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Abstract: Network-group targets are a set of objectives that adhere to a shared communication
protocol, perform common tasks, and exhibit relatively coordinated movements. Typically, network-
group targets emit radar and communication signals. However, they often employ a silent mode to
evade our perception. Despite this, they continue to exchange data through their communication
networks. By intercepting the communication signals of these targets, this paper proposes a method
for estimating the state and network topology of network-group targets based on random finite
set (RFS) theory. This method is based on the modeling of network-group targets using a labeled
multi-Bernoulli (LMB) RFS. In state estimation, the usual method involves extracting the localization
parameters from the signals in the first step and use these parameters for target tracking in the
second step. This study focused on estimating the kinematic states of network-group targets using
communication signals containing delay and Doppler information received by multiple mobile
sensor platforms. The proposed method considers the coherency between frequency-hopping pulses
in the signals, resulting in an improved estimation performance. In addition, considering that
network-group targets require network access for information exchange, graph theory concepts were
utilized to estimate the network topology of network-group targets by address measurement. The
simulation results validated the effectiveness of the proposed method and demonstrated its superior
performance.

Keywords: network-group target; unmanned aerial vehicle (UAV); state estimation; network topology
estimation; labeled multi-Bernoulli (LMB); target tracking; random finite set (RFS); graph theory

1. Introduction

With the rapid development and maturation of unmanned aerial vehicle (UAV) tech-
nology and wireless communication network technology, new concepts, such as UAV
swarms and manned–unmanned teaming (MUM-T), have gradually been applied and
validated [1–4]. A UAV swarm refers to the use of multiple UAVs to form a collective
group to accomplish tasks, with coordination between them occurring through a wire-
less communication network. MUM-T refers to the simultaneous control and command
of multiple UAVs using a human-piloted aircraft to perform a mission. MUM-T fully
leverages the intelligence and experience of a human-piloted aircraft while also utilizing
the maneuverability and payload advantages of UAVs. MUM-T can improve efficiency
and survivability while reducing the risks of a human-piloted aircraft. These target for-
mations, which are composed of task-oriented groups through wireless communication
networks, can be collectively referred to as network-group targets. The collaboration of
network-group targets depends on the communication networks. Therefore, analyzing the
radiation of network-group targets is expected to improve the state-estimation performance
for these targets.
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Standard single-target tracking algorithms assume that the target is a point, limiting
it to one measurement per target per time only [5–8]. Researchers have studied the direct
position determination (DPD) of targets using radio signals, including techniques such as
time difference of arrival (TDOA), frequency difference of arrival (FDOA), and directions of
arrival (DOA) [9–13]. Specifically, regarding the moving radiation sources, the estimation
of the location by utilizing TDOA and FDOA information was achieved through fixed
receiving stations [10]. Considering the multipath situation, based on the sparsity of
locations and velocities, a DPD method for passive radar was proposed to estimate the
location and velocity of a moving target in a multipath scenario [11]. A novel approach to
efficiently solve the cost function of DPD was proposed [12], which requires fewer particles
compared with the classical particle filter (PF) to estimate the kinematic state of the moving
source. DPD for mobile narrowband sources based on known waveform signals with a
Doppler frequency shift was proposed [13]. The proposed DPD is superior to traditional
tracking methods in terms of low signal-to-noise ratio (SNR) and limited quantity of data
samples. A system-modeling approach employing cyclic spectrum slices was proposed for
directly localizing co-channel signals with distinct cyclic frequencies [14]. A deep learning
model for direct trajectory tracking has been developed [15], primarily consisting of two
main components: a signal-processing component based on convolutional neural networks
(CNNs) and a trajectory generation component based on the Transformer architecture. A
multi-task learning model designed for joint direct classification and tracking enables the
network to further enhance tracking performance by learning the dynamic patterns of
different types of targets.

Multi-target tracking (MTT) algorithms, such as multiple hypothesis tracking
(MHT) [16] and the joint probabilistic data association filter (JPDAF) [17,18], were de-
signed to solve the problem of tracking targets that may appear and disappear, with the
number and trajectories of the targets changing over time. The random finite set (RFS)
approach is a novel methodology in MTT that offers a framework for managing multi-target
systems while circumventing intricate data association procedures [19–23]. An RFS is a
random variable whose values are finite sets. The number of points in a random finite set
is random, and the values of these points are also random and unordered. Observation sets
and state sets can naturally be represented using random finite sets. Compared with the
aforementioned traditional association algorithms, the RFS approach holds considerable
advantages in scenarios with numerous observations and an uncertain number of targets.

Group targets are usually classified as either unresolved or resolvable based on their
distribution of position measurements [19]. Unresolved targets, which have a larger
number of targets that are difficult to differentiate from each other, are not practical to track
individually. Hence, collective movements of the entire group were considered. Extended
targets can be regarded as a special type of unresolved targets [24–27]. These targets have
the characteristic that each measurement comes from a single target and each extended
target can generate multiple measurements. For instance, a high-resolution radar can
detect targets occupying multiple resolution cells, resulting in multiple measurements per
time step. Resolvable group targets are defined as a collection of targets with relatively
stable formations and similar movement patterns [28,29]. In scenarios that involve target
tracking with interactive behaviors, various group structure models have emerged as
popular choices. These encompass the virtual leader–follower model [30], Markov random
field (MRF) model [31], evolutionary network model [32,33], and social force model [34]. A
novel multigroup target tracking algorithm, which leverages evolutionary networks and
the labeled box particle probability hypothesis density (LBP-PHD) filter, was introduced
by Cheng et al. [35] by adding labels to box particles to obtain the trajectory of individual
targets within a group and the overall group trajectory, while also avoiding the instability
caused by k-means clustering. The group structure is modeled using graph theory, and the
cardinality balanced multitarget multi-Bernoulli (CBMeMBer) filtering algorithm is used to
estimate the kinematic state of the group targets [36], which further allows for the estimation
of the overall group state based on individual target state estimates within the group. The
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group structure can be described within the framework of the hypergraph theory, which
enhances the performance of data association [37]. The structure identification and tracking
problem of circular formation movement was studied [38], and a single trajectory was
obtained using the labeled multi-Bernoulli (LMB) filter. To address the problem of tracking
large-scale multi-structure group targets, a sequential generalized labeled multi-Bernoulli
(GLMB) tracking algorithm was proposed by Zhao et al. [39]. Li et al. derived the single-
target state transition function (SSTF) from the direct integral solution of the single-target
state stochastic differential equation (SDE) [40], and integrated the proposed SSTF-MB filter
into the sensor control strategy.

To minimize the perceived risks, the networked targets employ their stealth capabilities
and radar silence to execute their missions. However, due to the necessity of communication
to ensure the synchronization of information, such as location, these signals do not remain
disconnected for extended periods. Instead, they maintain intermittent synchronization,
and their beam width is relatively wide. Consequently, researching the state of network-
group targets and their network topology holds significant importance. Additionally, to
the best of the authors’ knowledge, there was no previous study that explored the state
estimation of network-group targets.

The purpose of this study was to develop a method to achieve passive state and
network topology estimation of network-group targets within the framework of a labeled
RFS. Unlike traditional group target definitions, network-group targets are defined not by
motion coordination between targets, but by communication links. This method considers
the use of received broadband frequency-hopping communication signals containing time
delay and Doppler information to determine the location and velocity of the transmitter
and considers the coherence between frequency-hopping pulses to further improve the
tracking performance. Furthermore, the method draws upon certain concepts from graph
theory and utilizes address information to estimate the network topology, which is a crucial
means for a comprehensive and accurate understanding of network spaces. The approach
is applicable to scenarios where the network-group targets are distinguishable and the
communication signals have a relatively high SNR, allowing for the accurate acquisition of
the targets’ states.

The main contributions of this study are as follows:

• Graph theory is introduced to develop a network-group target-state estimation method
that incorporates the network topology.

• In order to improve the estimation performance, a likelihood function was established
using frequency-hopping communication signals emitted from the network-group
targets, including delay and Doppler information.

The remainder of this paper is organized as follows. Section 2 introduces the network-
group target and offers an overview of graph theory and the LMB RFS. Section 3 presents a
model for the state, measurement, and communication signals of a network-group target.
Section 4 proposes an LMB filter specifically designed for network-group targets. The
implementation method of the filter, along with track pruning and state extraction methods,
is outlined in Section 5. The simulation results are presented in Section 6. Finally, Section 7
provides concluding remarks and summarizes the contributions of this study.

2. Background
2.1. Notation

In this paper, δx,y represents the Kronecker-δ function and δx(y) represents the Dirac
δ density at y = x. 1S(x) represents the indicator function of the set S, and if x ∈ S, then
1S(x) = 1; otherwise, 1S(x) = 0. |S| represents the number of elements in the finite set S.
⟨·|· ⟩ is the integral over all state variables. For continuous functions, ⟨ f |g ⟩ =

∫
f (x)g(x)dx,

and for discrete sequences, ⟨ f |g ⟩ = ∑∞
i=1 f (i)g(i). f X = ∏x∈X f (x) is a multi-objective

index. F (X) represents all finite subsets of space X. Fn(X) indicates all subsets that include
n elements.
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The state scalar of a single object is represented by a lowercase letter x. The state
vector of a single object is represented by lowercase bold letters: x. Multiple object states
are represented by uppercase letters: X. The corresponding label versions are represented
by the regular forms x, x, and X. The spaces are indicated in bold black letters: L. The
exclusive union of sets X and Y: X ⊎ Y.

In signal processing, scalar values are represented in lowercase italic letters: a. The
vectors are represented by lowercase italic scripts: a. The matrix is represented by the
capital italic script A. IM represents the M × M identity matrix, and 1M×1 represents an
M-column vector of ones. Here, diag{a} represents a diagonal matrix with vector a on the
main diagonal.

2.2. Introduction to Network-Group Targets

Network-group participants are geographically dispersed, but interconnected through
wireless communication networks. They collaborate and work together to accomplish their
tasks. The normal operation of a wireless communication network requires communication
protocols that address the efficient and reliable interaction of messages. According to the
TCP/IP five-layer model [41], network protocols of wireless communication networks
are typically divided into five layers: application, transport, network, data link, and
physical. The application layer provides an interface between the user and the network, the
transport layer manages the data transmission between two nodes, and the network layer is
responsible for routing and forwarding data frames to achieve data transmission between
different networks. The data link layer not only divides the bit stream into data frames
and performs error detection and correction but is also responsible for the flow control
and access control of the data transmitted at the physical layer to ensure reliable data
transmission. Finally, the physical layer primarily handles the digital signal transmission.
This study primarily involved transport, data link, and physical layers. The following are
some of the properties of the wireless communication network investigated in this study.

In the transport layer, a time slot serves as the fundamental unit for accessing a wireless
communication network. Each participant is assigned several timeslots for signal transmis-
sion and reception. Data can be encapsulated in various formats, such as transmitting the
same codeword with two pulses or transmitting one codeword with a single pulse.

The data link layer encapsulates the network layer data by adding the source and
destination addresses. The address of each target is unique and fixed. The network topology
in our study adopted a decentralized structure, and the sublayer protocol used the time-
division multiple access (TDMA) method, in which time is divided into nonoverlapping
time slots. Each user is assigned a dedicated time slot for data transmission, with each time
slot occupied by at most one user. Generally, to minimize interference with other services,
the occupancy factor of the time slots is kept low. In addition, this study assumed that
network-group targets adopted a lower update rate (sub-second to multi-second levels) for
information transmission to reduce the probability of communication signal interference.

In the physical layer, the network-group targets utilize minimum shift keying (MSK)
modulation for signal transmission and the carrier frequency hops in a wideband using a
specific method.

Figure 1 shows a time slot diagram of the three sensor platforms and a network-group
with three targets. The main graph in the diagram is a two-dimensional plane that shows
the geographical locations of the three sensor platforms and the three network-group
targets in three time slots. Each target is represented by a pattern, and the straight black
arrow beside the pattern indicates the direction of movement of the target in the slot. The
targets move in slightly different directions and not in opposite directions. When a target is
transmitted in a time slot, it is represented by a solid pattern; otherwise, it is represented
by an empty pattern. The blue lightning symbol with an arrow indicates that the target
transmits information during that time slot. Targets 1 and 2 transmit information to target
3 in time slots 1 and 3, respectively, whereas no target is transmitted in time slot 2. Above
this diagram is a frequency-hopping pattern diagram for the two transmissions in time
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slots 1 and 3. In this diagram, each transmission consists of five pulses and the pulse
frequency changes over time. Each transmission from the target includes the addresses
of the transmitter and receiver. Signals containing time delay, Doppler, and address
information were intercepted by the three sensor platforms for further processing.

Figure 1. Time slot diagram of a network-group target. Network-group targets transmit information
within a given time slot, as represented by solid patterns when transmitting and hollow patterns
otherwise. The straight black arrow beside the pattern indicates the direction of movement of the
target in the slot. The example of frequency-hopping patterns for signal transmission is shown above.

In this scenario, it is assumed that the antennas used to transmit signals between
the network-group targets are omnidirectional rather than narrow-beam types, which is a
prerequisite for the sensor platform to intercept communication signals. Our aim was to
estimate the kinematic state and network topology of network-group targets by processing
signals intercepted from three sensor platforms containing time delay, Doppler, and address
information.

2.3. Graph Theory

A graph G consists of a set of vertices V(G) = {v1, . . . , vn}, a set of edges E(G) =
{e1, . . . , em}, and the relationship between them, where two vertices are related by an
edge [42].
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The directed graph G comprises a set of vertices V(G), a set of edges E(G), and a
mapping function that associates each edge with an ordered vertex pair. Within this pair,
the initial vertex represents the edge tail, and the subsequent vertex serves as the edge
head. u → v denotes the existence of an edge between u and v. The degree d of a vertex
refers to the number of times that the vertex appears at the edge.

The adjacency matrix A(G) of G is a matrix of dimensions n × n, where the element
ai,j is the number of edges ending with vertices vi and vj. In the adjacency matrix A(G)
of directed graph G, the element at (i, j) is the number of edges from vi to vj. The degree
matrix D(G) of a graph is a diagonal matrix of degrees, that is, D(G) = diag{d1, . . . , dn}.

The induced subgraph consists of a subset of the vertices of the graph and a set of all
edges, with both ends in the subset. A dynamic graph is represented by a set of ordered
graphs [43]:

DG = {G1 . . . GK} (1)

in which K is the number of time steps.
The network topology of network-group targets can be described using directed

graphs from graph theory, where vertices represent targets and edges represent information
transfer between targets. As illustrated in Figure 1, assuming that the addresses of the three
targets are 1, 2, and 3, the targets are represented by vertices denoted by V(G) = {1, 2, 3},
and the information transfer during the first time slot is represented by edges denoted by
E(G) = {(1 → 3)}.

2.4. LMB RFS

The state space of the target is represented as X, and the label space can be represented
as L = {ℓi : i ∈ N}, where N represents the set of positive integers, and ℓi is distinct. The
labeled multi-target state is represented by X. The characteristics of the LMB RFS X can
be entirely encapsulated within a specific set of parameters q =

{
ε(ℓ), p(ℓ)

}
ℓ∈L

, where ε(ℓ)

is the probability of the existence of the target ℓ, and p(ℓ) is the probability density of the
track when the target ℓ exists. The LMB RFS density with parameter set q can be written as

q(X) = ∆(X)ω(L(X))pX (2)

where L(X) = {L(x) : x ∈ X} represents the set of tags in X. ∆(X) ∆
= ffi|X|(|L(X)|) guaran-

tees that the labels of X are distinct. The weight can be written as

ω(L) = ∏
ℓ′∈L

(
1 − ε(ℓ

′)
)

∏
ℓ∈L

1L(ℓ)ε(ℓ)

1 − ε(ℓ)
(3)

Ignoring the target derivation, the multi-target state in the next time step is the union
of the surviving and newborn target states. We assumed that the surviving LMB parameter
set is

{
ε
(ℓ)
+,s, p(ℓ)+,s

}
ℓ∈L

, and the newborn LMB parameter set is
{

ε
(ℓ)
B , p(ℓ)B

}
ℓ∈B

, where B is the

label space of the newborn target. The predicted LMB density is the union of the surviving
and newborn LMB densities as follows:

q+ =
{

ε
(ℓ)
+,s, p(ℓ)+,s

}
ℓ∈L

⋃{
ε
(ℓ)
B , p(ℓ)B

}
ℓ∈B

(4)

and the label space is L+ = L
⋃
B, and L

⋂
B = ∅.

The predicted LMB parameter set is represented by q+ =
{

ε
(ℓ)
+ , p(ℓ)+

}
ℓ∈L+

, and at

this time, there are multiple target measurements Z =
{

z1, . . . , z|Z|
}
∈ Z, where Z is the

measurement space. An LMB parameter set that accurately matches the first moment of
the posterior density of multiple targets is

q(·|Z ) =
{

ε(ℓ), p(ℓ)
}
ℓ∈L+

(5)
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For detailed information on the LMB filter, please refer to the paper written by
Reuter et al. [44].

3. Problem Statement
3.1. State Modeling of Single Network-Group Target

From the previous section, it can be observed that the basic unit of information
transmission for the network group in this study was the time slot. The length of a time
slot is usually on the order of 10−3 s, whereas the speed of the aircraft is mostly on the
order of 102 m/s. Therefore, the distance traveled by the aircraft in one time slot is of the
order of 0.1 m. The Ns time slots near each time step can be captured, ensuring that the
movement of the network-group target remains within an acceptable range within the Ns
time slots. It was assumed that each target can emit at most one communication signal in
each capture of the Ns time slots. Figure 2 shows a schematic of the captured time slots of
the network-group targets with Ns = 4, where each square represents a time slot. At three
time steps, five communication signals were intercepted, with two signals detected during
the first time step, two signals during the second time step, and one signal during the third
time step.

Figure 2. The intercepted network-group target time slot diagram is shown with Ns = 4.

An augmented state that consists of two parts was adopted to describe the single
network-group target: (1) the kinematic state x ∈ X and (2) the address state u ∈ C, where
C = {u1, . . . , u|C|} is a finite set of addresses. An address probability vector is defined as
c = {c1, . . . , c|C|}, where ci represents the probability that the address is the ith address,

with ∑
|C|
i=1 ci = 1 and 0 ≤ ci ≤ 1. The augmented state vector is defined as x = (x, ct, cr),

where ct is the address probability vector of the network-group target, which can be referred
to as the transmitter address probability vector. cr is the address probability vector of a
network-group receiver, which can also be referred to as the receiver address probability
vector. The time evolution of kinematic state x of any target can be modeled as follows:

xk = fk(xk−1) + wk (6)

The transition density function is denoted as fk, and wk represents a Gaussian white
noise vector. It was assumed that the probability vector of the address of the transmitter
does not change over time, whereas the probability vector of the receiver’s address remains
at the initial set value {cr

1, . . . , cr
|C|}=

{
1/|C|, . . . , 1/|C|

}
. This is because the true address of the

transmitter is fixed, whereas that of the receiver varies each time. The probability density
function (PDF) of the Markov state transition is given by

ϕk|k−1(x+|x) = ϕk|k−1(x+, ct
+, cr

+|x, ct, cr)

= δct
+ ,ctδcr

+ ,cr,1 ϕk|k−1(x+|x)
(7)

where ϕk|k−1(x+|x) is the PDF of the Markov transition for the state and cr,1 is the initial
value of the probability vector for the receiver’s address.
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3.2. Measurement Modeling of Single Network-Group Target

If a target is detected, the augmented measurement value is defined as follows:

zk =
[
zp

k , zt
k, zr

k

]
(8)

in which zp
k is a kinematic-related measurement, zt

k is the address measurement of the
transmitter, and zr

k is the address measurement of the receiver. Both zt
k and zr

k are one-hot
vectors. For example, zt

k =[0, 1, 0] represents a total of C = 3 address measurements,
and the address measurement of the transmitter is the second one, i.e., u2. The address
measurement of the receiver is similar. The kinematic measurement model of the target is
zp

k =τk(xk, Vk), where V is a random noise vector and τk is the measurement function. The
address measurement models of the transmitter and receiver are zt

k = Ξ(r) and zr
k = Ξ(r),

respectively, where Ξ is the recognizer of addresses and r represents the signal emitted
by the target and received by the sensor platforms. Since the focus of this study was
not on signal recognition, it was assumed that the performance of the recognizer can be
represented by a confusion matrix defined as

Π ∆
= [πi,j]|C|×|C| (9)

where πi,j = Pr(declare j|i is true), and i and j represent addresses. For example, the
element πt

1,2 = Pr(zt = [0, 1, 0]|ut = u1) in the confusion matrix of the address recognizer
for the transmitter represents the probability that the transmitter address measurement is
recognized as u2 when the actual address of the transmitter is u1.

In this scenario, in addition to the measurements that originate from the target, the
measurements received by the sensor platforms included measurements from false targets.
The likelihood function for a single network-group target is denoted as

gk(z|x ) = gk

(
zp

k , zt
k, zr

k
∣∣x, ct, cr

)
(10)

Because the determination of the address is purely based on the address probability
vector and is independent of the kinematics, (10) can be expressed as

gk(z|x ) = gk

(
zp

k |x
)

gk
(
zt

k
∣∣ct )gk(zr

k|c
r ) (11)

Figure 3 shows the sequence diagrams of the transmitter and receiver. Figure 3a,b
show the actual and recognized sequence diagrams, respectively. The addresses of the
transmitter and receiver are determined by identifying the signals intercepted by the sensor
platforms.

Only three actual addresses are shown in Figure 3a, whereas five addresses after
recognition are shown in Figure 3b. By comparing Figure 3a,b, it can be observed that the
recognizer accurately recognized the transmitter and receiver addresses in the first time
slot of time step k − 1 and the fourth time slot of time step k + 1. However, in the third
time slot of time step k − 1 and second time slot of time step k, the recognizer incorrectly
recognized the receiver and transmitter addresses, respectively. In addition, in the third
time slot of time step k, the recognizer incorrectly recognized both addresses. In the first
time slot of time step k + 1, which was intended to have no target transmission, a signal
transmission occurred because of a false target.
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(a)

(b)

Figure 3. Sequence diagrams for the transmitter and receiver. The signal transmission direction is
indicated by a blue lightning symbol. (a) Ground truth. (b) After recognition.

3.3. Signal Modeling of Single Network-Group Target

If a target emits a signal within a time slot, each time slot contains N frequency-
hopping pulses, where Tw and Tp are the pulse width and pulse period of the frequency-
hopping pulses, respectively. This study assumed that the pulse width and pulse period of
the frequency-hopping pulses are fixed.

Assume that at the kth time step in the nsth time slot, the target emits a signal without
considering the random delay, and emits a signal at t = 0 with position pk and velocity ṗk.
There are a total of L moving sensor platforms, with positions and velocities denoted as
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pk,l and ṗk,l (l = 1, . . . , L), respectively. In the following derivations, k is omitted. The nth
pulse signal from the target can be modeled as

s̃n(t) = sn(t)ejφej2π fnt (12)

where φ represents the initial phase of the signal, fn represents the carrier frequency of the
pulse, and sn represents the complex envelope of the signal. sn can be written as

sn(t) =
{

s0,n(t) (n − 1)Tp ≤ t < (n − 1)Tw
0 (n − 1)Tw ≤ t < nTp

(13)

where n ∈ {1, 2, . . . , N} represents the nth pulse and s0,n(t) is unknown. Therefore, the lth
sensor platform intercepts the nth pulse signal of the target as follows:

rl,n(t) = s̃n(t − τl(t)) + wl,n(t) (14)

where wl,n(t) is Gaussian white noise with variance σl,n and τl(t) is a time-varying delay.
Considering the first sensor platform as the reference sensor platform, letting t′ = t − τ1(t),
substituting (12) into (14), and setting t = t′ results in

rl,n(t) = sn(t − ∆τl(t))ejφl ej2π fn(t−∆τl(t)) + wl,n(t) (15)

where ∆τl(t) = τl(t)− τ1(t) represents the time-varying TDOA between the lth and the
first sensor platforms, and φl is the unknown phase deviation. Expanding τl(t) in a Taylor
series at t = 0 yields

τl(t) = τl(0) + τl
′(0)t +

τl
′′(0)
2

t2 + . . .

=
dl
c
+

ḋl
c

t +
d̈l
2c

t2 + . . .
(16)

where dl , ḋl , and d̈l represent the relative distance, velocity, and acceleration between the
network-group target and the lth sensor platform, respectively.

Because of the assumption that the signal of each target appears at most once in the
kth interception, that is, at time k, the localization of the same source is limited to one time
slot. The localization process is short, and the position and velocity are sufficient to reflect
the motion dynamics of the target within a short period of time. The information provided
by the target’s acceleration over a short period to monitor the situation is not significant.
Therefore, we omitted the acceleration information of the target in the above equation,
which can be written as

τl(t) ≈
dl
c
+

ḋl
c

t = τl(0) +
ḋl
c

t (17)

where τl(0) is the time delay from the network-group target to the lth sensor platform at
t = 0. Therefore, the time-varying TDOA can be expressed as

∆τl(t) = τl(t)− τ1(t) = ∆τl(0) +
∆ḋl

c
t (18)

where ∆τl(0) = τl(0)− τ1(0)=
∥pl−p∥

c − ∥p1−p∥
c represents the TDOA between the signal

propagating from the target to the lth receiving sensor platform and the signal propagating

to the first sensor platform at t = 0, whereas ∆ḋl = ḋl − ḋ1=
(ṗ−ṗl)

T(pl−p)
∥pl−p∥ − (ṗ−ṗ1)

T(p1−p)
∥p1−p∥

represents the radial velocity difference between the two sensor platforms relative to the
network-group target.
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Because the assumption of a fixed pulse period was made in Section 3.3, we can set
t′ + (n − 1)Tp = t, t′ ∈

[
0, Tp

]
and down-convert the received signal to the lth sensor

platform using the known carrier frequency fn. Then, let t = t′ to obtain

rl,n(t) = sn(t + (n − 1)Tp − ∆τl(0)− ∆ḋl
c (t + (n − 1)Tp))

ejφl e−j2π fn(∆τl(0)+
∆ḋl

c (t+(n−1)Tp)) + wl,n(t)
(19)

Because of the existence of the TDOA change term ∆ḋl
c
(
t + (n − 1)Tp

)
in the signal

envelope and the phase term, the term causes changes in both. Assuming a distance
difference of the order of 103 m, a signal accumulation time of the order of 10−3 s, and a
velocity of the order of 102 m/s, it can be noted that the influence of the TDOA change term
on the slowly varying envelope can be neglected. Hence, the equation can be simplified to

rl,n(t) = sn
(
t + (n − 1)Tp − ∆τl(0)

)
ejφl

e
−j2π fn

(
∆τl(0)+

∆ḋl
c (t+(n−1)Tp)

)
+ wl,n(t)

(20)

Let
sn

∆
= [sn[1], . . . , sn[M]]T, s ∆

=
[
sT

1 , . . . , sT
N

]T

wl
∆
= [wl [1], . . . , wl [M]]T, w ∆

=
[
wT

1 , . . . , wT
N

]T

⌢
m ∆

= [0, . . . , M − 1]T

m̃ ∆
=

[
−NM

2
,−NM

2
+ 1, . . . ,

NM
2

− 1
]T

F ∆
=

1√
NM

exp
(
−j2πm̃m̃T

)
Γl

∆
= diag

{
exp

(
−j

2π

NM
∆τl(0)m̃/ fs

)}

Al,n
∆
= diag

{
exp

(
−j2π fn(

∆τl(0)1M×1+
∆ḋl

c (
⌢m
fs
+ (n − 1)Tp1M×1)

)

)}

Al
∆
= diag

{
Al,1, . . . , Al,n

}
, El

∆
= exp(jφl)INM

where fs is the sampling frequency. The signal of the network-group target intercepted by
the lth sensor platform is

rl = El Al F
HΓl Fs + wl = Qls + wl (21)

where wl follows a Gaussian distribution with a mean of zero and covariance of Λl =
σ2

l INM; σ2
l represents the variance.

Define
r ∆
=
[
rT

1 , . . . , rT
L

]T
(22)

Q ∆
=
[

QT
1 , . . . , QT

L

]T
, Λ

∆
= diag{Λ1, . . . , ΛL}

so that r = Qs + w.
In (8), the kinematic measurement at the kth time step is given by zp

k = rk.
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4. The Proposed Method

Assuming that the distribution of the augmented spatial PDF in the presence of a target
is represented by s(x) = s(x, ct, cr), the density of the augmented LMB parameter set is
represented by

q =
{

ε(ℓ), s(x)(ℓ)
}
ℓ∈L

=
{

ε(ℓ), p(ℓ)(x), γ(ℓ)
(
ct), γ(ℓ)(cr)

}
ℓ∈L

(23)

where p(x) is the PDF with the label ℓ for the target kinematic state, and γ
(
ct) and γ(cr)

are the PDFs with the label ℓ for the transmitter and receiver addresses, respectively. p(x),
γ
(
ct), and γ(cr) are independent.

The flowchart of the proposed method is shown in Figure 4. In the prediction step, the
predicted LMB parameter set, denoted as q+, is calculated using the prior LMB parameter
set, denoted as qk−1, and the birth LMB parameter set, denoted as qB. The state transition
density function, given by (7), is used for this calculation. There are L sensor platforms
that listen to signals in time slots of time step k. The signals captured in the occupied time
slots are sent to a platform to form a column vector, denoted as rk, as shown in (22); each
signal in the occupied time slots is transmitted to an address recognizer (represented by
the confusion matrix in (9) in this paper) to obtain address measurements zt

k and zr
k for the

transmitter and receiver, respectively. The augmented measurement for the occupied time
slots is denoted as zk, as shown in (7), and the measurement at time step k is denoted as
Zk. In the update step, the likelihood function is calculated based on the measurements
Zk. After the update step, track pruning is performed based on the existence probability
and addresses. Finally, in the extraction step, the trajectory and network topology structure
are extracted.

Figure 4. The flowchart of the proposed tracking method.
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4.1. Prediction

It was assumed that the prior and newborn target distributions are both LMB.

Proposition 1. Given a set of augmented prior LMB parameters and a set of augmented LMB
parameters for births, denoted by

qk−1 =
{

ε
(ℓ)
k−1, s(x)(ℓ)k−1

}
ℓ∈L

=
{

ε
(ℓ)
k−1, p(ℓ)k−1(x), γ

(ℓ)
k−1

(
ct), γ

(ℓ)
k−1(c

r)
}
ℓ∈L

(24)

qB =
{

ε
(ℓ)
B , s(x)(ℓ)B

}
ℓ∈B

=
{

ε
(ℓ)
B , p(ℓ)B (x), γ

(ℓ)
B
(
ct), γ

(ℓ)
B (cr)

}
ℓ∈B

(25)

the predicted set of augmented LMB parameters is

q+ =
{

ε
(ℓ)
+,s, s(ℓ)+,s(x)

}
ℓ∈Lk−1

⋃{
ε
(ℓ)
B , s(ℓ)B (x)

}
ℓ∈B

=
{

ε
(ℓ)
+ , s(ℓ)+ (x)

}
ℓ∈L+

=
{

ε
(ℓ)
+ , p(ℓ)+ (x), γ

(ℓ)
+

(
ct), γ

(ℓ)
+ (cr)

}
ℓ∈L+

(26)

with label space L+ = Lk−1
⋃
B (Lk−1

⋂
B = ∅).

For the existence part of the augmented LMB:

ε
(ℓ)
+,s = η

(ℓ)
s ε

(ℓ)
k−1 (27)

p(ℓ)+,s(x) =

∫
P(ℓ)

S (x)ϕk|k−1(x+|x)p(ℓ)(x)dx∫
P(ℓ)

S (x)p(ℓ)(x)dx
(28)

γ
(ℓ)
+,s
(
ct) = γ(ℓ)

(
ct)∫

γ(ℓ)(ct)dct
(29)

γ
(ℓ)
+,s(c

r) =
γ(ℓ)

(
cr,1)∫

γ(ℓ)(cr)dcr
(30)

where P(ℓ)
S (x) represents the survival probability and η

(ℓ)
s is the survival probability of the target ℓ,

which can be expressed as

η
(ℓ)
s =

〈
P(ℓ)

S (x), s(ℓ)(x)
〉

=
∫

γ(ℓ)
(
ct)dct

∫
γ(ℓ)(cr)dcr

∫
P(ℓ)

S (x)p(ℓ)(x)dx
(31)

Therefore,
p(ℓ)+ (x) = 1L(ℓ)p(ℓ)+,s(x) + 1B(ℓ)p(ℓ)+,B(x) (32)

γ
(ℓ)
+

(
ct) = 1L(ℓ)γ

(ℓ)
+,s
(
ct)+ 1B(ℓ)γ

(ℓ)
B
(
ct) (33)

γ
(ℓ)
+ (cr) = 1L(ℓ)γ

(ℓ)
+,s(c

r) + 1B(ℓ)γ
(ℓ)
B (cr) (34)
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Proof of Proposition 1. The survival probability of target ℓ is represented by

η
(ℓ)
s =

〈
P(ℓ)

S (x), s(ℓ)(x)
〉
=
∫

γ(ℓ)
(
ct)dct∫

γ(ℓ)(cr)dcr
∫

P(ℓ)
S (x)p(ℓ)(x)dx

(35)

Based on the Markov state transition density in (7), the predicted LMB has a partially
augmented track probability density, which can be expressed as

s(ℓ)+,s(x) =

〈
P(ℓ)

S (x)ϕk|k−1 (x+|x ), s(ℓ)(x)
〉

η
(ℓ)
s

=
γ(ℓ)(ct)γ(ℓ)(cr)

η
(ℓ)
s

∫
P(ℓ)

S (x)ϕk|k−1(x+|x)p(ℓ)(x)dx

(36)

Then, p(ℓ)+,s(x), γ
(ℓ)
+,s(c

t), and γ
(ℓ)
+,s(c

r) can be obtained as shown in (32)–(34).

4.2. Update

During the update step of the LMB filter, the predicted LMB density is transformed
into the δ-GLMB form for a full δ-GLMB update. Subsequently, the δ-GLMB posterior
approximation is reconverted to the closest LMB density.

Proposition 2. Given the augmented predicted LMB parameter set in (26), the LMB posterior
parameter set is

qk(·|Zk ) =
{

ε
(ℓ)
k , p(ℓ)k (x), γ

(ℓ)
k
(
ct), γ

(ℓ)
k (cr)

}
ℓ∈Lk

(37)

where Lk = L+,
ε
(ℓ)
k = ∑

(I+ ,θ)∈F(L+×ΘI+)

1I+(ℓ)ω
(I+ ,θ)(Zk) (38)

p(ℓ)k (x) =
1

ε
(ℓ)
k

∑
(I+ ,θ)∈F(+×ΘI+)

1I+(ℓ)ω
(I+ ,θ)(Zk)p(ℓ,θ)

k (x) (39)

γ
(ℓ)
k
(
ct) = 1

ε
(ℓ)
k

∑
(I+ ,θ)∈F(L+×ΘI+)

1I+(ℓ)ω
(I+ ,θ)(Zk)γ

(ℓ,θ)
k

(
ct) (40)

γ
(ℓ)
k (cr) =

1

ε
(ℓ)
k

∑
(I+ ,θ)∈F(L+×ΘI+)

1I+(ℓ)ω
(I+ ,θ)(Zk)γ

(ℓ,θ)
k (cr) (41)

and

s(ℓ,θ)
k (x) =

s(l)+ (x)φ
(ℓ,θ)
Z (x)〈

s(l)+ (x)φ
(ℓ,θ)
Z (x)

〉 (42)

γ
(ℓ,θ)
k

(
ct) = γ

(l)
+

(
ct)φ

(ℓ,θ)
Z

(
ct)〈

γ
(l)
+ (ct)φ

(ℓ,θ)
Z (ct)

〉 (43)

γ
(ℓ,θ)
k (cr) =

γ
(l)
+ (cr)φ

(ℓ,θ)
Z (cr)〈

γ
(l)
+ (cr)φ

(ℓ,θ)
Z (cr)

〉 (44)

φ
(ℓ,θ)
Z (x) =


PD(x)g

(
z(p,ℓ,θ)

k |x
)

κ
(

z(p,ℓ,θ)
k

) θ(ℓ) > 0

1 − PD(x) θ(ℓ) = 0
(45)
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φ
(ℓ,θ)
Z

(
ct) =


g
(

z(t,ℓ,θ)
k |ct

)
κ
(

z(t,ℓ,θ)
k

) θ(ℓ) > 0

1 θ(ℓ) = 0
(46)

φ
(ℓ,θ)
Z (cr) =


g
(

z(r,ℓ,θ)
k |cr

)
κ
(

z(r,ℓ,θ)
k

) θ(ℓ) > 0

1 θ(ℓ) = 0
(47)

where PD(x) represents the probability of detection.

Proof of Proposition 2. s(ℓ)k (x) can be written as

s(ℓ)k (x) =
1

ε
(ℓ)
k

∑
(I+ ,θ)∈F(L+×ΘI+)

1I+(ℓ)ω
(I+ ,θ)(Zk)s

(ℓ,θ)
k (x) (48)

Therefore, it can be inferred that p(ℓ)k (x) =
∫∫

s(ℓ)k (x)dctdcr. Similar deductions can be

made for γ
(ℓ)
k (ct) and γ

(ℓ)
k (cr), thus (39)–(41) can be obtained. s(ℓ,θ)

k (x) can be written as

s(ℓ,θ)
k (x) =

s(l)+ (x)φ
(ℓ,θ)
Z

η
(ℓ,θ)
Z

(49)

where φ
(ℓ,θ)
Z can be written as

φ
(ℓ,θ)
Z =


PD(x)g

(
z(ℓ,θ)

k |x
)

κ
(

z(ℓ,θ)
k

) θ(ℓ) > 0

1 − PD(x) θ(ℓ) = 0
(50)

where g
(

z(ℓ,θ)
k |x

)
is given by (11). The above equation can be decomposed into φ

(ℓ,θ)
Z =

φ
(ℓ,θ)
Z (x)φ

(ℓ,θ)
Z (ct)φ

(ℓ,θ)
Z (cr), as shown in (45)–(47).

4.3. Likelihood Function of Kinematics

Proposition 3. Given a single-target kinematic measurement zp
k = rk, the kinematic likelihood

function can be written as

gk(z
p
k |x) =

C1

det(πΘ)
exp(C2 · abs(

L

∑
l1=1,l1 ̸=l2

L

∑
l2=1

σ−2
l1 σ−2

l2
L
∑

l=1
σ−2

l

rH
l1Ql1QH

l2rl2))
(51)

The constants C1 and C2 were introduced to maintain the stability of the likelihood
function, whereas the remaining parameters are described in Section 3.3.

Proof of Proposition 3. r is a complex Gaussian random vector with mean Qs and covari-

ance of Λ
∆
=diag{Λ1 . . . ΛL}. The unknown vector ξ is defined as ξ

∆
=
[
ξ̃, Re{s}, Im{s}

]
,

where ξ̃ =[φ1, . . . φL, p, ṗ]. The PDF can be written as follows:

p(r|ξ ) = 1
det(πΛ)

exp
(
−(r − Qs)HΛ−1(r − Qs)

)
(52)
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The maximum likelihood estimate (MLE) of ξ̃ is

ˆ̃ξ = arg max
ξ̃

(
−(r − Qs)HΛ−1(r − Qs)

)

= arg max
ξ̃

− rHΛ−1r − 2 Re
(

rHΛ−1Qs
)

+ sHQHΛ−1Qs

 (53)

In the maximum likelihood estimation of ˆ̃ξ, rHΛ−1r is independent of ˆ̃ξ, and QHΛ−1Q =
L
∑

l=1
σ−2

l ILMN is related only to the noise covariance. Thus, the maximum likelihood estima-

tion can be simplified to
ˆ̃ξ = arg max

ξ̃

(
Re
(

rHΛ−1Qs
))

(54)

where s is an unknown vector. To determine the s that maximizes the likelihood function,
the complex gradient of the likelihood function with respect to s is set to zero. This yields

ŝ =
(

QHΛ−1Q
)−1

QHΛ−1r (55)

By substituting ŝ into the above equation, one can obtain (56):

ˆ̃ξ = arg max
ξ̃

(
Re
(

rHΛ−1Q
(

QHΛ−1Q
)−1

QHΛ−1r
))

= arg max
ξ̃

Re

 1
L
∑

l=1
σ−2

l

(
L

∑
l=1

rH
l Λ−1

l QlQ
H
l Λ−1

l rl +
L

∑
l1=1,l1 ̸=l2

L

∑
l2=1

rH
l1Λ−1

l1 Ql1QH
l2Λ−1

l2 rl2

)
 (56)

Because QlQH
l = IMN , meaning that the first term in the sum is unrelated to ˆ̃ξ, the

equation can be simplified to

ˆ̃ξ = arg max
ξ̃

Re


 L

∑
l1=1,l1 ̸=l2

L

∑
l2=1

σ−2
l1 σ−2

l2
L
∑

l=1
σ−2

l

rH
l1Ql1QH

l2rl2



 (57)

In (57), the phase shift coefficient exp(j(φl1 − φl2)) exists in the Ql1QH
l2 term. To

eliminate the influence of the phase offset, the phase deviation coefficient can be set to
one by taking the modulus of (57), thereby obtaining an approximate MLE of the source
position and velocity:

x̂ = arg max
x

abs

 L

∑
l1=1,l1 ̸=l2

L

∑
l2=1

σ−2
l1 σ−2

l2
L
∑

l=1
σ−2

l

rH
l1Ql1QH

l2rl2


 (58)

Thus, Equation (51) can be obtained.

5. Implementation

Lemma 1. A random PDF is defined as c = {c1, . . . , c|C|}, where ∑
|C|
i=1 ci = 1 and 0 ≤ ci ≤ 1.

Further, it was assumed that α =
[
α1, . . . , α|C|

]
and αi > 0, and let α0 = ∑

|C|
i=1 αi. Subsequently,

c is considered to have a Dirichlet distribution with the parameter α:
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γ(c)=D(α) =
Γ(a0)

|C|
∏
i=1

Γ(ai)

|C|

∏
i=1

qac−1
c (59)

Lemma 2. Assuming that an experiment generates one of the |C| possible outcomes with probabili-
ties c = {c1, . . . , c|C|}, where ∑

|C|
i=1 ci = 1 and 0 ≤ ci ≤ 1, the categorical distribution describes

the likelihood of outcomes i = 1, . . . , |C| in a discrete set of categories:

P
(

n1, . . . , n|C||c
)
=

|C|

∏
i=1

cni
i (60)

where n1 + . . . + n|C| = 1 and ni ∈ {0, 1}, i ∈ {1, . . . , |C|}.

5.1. Prediction and Update

Using the sequential Monte Carlo (SMC) method, each single-target track density
function is approximated as a Dirac sum as follows:

p(ℓ)(x) ∼=
J(ℓ)

∑
j=1

ω
(ℓ)
j δ

x(ℓ)j
(x) (61)

where x1, . . . , xJ(ℓ) represent particles, and ω
(ℓ)
1 , . . . , ω

(ℓ)

J(ℓ)
represent the weights of each

particle. Let the augmented prior LMB parameter set be denoted as{
ε
(ℓ)
k−1,

{
ω
(ℓ)
j , x(ℓ)j

}J(ℓ)

j=1
, γ

(ℓ)
k−1

(
ct), γ

(ℓ)
k−1(c

r)

}
ℓ∈

(62)

Then, the predicted set of LMB parameters is as follows:{
ε
(ℓ)
+ ,
{

ω
(ℓ)
+,j, x(ℓ)+,j

}J(ℓ)+

j=1
, γ

(ℓ)
+

(
ct), γ

(ℓ)
+ (cr)

}
ℓ∈+

(63)

Assuming that γ(ℓ)(ct)=D(α) and γ(ℓ)(·) is a PDF, we have
∫

γ(ℓ)(·)d(·) = 1, which implies

γ
(ℓ)
+,s(c

t) = γ(ℓ)(ct) and γ
(ℓ)
+,s(c

r) = γ(ℓ)(cr). Assuming that g
(

z(t,ℓ,θ)
k |ct

)
and g

(
z(r,ℓ,θ)

k |cr
)

are categorical distributions, Equations (43) and (44) can be derived as follows:

γ
(ℓ,θ)
k

(
ct) = { D

(
αt

k + z(t,ℓ,θ)
k

)
θ(ℓ) > 0

D
(
αt

k
)

θ(ℓ) = 0
(64)

γ
(ℓ,θ)
k (cr) =

{
D
(

αr,1 + z(r,ℓ,θ)
k

)
θ(ℓ) > 0

D
(
αr

k
)

θ(ℓ) = 0
(65)

It is noteworthy that the single-target address PDF remains unchanged when no
measurement is assigned to track ℓ.

During the updating process, the particles do not undergo changes; only their weights
undergo changes. Therefore, s(ℓ,θ)

k (x) is represented by the following weighted sample set: φ
(ℓ,θ)
Z (x)ω(ℓ)

j

η
(ℓ,θ)
Z (x)

, x(ℓ)j

 (66)
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where η
(ℓ,θ)
Z (x) =

J(ℓ)

∑
j=1

ω
(ℓ)
j φ

(ℓ,θ)
Z (x). The normalization constant η

(ℓ,θ)
Z can be expressed as

η
(ℓ,θ)
Z =

〈
s(l)+ (x), φ

(ℓ,θ)
Z

〉
= η

(ℓ,θ)
Z

(
ct)η(ℓ,θ)

Z (cr)η
(ℓ,θ)
Z (x)

=

|C|
∑

c=1
δ

z(t,ℓ,θ)
k (c),1

αt
k(c)

|C|
∑

c=1
δ

z(r,ℓ,θ)
k (c),1

αr(c)

|C|
∑

c=1
αt

k(c)
|C|
∑

c=1
αr

k(c)κ
(

z(t,ℓ,θ)
k

)
κ
(

z(r,ℓ,θ)
k

)
·

J(ℓ)

∑
j=1

ω
(ℓ)
j δ

x(ℓ)j
(x)φ

(ℓ,θ)
Z (x)

(67)

where κ
(

z(t,ℓ,θ)
k

)
and κ

(
z(r,ℓ,θ)

k

)
are set to D(1, . . . , 1).

5.2. Track Pruning and Extraction

Typically, track pruning is achieved by deleting tracks with a probability of existence
that is lower than a specific threshold [44]. Additional pruning was also performed in this
study. This was because the network-group target address is unique and fixed; therefore,
having two or more tracks with the same address violates this principle. The track does not
directly include the transmitter address; however, it includes the address probability vector
described in Section 3.1. Algorithm 1 lists the pruning method based on these addresses.

Algorithm 1 Pruning method based on address.

1: for ℓ ∈ Lk do
2: Record the most likely address u(ℓ) of target ℓ.
3: end for
4: for ui ∈ C do
5: if there are multiple tracks with the same transmitter unit address ui then
6: if there is at least one track with the transmitter address that satisfies ∑

|C|
c=1 αt

k(c) >
µ1 then

7: Prune all tracks except for the one with the highest αt
k(i)

8: end if
9: end if

10: end for

The cardinality distribution is determined using Equation (4.130) from [44], and the
maximum a posteriori (MAP) estimator is then used to estimate the target number n̂.
Finally, n̂ tracks with the highest probability of existence were extracted. Let L̂ be the label
space comprising the n̂ labels with the highest probability of existence. The kinematic states
are determined as follows:

X̂ =

(x̂, ℓ̂
)

: ℓ̂ ∈ L̂, x̂ =
J(ℓ̂)

∑
j=1

ω
(ℓ̂)
j x(

ℓ̂)
j

 (68)

Let
⌢

ℓ ∈
⌢

L satisfy the condition ∑
|C|
c=1 α

(
t,
⌢
ℓ

)
(c) > µ0. It is worth noting that owing to

the existence of the above-mentioned conditions, the quantity of
⌢

ℓ may not be equal to n̂.
The addresses of the transmitter and receiver are extracted as follows:
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Ût =

(ût,
⌢

ℓ) :
⌢

ℓ ∈
⌢

L, ût = ut
î , î = arg max

i
(α

(
t,
⌢
ℓ

)
(i))

 (69)

Ûr =

(ûr,
⌢

ℓ) :
⌢

ℓ ∈
⌢

L, ûr = ur
î , î = arg max

i
(α

(
r,
⌢
ℓ

)
(i))

 (70)

The set of vertices is denoted as V
(
Ĝ
)
= Ût ⊎ Ûr and the set of edges E

(
Ĝ
)

is denoted
as

E
(
Ĝ
)
=

{
(ût, ûr,

⌢

ℓ) :
⌢

ℓ ∈
⌢

L
}

(71)

If the adjacency matrix of a graph G is denoted as A(G) and the degree matrix is
denoted as D(G), then the Laplacian matrix of the graph Ĝ is defined as L = D(Ĝ)− A(Ĝ).
The estimated number of network groups is equal to the number of times an eigenvalue
zero appears in the Laplacian matrix.

Targets of the same network group exhibit relatively coordinated and consistent
movements. The similarity of the movement is defined as

φi,j =
ṗ
(⌢
ℓ i

)
T ṗ
(⌢
ℓ j

)
∣∣∣∣ ṗ(⌢ℓ i

)∣∣∣∣∣∣∣∣ ṗ(⌢ℓ j

)∣∣∣∣ (72)

where
⌢

ℓ i,
⌢

ℓ j ∈
⌢

Lg and g = 1, . . . , G is the gth network group.

If the average motion similarity of the group with the target
⌢

ℓ i satisfies ∑j φi,j/
∣∣∣⌢Lg

∣∣∣ <

µ2, remove the edges in the edge set E(G) that contain edges with the label
⌢

ℓ i.
In addition, if a target transmits signals to another non-existent target in the LMB

track, that is, Ûr − Ût ̸= ∅, we consider it to be caused by an error in the recognizer. To
eliminate the problem, for the edges containing vertices T̄ = Ûr − Ût, if there are edges
containing T̄′ ∈ T̄ satisfying ∑

|C|
c=1 αt

k(c) > µ3, the induced subgraph Ĝ(T) can be used to
represent the subgraph obtained by deleting T̄′ from graph Ĝ.

Therefore, the estimation of the network topology structure for all K time steps can be
represented using a dynamic graph:

D̂G =
{

Ĝ1 . . . ĜK
}

(73)

6. Simulation Results

A simulation was conducted in MATLAB R2023b to evaluate the performance of the
proposed method for the state estimation of network-group targets. It was assumed that
the time interval was 1 s, and the simulation time was 100 s.

The 2D scenario was assumed to involve three moving sensor platforms and four
targets in a network group. The first and second targets were born at t = 1 s, whereas the
third and fourth targets were born at t = 3 s and t = 5 s, respectively. The trajectories of
the network-group targets and sensor platforms are shown in Figure 5. The false targets
intercepted each time were modeled as a Poisson RFS with a Poisson rate of 5. The false
target area was [0, 55] km × [−32, 23] km, that is, the uniform probability density was
3.3 × 10−10 m−2. The emission probabilities of the network-group targets were considered
to be PD = 0.7. When emitting, target 1 had a probability of 0.3 to transmit signals to target
2 and a probability of 0.7 to transmit signals to target 4. Target 2 had a probability of 1 for
transmitting signals to target 1. Target 3 had equal probabilities of 0.5 to transmit signals to
both targets 1 and 4. Similarly, target 4 also had equal probabilities of 0.5 to transmit signals
to both targets 1 and 4. The survival probability of each individual target was independent
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and was set at PS = 0.99. The four thresholds were set as follows: µ0 = 10−3, µ1 = 2,
µ2 = 0, and µ3 = 3.

Figure 5. Simulation scenery in an X–Y coordinate system, where the solid lines represent the
trajectory of the network-group targets, the dotted lines represent the trajectories of the sensor
platforms, and the start/stop points for each trajectory are shown with a solid circle/square.

Assuming that the network-group target transmitted 258 hopping patterns in one
time slot, the signals hopped between 14 frequency points in the range of 969–1008 MHz,
5 frequency points in the range of 1053–1065 MHz, and 32 frequency points in the range
of 1113–1206 MHz. The pulse width was 6.4 µs and the pulse period was 13 µs. The pulse
carried 32 bits of data and modulated the carrier wave using MSK at a rate of 5 Mb/s.
Each symbol was transmitted in the form of a double pulse, meaning that the two pulses
represent the same symbol but with different carrier frequencies. The SNR was 0 dB and
the sampling rate was fs = 10 MHz. In the pulse sequence, one pulse was selected for
signal processing every 11 pulses, resulting in 24 pulses at positions [1, 12, . . . , 254].

Assuming that there were eight candidate addresses, the addresses for the four targets
were 1, 2, 3, and 4. The diagonal elements of the recognizer confusion matrix were 0.9,
whereas those of the remaining elements were 0.1/7.

The number of particles was set to 600. In addition, the computational cost could be
reduced by using a gating approach. The specific method involved establishing a grid
for the TDOAs. In this simulation, because there were three sensor platforms used, a
two-dimensional grid was created for the TDOAs. Subsequently, the grid position of each
particle at the target density was calculated. Finally, the grid position of the measurement
was obtained by calculating the two TDOA values using traditional methods, such as the
cross ambiguity function (CAF). If there was an overlap between the grid positions of the
particle and measurement, the track and measurement were associated.

Since there is no existing literature on research targeting network groups for compar-
ison, the proposed method was compared with the two-step and noncoherent methods.
The two-step method involves using the CAF to jointly estimate the TDOA and Doppler
velocity difference and then performing state estimation by incorporating both into the
likelihood function. The two-step method, which ignores the inherent constraint that the
measurements obtained in the first step must be consistent with the target kinematic state
determined in the second step, is suboptimal. The difference between the noncoherent and

proposed methods lies in the fact that the former does not consider the term fn
∆ḋl

c (n − 1)Tp
in (20), which ignores the phase shift caused by variations in the frequency of frequency-
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hopping pulses and time-varying TDOAs. Therefore, it is expected that the proposed
method will outperform the other two.

The actual signal emission from the network-group targets in a single simulation
varied over time, as depicted in Figure 6a, whereas the cardinality estimation of the three
methods in a single simulation is illustrated in Figure 6b. It was evident that the proposed
method provided the most accurate cardinality estimation, with only occasional instances
of underestimation. The two-step method performed better, whereas the noncoherent
method performed the worst, estimating a cardinality of only one after t = 35 s.

(a)

(b)

Figure 6. (a) The emitting of the targets. (b) The cardinality estimation in a single simulation.

Figure 7 shows the actual and estimated trajectories of the network-group targets
in a single simulation, as obtained through (68). From Figure 7a, it is evident that the
proposed method accurately estimated the trajectories, but there were occasional instances
of missed detections, such as at t = 12 s. By combining Figures 5 and 6a, it is apparent
that the missed detection was attributed to target 2, which did not emit multiple times.
However, at t = 13 s, the proposed method tracked target 2. The two-step method yielded
numerous false trajectories, and the trajectory estimation of target 4 was not detected after
t = 63 s. The trajectory estimation performance of the noncoherent method was even worse,
with only one target being tracked at t = 100 s.
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(a)

(b)

(c)

Figure 7. True trajectories of the network-group targets and estimated trajectories in a single simula-
tion. (a) The proposed method. (b) The two-step method. (c) The noncoherent method.

Figure 8 presents comparative network topology estimations from the three different
methods within a single simulation trial, as obtained through (69)–(71). The initial graph in
each row illustrates the actual network topology, along with the observed measurements,
with the caveat that false targets are not marked on the graphs. The subsequent trio of
graphs on the right displays the network topology estimations derived by the proposed,
two-step, and noncoherent methods. At t = 1 s, both the proposed and two-step methods



Remote Sens. 2024, 16, 1275 23 of 28

estimated two vertices in the case of only one target detected; however, only one edge was
detected. The noncoherent method detected one target and one edge with the position of
the other unknown. At t = 3 s, the proposed method successfully determined the correct
network structure. However, the two-step and noncoherent methods had errors in the
target position estimation and missed edge estimation. At t = 5 s, the actual and recog-
nized network structures remained congruent. The proposed method identified network
connections, whereas the two-step method obtained an incorrect position for the target
with address 1 and an incomplete edge estimation. The estimation using the noncoherent
method was even worse. At t = 12 s, the system misidentified the address of target 1 as
target 4. Despite this error, all the methods managed to accurately assign the correct address
number 1 to this target. The two-step method had a poorer position estimation than the pro-
posed method and incorrectly identified a target with address 8. At t = 86 s, the connections
from vertex 2 to vertex 1 were mistakenly read as two to six. In this instance, vertex 6 was
incorrectly considered a non-existent target; hence, all methods failed to detect the edge
2 → 1. In addition to missing targets, the two-step and noncoherent methods failed to
detect edges. It is evident that the estimation of the network topology tended to be accurate
when a set of network-group targets could be reliably tracked and there was sufficient in-
formation to ascertain their addresses. However, disruptions or errors in target trajectories
could lead to inaccuracies in the assessment of the network topology.

(a)

(b)

(c)

(d)

Figure 8. Cont.
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(e)

Figure 8. Network topology estimation of three methods in a single simulation. ”TaMb” represents a
true address of a and the measurement was b. “Ta” indicates that the actual address was a and the
target was silent. “Mc → d” represents the transmitter address measurement and receiver addresses
were c and d, respectively. Edges without arrows indicate that the position of the receiver was
unknown. (a) t = 1 s. (b) t = 3 s. (c) t = 5 s. (d) t = 12 s. (e) t = 86 s.

A performance comparison was conducted through 100 Monte Carlo simulations
in Figures 9–11. Figure 9 compares the cardinality estimation performances of the three
methods. The proposed method provided the most accurate cardinality estimation, whereas
the other two methods tended to underestimate the cardinality. This was because with a
limited number of particles, the tracked targets in these methods could experience track
loss or interruption, making it difficult to maintain stable tracking.

Figure 9. Comparison of cardinality estimation performance for three methods.

The labeled generalized optimal sub-pattern assignment (LGOSPA) error was utilized
to evaluate the performance of the tracking methods. It decomposed the error into four
components: the target localization error, missed target, false alarm target, and track
switches. The relationship between the LGOSPA and GOSPA is given by the following
equation:

LGOSPA = (GOSPAp + SCp)
1
p (74)

where p is the metric order, SC = SP× n1/p
s is the switching component, SP is the switching

penalty, and ns is the number of switches. The GOSPA can be found in the study conducted
by Abu et al. [45]. In the simulation, we set SP = 300, p = 1, the cutoff distance to 1000, and
the alpha parameter to 2. Figure 10 shows a comparison of the LGOSPA errors and their
components for the three methods. From Figure 10a, it can be observed that the proposed
method had the lowest mean and smallest variance of the LGOSPA distance between the
three methods, followed by the noncoherent and two-step methods. The proposed method
exhibited the lowest false component within the LGOSPA metric, achieving a value of zero
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at t = 18 s, which signified the absence of false tracks. In contrast, the two-step method
demonstrated a marked inferior performance relative to the proposed method, with higher
false and switching components. The noncoherent method incurred the greatest miss
component. However, as shown in Figure 10e, the performance of the incoherent method
was lower than that of the proposed method because of the missed detections. Overall, the
proposed method outperformed the other methods.

(a) (b)

(c) (d)

(e)

Figure 10. Comparison of the LGOSPA distance and its components for three methods. (a) LGOSPA
distance. (b) LGOSPA false target component. (c) LGOSPA missed target component. (d) LGOSPA
switching component. (e) LGOSPA localization component.

The Jaccard similarity measures the similarity and dissimilarity between finite sets
using the Jaccard index. The higher the Jaccard index value, the higher the similarity
between the samples. The Jaccard index is calculated as follows:

J(A, B) =
|A ∩ B|
|A ∪ B| (75)

Figure 11 shows the performance of the vertex and edge estimation, which repre-
sents the estimation performance of the addresses and the links in the network topology,
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respectively. In Figure 11a, it can be observed that the estimation performance of the
proposed method gradually improved before t = 13 s owing to the accumulation of address
information. Ultimately, only the proposed method maintained a high level of accuracy,
whereas the performances of the other two methods declined. As illustrated in Figure 11b,
our method stabilized at approximately 80% accuracy in the estimation of opposite edges
after t = 8 s, outperforming the two-step approach. Beyond t = 44 s, the incoherent method
was almost incapable of obtaining correct edge estimations.

(a) (b)

Figure 11. Comparison of Jaccard similarity coefficients for three methods. (a) Vertices. (b) Edges.

7. Conclusions

This study considered the state and network topology estimations of network-group
targets. In contrast to previous studies, the focus was on several aspects. Initially, the
modeling was based on an LMB random finite set. Subsequently, the measurement likeli-
hood function was directly incorporated into network-group target communication signals,
which contained Doppler and time-delay information. Finally, by combining this with
graph theory, the network-group target network topology structure was estimated. The
simulation results validated the effectiveness of the method for estimating both parameters.

However, this study was limited in its ability to estimate the network topology struc-
ture at each time step. Future work may involve estimating the state and network topology
within the RFS framework, considering the constraints of the network and physical spaces.
This study employed fixed time steps for prediction and updates. However, when the prob-
ability of network-group targets emitting signals are exceedingly low, or when the signal
emission adheres to a specific pattern, leading to a near absence of target signals within
time slots close to fixed time steps, it becomes necessary to consider non-uniform time
intervals. Additionally, extending this method to 3D scenarios in a close-range scenario can
also one of the future works.

Author Contributions: Conceptualization, X.Z.; methodology, W.H.; software, X.Z. and Q.W.; vali-
dation, X.Z. and H.Z.; investigation, K.C.; resources, N.Y.; writing—original draft preparation, X.Z.;
writing—review and editing, X.Z. and W.H.; supervision, W.H. and N.Y.; project administration, Q.W.
All authors read and agreed to the published version of this manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhou, L.; Leng, S.; Liu, Q.; Wang, Q. Intelligent UAV swarm cooperation for multiple targets tracking. IEEE Internet Things J.

2021, 9, 743–754.
2. Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on unmanned aerial vehicle networks for civil applications: A communications

viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661.



Remote Sens. 2024, 16, 1275 27 of 28

3. Jinqiang, H.; Husheng, W.; Renjun, Z.; Rafik, M.; Xuanwu, Z. Self-organized search-attack mission planning for UAV swarm
based on wolf pack hunting behavior. J. Syst. Eng. Electron. 2021, 32, 1463–1476.

4. Huo, M.; Duan, H.; Zeng, Z. Cluster Space Control Method of Manned-Unmanned Aerial Team for Target Search Task. IEEE
Trans. Circuits Syst. II Express Briefs 2023, 70, 2545–2549.

5. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45.
6. Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422.
7. Bar-Shalom, Y.; Fortmann, T.E.; Cable, P.G. Tracking and data association. J. Acoust. Soc. Am. 1990, 87, 918–919.
8. Wang, S.; Bao, Q. Single target tracking for noncooperative bistatic radar with unknown signal illumination. Signal Process. 2021,

183, 107991.
9. Guizhou, W.; Zhang, M.; Chaoxin, H.; Fucheng, G. Direct position determination using single moving rotating linear array:

Noncoherent and coherent processing. Chin. J. Aeronaut. 2020, 33, 688–700.
10. Sidi, A.Y.; Weiss, A.J. Delay and Doppler induced direct tracking by particle filter. IEEE Trans. Aerosp. Electron. Syst. 2014,

50, 559–572.
11. Guo, Y.; Yang, J.; Tang, Q.; Li, W.C. Direct Localization Algorithm of Moving Target for Passive Radar. In Proceedings of the

2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP),
Chengdu, China, 14–16 December 2018; pp. 89–92.

12. Ma, F.; Guo, F.; Yang, L. Direct position determination of moving sources based on delay and Doppler. IEEE Sens. J. 2020,
20, 7859–7869.

13. Wang, D.; Yin, J.; Yu, H. DPD algorithm for moving source based on Doppler frequency shifts: Case of known waveforms. Chin.
J. Electron. 2019, 28, 978–986.

14. Xia, N.; Li, B.; Wang, J. Direct tracking of co-channel moving sources with different cyclic frequencies. IEEE Commun. Lett. 2020,
24, 1715–1718.

15. Yu, W.; Yu, H.; Du, J.; Zhang, M.; Wang, D. A deep learning algorithm for joint direct tracking and classification of manoeuvring
sources. IET Radar Sonar Navig. 2022, 16, 1198–1211.

16. Blackman, S.S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 5–18.
17. Musicki, D.; Evans, R. Joint integrated probabilistic data association: JIPDA. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1093–1099.
18. Tian, Y.; Liu, M.; Zhang, S.; Zheng, R.; Fan, Z. Feature-Aided Passive Tracking of Noncooperative Multiple Targets Based on the

Underwater Sensor Networks. IEEE Internet Things J. 2022, 10, 4579–4591.
19. Mahler, R. Statistical Multisource-Multitarget Information Fusion; Artech: Morristown, NJ, USA, 2007.
20. Mahler, R.P. Advances in Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2014.
21. Zhenzhen, S.; Hongbing, J.; Cong, T.; Zhang, Y. A robust Poisson multi-Bernoulli filter for multi-target tracking based on

arithmetic average fusion. Chin. J. Aeronaut. 2023, 36, 179–190.
22. Zeng, H.; Chen, J.; Wang, P.; Liu, W.; Zhou, X.; Yang, W. Moving target detection in multi-static GNSS-Based passive radar based

on multi-Bernoulli filter. Remote Sens. 2020, 12, 3495.
23. Cao, C.; Zhao, Y. A Multi-Frame GLMB Smoothing Based on the Image-Observation Sensor for Tracking Multiple Weak Targets

Using Belief Propagation. Remote Sens. 2022, 14, 5666.
24. Koch, J.W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Trans. Aerosp. Electron. Syst.

2008, 44, 1042–1059.
25. Granstrom, K.; Orguner, U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Trans. Signal Process.

2012, 60, 5657–5671.
26. Granström, K.; Natale, A.; Braca, P.; Ludeno, G.; Serafino, F. Gamma Gaussian inverse Wishart probability hypothesis density for

extended target tracking using X-band marine radar data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6617–6631.
27. Li, Y.; Wei, P.; Li, G.; Chen, Y.; Gao, L.; Zhang, H. Joint detection, tracking and classification of multiple extended objects based on

the JDTC-GIW-MeMBer filter. Signal Process. 2021, 178, 107800.
28. Mihaylova, L.; Carmi, A.Y.; Septier, F.; Gning, A.; Pang, S.K.; Godsill, S. Overview of Bayesian sequential Monte Carlo methods

for group and extended object tracking. Digit. Signal Process. 2014, 25, 1–16.
29. Zhejun, L.; Weidong, H. Estimation of ballistic coefficients of space debris using the ratios between different objects. Chin. J.

Aeronaut. 2017, 30, 1204–1216.
30. Pang, S.K.; Li, J.; Godsill, S.J. Detection and tracking of coordinated groups. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 472–502.
31. Khan, Z.; Balch, T.; Dellaert, F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans.

Pattern Anal. Mach. Intell. 2005, 27, 1805–1819.
32. Gning, A.; Mihaylova, L.; Maskell, S.; Pang, S.K.; Godsill, S. Group object structure and state estimation with evolving networks

and Monte Carlo methods. IEEE Trans. Signal Process. 2010, 59, 1383–1396.
33. Zhang, Z.; Sun, J.; Zhou, H.; Xu, C. Group target tracking based on MS-MeMBer filters. Remote Sens. 2021, 13, 1920.
34. Chen, X.; Qin, Z.; An, L.; Bhanu, B. Multiperson tracking by online learned grouping model with nonlinear motion context. IEEE

Trans. Circuits Syst. Video Technol. 2015, 26, 2226–2239.
35. Cheng, X.; Song, L.; Zou, Z. Multiple group target tracking with evolving networks and labeled box particle PHD filter. In

Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 4046–4051.



Remote Sens. 2024, 16, 1275 28 of 28

36. Liu, W.; Zhu, S.; Wen, C.; Yu, Y. Structure modeling and estimation of multiple resolvable group targets via graph theory and
multi-Bernoulli filter. Automatica 2018, 89, 274–289.

37. Yu, H.; An, W.; Zhu, R.; Guo, R. A hypergraph matching labeled multi-Bernoulli filter for group targets tracking. IEICE Trans. Inf.
Syst. 2019, 102, 2077–2081.

38. Hao, X.; Liang, Y.; Zhang, W.; Xu, L. Structure identification and tracking of multiple resolvable group targets with circular
formation. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference
(ITAIC), Chongqing, China , 11–13 December 2020; Volume 9, pp. 910–915.

39. Zhao, Z.; Liu, W.; Wang, S.; Gao, S. Large-batch and multi-structure group targets tracking based on serial glmb. In Proceedings
of the 2021 International Conference on Control, Automation and Information Sciences (ICCAIS), Xi’an, China, 14–17 October
2021; pp. 949–954.

40. Li, G.; Li, G.; He, Y. Resolvable group target tracking via multi-Bernoulli filter and its application to sensor control scenario. IEEE
Trans. Signal Process. 2022, 70, 6286–6299.

41. Badshah, F.; Shah, S.T.U.; Jan, S.R.; Rahman, I.U. Communication between multiple processes on same device using TCP/IP suite.
In Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad,
Pakistan, 8–9 March 2017; pp. 148–151.

42. West, D.B. Introduction to Graph Theory; Prentice Hall: Hoboken, NJ, USA, 2001; Volume 2.
43. Skarding, J.; Gabrys, B.; Musial, K. Foundations and modeling of dynamic networks using dynamic graph neural networks: A

survey. IEEE Access 2021, 9, 79143–79168.
44. Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260.
45. Rahmathullah, A.S.; García-Fernández, Á.F.; Svensson, L. Generalized optimal sub-pattern assignment metric. In Proceedings of

the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Background
	Notation
	Introduction to Network-Group Targets
	Graph Theory
	LMB RFS

	Problem Statement
	State Modeling of Single Network-Group Target
	Measurement Modeling of Single Network-Group Target
	Signal Modeling of Single Network-Group Target

	The Proposed Method
	Prediction
	Update
	Likelihood Function of Kinematics

	Implementation
	Prediction and Update
	Track Pruning and Extraction

	Simulation Results
	Conclusions
	References

