respectively, with the top panels showing estimates from both models and the bottom
panels displaying Sentinel-6A results in the spatial (bottom left) and wavenumber (bottom
right) domains. The location of each value represents the midpoint of the fully-focused SAR
waveform-tail radargram used to estimate the corresponding along-track autocorrelation
function. Overall, the geographical patterns observed in the altimeter-derived maps align
well with wave models. It appears that the altimeter can effectively capture wavelengths
longer than approximately 100 m, with the highest values reaching 1000 m, corresponding
to velocity variances exceeding 2.5 m2 s−2. Knowing that the velocity variance is primarily
driven by wind waves, high values are expected in regions where wind seas are generated,
such as the Northern and Southern Oceans. Comparing the level of agreement between the
methods and the model-derived estimates, it becomes apparent that the wavenumber domain
analysis demonstrates a better performance across the globe, compared to the spatial domain
analysis. This applies also in the estimation of the low azimuth cutoff and velocity variance
values, implying that the wavenumber domain method is less prone to errors in relatively
calm sea-states. However, the opposite holds in the Southern and Northern Oceans, where
extreme waves are developing. Specifically, the parameters estimated in the wavenumber
domain are significantly underestimated compared to those in the spatial domain, which,
although also underestimated, exhibit better agreement with wave models.

Figure 9. Global maps of the azimuth cutoff as derived by ERA5 (top left), MFWAM (top right),
Sentinel-6A from the spatial domain (SD) analysis (bottom left), and Sentinel-6A from the wavenum-
ber domain (or Fourier Domain—FD) analysis (bottom right). Each map is accompanied by a
histogram showing the distribution of the estimates on a logarithmic scale.
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Figure 10. Global maps of the velocity variance as derived by ERA5 (top left ), MFWAM (top right),
Sentinel-6A from the spatial domain (SD) analysis (bottom left), and Sentinel-6A from the wavenum-
ber domain (or Fourier Domain—FD) analysis (bottom right). Each map is accompanied by a
histogram showing the distribution of the estimates on a logarithmic scale.

To gain a better insight into the nature of the observed discrepancies with respect to
sea-state conditions, Figure 11 presents global maps of wind speed and peak wave period
from ERA5 in the top panels, while the velocity variance differences between Sentinel-6A
and ERA5 and Sentinel-6A and MFWAM are illustrated in the middle and bottom panels,
respectively. Note that, as the velocity variance is directly proportional to the azimuth
cutoff, we anticipate same sensitivities in the estimation of the latter. Examining the
underestimation patterns first, a strong relation with wind speed is observed. As discussed
above, both methods tend to underestimate the velocity variance in wind seas, with the
wavenumber domain analysis showing larger discrepancies. Here, it becomes evident
that this trend increases gradually with rising wind speeds, particularly noticeable above
10 m/s. Note that decorrelation, for example, due to wave breaking, is ignored, leading to
additional errors in extreme sea states.

Moving to the overestimation patterns resulted from the analysis in the spatial domain
(left middle and bottom panels) first, a significant amount of extremes becomes evident
in regions where low wind seas (<5 m/s) and long-period waves (swells >14 s) coexist,
such as west of Australia and in the central-east Pacific. As discussed in Section 3, the
spatial domain method is sensitive to swells as long-wave oscillations alter the shape of the
along-track autocorrelation function. This is effectively addressed when the radar signal
is analyzed in the wavenumber domain, as shown in the right middle and bottom panels
of Figure 11. The swell-induced errors are significantly mitigated, leading to a reduction
in the overall overestimation errors, as depicted in the accompanying histograms of the
differences. The remaining overestimation errors are dispersed and do not exhibit a clear
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dependency on wind and wave conditions. Instead, they are most likely associated with
method sensitivities in accurately identifying the fall-off wavenumber by using a fixed
signal’s noise threshold for the entire spectrum of sea states. Since the fall-off wavenumber
method is introduced for the first time, additional research is required to enhance the
accuracy of fall-off wavenumber estimation through the spectral autocorrelation function.

Figure 11. Global maps of the peak wave period and wind speed as obtained from ERA5 (top panels)
and the velocity variance differences between ERA5 and Sentinel-6A in the spatial domain (SD) (mid left)
and wavenumber domain (or Fourier Domain—FD) (mid right), MFWAM and Sentinel-6A in the spatial
(bottom left) and wavenumber (bottom right) domains. Histograms of velocity variance differences
accompany the middle and bottom panels.

Overall, the root mean square error of the velocity variance varies slightly between
0.22 and 0.26 m2 s−2 across the four examined scenarios, with the smaller error calculated for
the comparison between MFWAM and wavenumber domain derived values. It is important
to acknowledge that, apart from the errors induced by the methods’ limitations, inaccuracies
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in the wave models are also expected to contribute to the root mean square error. For instance,
MFWAM and ERA5 use different modeling strategies to account for the dissipation caused
by white capping. The challenge to properly modeling this oceanic process introduces biases
to the wave parameters, particularly noticeable in the Southern Hemisphere under high
wind conditions [55]. Focusing on this region in Figure 11, differences between ERA5 and
MFWAM compared to the satellite-derived data are evident, with MFWAM displaying a more
consistent behavior with respect to the satellite. Additionally, unlike MFWAM, ERA5 does
not incorporate current data, potentially introducing inaccuracies in significant wave height
estimates in areas influenced by strong currents. Current-induced refraction can significantly
modulate wave properties, occasionally resulting in extreme wave heights [56]. Lastly, the
development of swells introduces complexity to the evolution of wave heights, resulting in a
more gradual change as they travel towards the tropics (<30 ◦N/S) [27]. Potential inadequacies
in modeling this process could introduce additional errors into our comparisons. Therefore,
it is recommended to undertake further efforts to carefully determine the source of errors,
including the validation of both methods against in situ data, such as buoys. Moreover,
considering that the extraction of wave orbital velocity information is feasible using an
unfocused SAR processing technique [21], a comparative analysis could offer insights into the
strengths and limitations of each approach. Leveraging their distinct processing characteristics
could enhance our understanding of SAR responses to ocean dynamics.

6. Conclusions and Recommendations

This study explored the imaging capabilities of Synthetic Aperture Radar (SAR) altime-
ters in extracting wave orbital velocity information through the estimation of the azimuth
cutoff. The azimuth cutoff, a well-established measure for side-looking SAR systems, serves
as a proxy for the shortest detectable waves, in terms of wavelength, and is strongly related
to the variance of the wave orbital velocity. By extracting this parameter, we aim to provide
an additional measure to characterize sea-state dynamics from altimetry.

Initially, the azimuth cutoff was estimated by minimizing the residuals between the
along-track autocorrelation function of a fully-focused SAR waveform-tail radargram and
a Gaussian function fitted to it. To assess the method’s performance across various sea
states, a global-scale analysis was conducted using Sentinel-6A data from one repeat cycle,
spanning from 11–21 December 2022. Level-1b fully-focused SAR multilooked waveforms
were obtained using the Omega–Kappa focusing algorithm implemented in an updated
version of the Standalone Multimission Altimetry Processor. The results were compared
against two wave models, the ERA5 and MFWAM, for evaluation purposes.

Overall, the spatial domain analysis indicated that the altimeter can effectively capture
waves longer than approximately 100 m. The algorithm performs reasonably well for moderate
wind and wave conditions, while underestimation trends appeared to gradually increase
with increasing wind speed and significant wave height. This observation is most likely to be
attributed to the fact that a nadir-looking altimeter tends to capture only a fraction of the total
distribution of vertical wave particle velocities, leading to its underestimation when velocity-
slope dependencies are omitted [21], as is the case in our method. Moreover, profound impact
of swells led to an abnormal overestimation of the azimuth cutoff in relatively calm wind
seas. It was shown that the shape of the autocorrelation is significantly affected by swells.
The magnitude of these errors was found to depend also on the wave propagation angle with
respect to the satellite. Waves traveling closer to the cross-track direction appeared to cause
larger discrepancies compared to those traveling closer to the along-track direction (refer to
Figures 6 and 7). Overall, our findings are in line with azimuth cutoff studies conducted for
SAR side-looking systems, such as [27].

Considering that swell related errors stem from the shape of the along-track auto-
correlation function in the spatial domain, we made a first attempt to mitigate them by
implementing an alternative method, conducted in the wavenumber domain. We approxi-
mated the fall-off wavenumber ky f by first fitting a polynomial model of seventh order in
the decaying part of the spectral autocorrelation function and then identifying its fall-off
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width based on an empirically defined threshold, equal to five times the median spectral
autocorrelation function. The azimuth cutoff λ f was then estimated as λ f = 2π

ky f
. Evalu-

ating our method against both wave models again, we achieved to significantly mitigate
the swell errors, improving the standard deviation of the differences between altimeter
and model-derived azimuth cutoff estimates, from approximately 100 to 80 m. Overall, the
wavenumber domain results are by 10% better linearly correlated with wave models (from
approximately 0.70 to 0.80 for both models). However, the analysis of the radar signal in
the wavenumber domain showed a more pronounced underestimation in wind-dominated
seas compared to the spatial domain analysis. The velocity variance root mean square
errors were found to vary between 0.22 and 0.26 m2 s−2 across the four examined scenarios,
with the smaller error calculated for the comparison between MFWAM and Sentinel-6A
wavenumber domain derived values. Further validation of both methods using in situ data
is recommended as wave model inaccuracies are expected to contribute to the overall error.

Moreover, an essential consideration when applying the azimuth cutoff autocorrelation
method to other SAR altimeters is that CryoSat-2 and Sentinel-3A/B operate in closed-burst
mode, unlike Sentinel-6A which operates in open-burst mode [57]. The former’s radar
signal transmission-reception configuration was found to introduce ambiguities in the
azimuth direction, visible as spatial aliases approximately every 90 m [58]. While these
aliases are anticipated to impact the shape of the along-track autocorrelation function, the
extent of this effect requires in-depth investigation, a topic beyond the scope of this study.

Lastly, the authors would like to emphasize that imaging ocean waves from SAR
altimeters has undoubtedly opened up new applications. Leveraging the combined insights
derived from the leading edge analysis (significant wave height and wind speed) and the
trailing edge analysis (SAR directional spectra, azimuth cutoff and wave orbital velocity
statistics) we anticipate that we will be able for first time to separate wind and swell wave
components in satellite altimetry.
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