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Abstract: Change detection is widely used in the field of building monitoring. In recent years, the
progress of remote sensing image technology has provided high-resolution data. However, unlike
other tasks, change detection focuses on the difference between dual-input images, so the interaction
between bi-temporal features is crucial. However, the existing methods have not fully tapped the
potential of multi-scale bi-temporal features to interact layer by layer. Therefore, this paper proposes a
multi-scale feature interaction network (MFINet). The network realizes the information interaction of
multi-temporal images by inserting a bi-temporal feature interaction layer (BFIL) between backbone
networks at the same level, guides the attention to focus on the difference region, and suppresses
the interference. At the same time, a double temporal feature fusion layer (BFFL) is used at the end
of the coding layer to extract subtle difference features. By introducing the transformer decoding
layer and improving the recovery effect of the feature size, the ability of the network to accurately
capture the details and contour information of the building is further improved. The F1 of our model
on the public dataset LEVIR-CD reaches 90.12%, which shows better accuracy and generalization
performance than many state-of-the-art change detection models.

Keywords: remote sensing images; change detection; transformer; self-attention mechanism; CNN

1. Introduction

With the development of earth observation technology and geographic information
technology, remote sensing images have become more and more abundant and diverse.
The widespread use of satellites, aircraft, and other sensors enables us to capture informa-
tion on the Earth’s surface, including features of terrain, land cover, vegetation, buildings,
and other geographical objects [1]. This remote sensing technology can also obtain data
in different spectral ranges, including infrared and ultraviolet spectra, which helps us
understand surface features more comprehensively [2–4].

With the development of remote sensing technology and the acceleration of urban-
ization, the problem of change detection has become more complex. It has become an
urgent challenge to detect change areas quickly and accurately from the massive amount of
land cover remote sensing image data [5]. In this context, the research of building change
detection technology has become crucial, as shown in Figure 1. Its main goal is to accurately
identify and locate regions where semantic changes have occurred from a pair of time
series remote sensing images, that is, the true change region, and suppress the influence of
the pseudo-change region [6]. This technology has broad application prospects in many
fields, including environmental monitoring [7], climate research [8], disaster assessment [9],
agricultural management [10], urban planning [11], and water resource management.
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Figure 1. Graphical illustration of the change detection task.

Change detection methods in remote sensing imagery can be divided into pixel-
level [12], feature-level [13], and object-level [14] methods according to the granularity of
the change object. By sorting out the development process of remote sensing image change
detection, the development route of international remote sensing image change detection
technology can be divided into four different stages.

In the first stage, remote sensing technology faced constraints imposed by satellite and
optical instrument limitations, resulting in low data quality. The hallmark of this period
was the adoption of straightforward algebraic calculations or direct pixel comparisons to
generate change detection results. For example, principal component analysis (PCA) [15]
was extensively employed. Zhong et al. [16] proposed an unsupervised change detection
method utilizing PCA and k-means clustering. This approach involved segmenting differ-
ential images into non-overlapping blocks, projecting pixels into the feature vector space,
and employing k-means clustering for detection. Another notable example from this stage
is change vector analysis (CVA). Liu et al. [17] introduced a novel multi-scale morphological
compressed change vector analysis method. This method expanded on the spectral-based
compressed change vector analysis approach by jointly analyzing spectral–spatial change
information. It utilized morphological analysis to construct reconstructed spectral change
vector features, preserving more geometric details.

In the second stage, machine learning methods such as support vector machines
(SVMs) [18] and decision trees [19] were introduced. Volpi et al. [20] conducted research
using histogram statistics as fundamental detection features, followed by the application
of SVMs for land-use change detection. Im et al. [19] combined image neighborhood
correlation analysis with change detection methods based on decision tree classification.
Change detection methods based on machine learning algorithms have the capability to
automatically extract features from large-scale remote sensing data, exhibiting excellent
sensitivity to complex and subtle changes. However, these methods generally face the
problem of high computational overhead.

In the third stage, object-level change detection emerged as a departure from pixel-
level change detection. Unlike focusing solely on changes in individual pixels, object-level
change detection emphasizes detecting changes at the level of target objects or entities.
In the work by Wang et al. [21] presented a change detection approach based on objects,
which integrates spectral, shape, and texture features, employing multiple supervised
classifiers. The accuracy of change detection in urban environments was improved through
the utilization of a weighted voting ensemble strategy. Tan et al. [22] introduced an
object-based multi-feature change detection method, which uses multiple features and
random forests to select features. Object-level methods usually include steps such as object
extraction, feature representation, matching, and context modeling to obtain more accurate
change information. However, these methods can only extract low-level features in images,
which are obviously affected by factors such as radiation differences.

In the fourth stage, recent years have witnessed significant advancements in computer
vision technology, with deep learning providing promising solutions to change detection
problems. Traditional methods for change detection often rely on manually designed
features and rules. Faced with the ever-growing volume of high-resolution remote sens-
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ing data, the performance of these methods gradually becomes limited. Deep learning
techniques, particularly the application of convolutional neural network (CNN) [23] and
transformer [24] models, have injected new vitality into change detection [25]. The promi-
nence of deep learning methods in the field of change detection arises from their ability to
learn features from data without the need for manual feature extraction, thereby enhancing
adaptability to change patterns [26]. Through deep learning, the model can automati-
cally capture the contextual information, textural features, and semantic information in
the image.

Existing deep learning-based change detection methods lack interactive expression
between bi-temporal images during the encoding phase, resulting in the isolation of bi-
temporal information and the limited discernibility of actual change regions. Furthermore,
in the decoding phase, the use of excessively high sampling rates and the absence of skip
connections with the encoding module prevent effective multi-scale information fusion.
This lack of fusion, along with poor communication of contextual information, hinders
the layer-wise restoration of image features. Consequently, this leads to numerous false
positives and negatives at segmented edges in the detected images [27]. Our proposed
method aims to enhance the bi-temporal interaction during the feature extraction phase of
Siamese models. It combines the advantages of local feature extraction from CNNs and the
global feature extraction capabilities of transformers. We optimize the overall information
recovery capability during the model’s upsampling process to achieve high-precision,
high-generalization change detection. The main contributions of our work are as follows:

1. A remote sensing image change detection network based on a multi-scale feature inter-
action structure named MFINet is proposed to solve the problem of insufficient target
attention caused by insufficient bi-temporal interaction in change detection tasks.
In the overall structure, we use a combination of a CNN encoder and a transformer
decoder to make full use of the CNN’s local perception and the transformer’s global
receptive field to effectively understand different levels of multi-source information.

2. A bi-temporal feature interaction layer (BFIL) is proposed to act as a medium for
multi-level feature interaction, enhance the semantic information exchange between
the same-level features of the Siamese network, and enhance the multi-temporal
information communication at different time nodes. It is conducive to the model
to discover the actual change regions and suppress the interference of the pseudo-
change region.

3. In order to strengthen the model’s perception of the fine-grained difference between
the bi-temporal deep processing features, we propose the bi-temporal feature fu-
sion layer (BFFL), which integrates rich bi-temporal deep features before image size
restoration by constructing bi-temporal homologous global guidance features.

2. Related Work
2.1. CNN-Based Change Detection Methods

CNNs are favored because of their inductive bias and generalization. Zhan et al. [28]
first introduced a CNN into SiameseNet as a solution for change detection. The twin
network reuses the same codec structure for two temporal images, learns the bi-temporal
image features in an equal way, and obtains the change information. Daudt et al. [29]
introduced a twin fully convolutional network (FCN) into the end-to-end remote sensing
image change detection task, and proposed three different network architectures. FC-EF
uses the method of splicing dual-phase images as input, while FC-Siam-conc and FC-Siam-
diff use a twin FCN structure. Peng et al. [30], based on the UNet++ encoder–decoder
structure, used global and fine information to generate feature maps with high spatial
accuracy. Then, the fusion strategy of multiple auxiliary outputs was used to combine
the change maps of different semantic levels to generate the final change map with high
accuracy. In summary, many researchers have directly transplanted classical models in
semantic segmentation, such as UNet and FCN, to the field of change detection. However,
the change detection task is bi-temporal, which is different from the single temporality of
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semantic segmentation. These models often form a twin structure by copying the existing
codec structure, which lacks bi-temporal interaction and is difficult to adapt to change
detection datasets with large time spans. Therefore, Zhang et al. [31] proposed IFNet,
which adopts a two-stream architecture to interact with information twice, and then uses a
deep supervised difference discriminant network (DDN) for change detection. In order
to improve the integrity of the output change map and the internal compactness of the
object, IFNet fuses the multi-level deep features of the original image with the image
difference features through the attention mechanism. Yin et al. [32] proposed SAGNet,
which interspersed the bi-temporal interaction scheme between the coding levels. Through
the hybrid layer and the backbone network combined with the bi-temporal contextual
information, the bi-temporal feature distribution is more similar, and the automatic domain
adaptation between the two time domains is realized to a certain extent. Although the above
methods are all based on CNNs, they mainly focus on the local perception of convolution
kernels, and it is difficult to effectively model remote contextual information in bi-temporal
images, which greatly limits their performance.

2.2. Transformer-Based Change Detection Methods

The research on traditional change detection tasks mainly focuses on extracting spatio-
temporal contextual information by increasing the receptive field of the model, such as us-
ing dilated convolution instead of traditional convolution. However, although this method
can expand the receptive field, it is usually accompanied by a huge amount of parameters
and cannot really map the global features of the image. In response to these problems,
models based on the self-attention mechanism have begun to emerge. Chen et al. [33]
proposed a network, STANet, that emphasizes the interaction of spatio-temporal features,
which closely combines the temporal information and spatial information in bi-temporal
remote sensing images to capture image changes more accurately. Zhang et al. [34] used the
pure swin transformer blocks to form a codec structure, and used reverse patch merging to
achieve upsampling. This purely self-attention-based method shows high performance in
large-scale datasets, especially for remote sensing images with high resolution and complex
scenes. However, due to the lack of inductive bias, the effect is not good when training
small datasets. Chen et al. [35] proposed BIT based on a CNN and transformer codec.
The network only uses convolutional networks in the early stage of feature extraction,
and uses the transformer module shown in Figure 2 to model the context in the compact
label space in the middle and later stages. It shows efficient and effective performance in
the tasks, and has obvious advantages in computational cost and model parameters.
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Figure 2. Illustration of transformer block.

3. Methodology
3.1. Overall Structure

The overall structure of the MFINet is shown in Figure 3. The network mainly includes
two stages. The first stage is the encoding stage responsible for feature extraction. There are
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three members, including the multi-scale encoding layer of the backbone network ResNet18,
the bi-temporal feature interaction layer, and the bi-temporal feature fusion layer. The main
function of the bi-temporal feature interaction layer is to receive the output of each layer
of the twin ResNet18. These outputs are features extracted from remote sensing images
taken at two different time points, including changes in the target area and background
information. The bi-temporal feature interaction layer allows the network to periodically
focus on pixels at different time points and assign weights according to their importance.
This helps one identify and capture the change area and the correlation between the
bi-temporal images. The structure of the bi-temporal feature fusion layer is dual-input
single-output, receiving the deepest information from the twin ResNet18, helping the
network to refine the underlying features of low-resolution high channels, so as to explore
the channel information that is beneficial to distinguish the change area. The second stage
is the decoding stage responsible for feature size recovery. There are two components,
including the transformer decoding layer and the classifier before output. In order to
combine shallow detail information and deep semantic information, the difference feature
maps of the two-way encoding blocks are given to the corresponding decoding blocks by
skip connection. In addition, a classifier is used as a post-processing module at the end of
the decoding layer to achieve binary classification.
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Figure 3. The overall structure diagram of the multi-scale feature interaction network; the internal
structure of the transformer layer and the classifier are displayed in the green dotted box.

3.2. Bi-Temporal Feature Interaction Layer

Because there are many pseudo-changes in remote sensing images taken at differ-
ent times, such as care differences and vegetation color differences caused by seasonal
changes [36], in this study, as shown in Figure 4, we introduce an important module,
the bi-temporal feature interaction layer (BFIL), to meet those challenges. The core task of
this module is to allow the deep learning network to effectively communicate the features
of images at different times, especially in the case of unbalanced actual change samples and



Remote Sens. 2024, 16, 1269 6 of 19

pseudo-change samples, to suppress the interference of task-independent information [37],
and to associate similar regions in different time periods, thereby improving the coding
accuracy of each scale in the model encoding stage. The module consists of a pair of
symmetrical transformer blocks based on self-attention, and the interaction mode is the
exchange of the self-attention sequence.

Linear Transformation

K QV KQ V

Transpose

Linear Transformation

Matrix

Multiplication

Transpose

  

Matrix

Multiplication

Matrix

Multiplication

Matrix

Multiplication

T1 Features T2 Features

 New T1 Features  New T2 Features Difference Features

SoftmaxSoftmax

Figure 4. Structure diagram of the bi-temporal feature interaction layer.

Specifically, if we set the input single-temporal feature fn ∈ RC×H×W from the tempo-
ral n, then the feature will first be mapped to three identical linear transformer layers. In the
layer, the original pixel matrix will first compress the channel to fuse the multi-channel fea-
tures, and then expand into a self-attention vector. According to the functions that will be
assigned in the future, these three generated sequences are called query vector Qn ∈ R C

2 ×L,
key vector Kn ∈ R C

2 ×L, and value vector Vn ∈ R C
2 ×L. The process of generating sequences

can be expressed by the following formula:

Qn, Kn, Vn = Reshape(Linear( fn)), (1)

where C represents the number of channels in the feature map and three vectors. H
represents the height of the feature map. W represents the width of the feature map.
L = H × W represents the generated vector sequence. Linear(·) represents the linear layer
used to change the channel. Reshape(·) represents the operation of the matrix changing into
a vector sequence. After obtaining the triple vector sequence, the key vector performs matrix
multiplication with the query vector after transpose, which can calculate the similarity
score between each query vector and key vector, and convert the score through the softmax
activation function to the weight An, which is used to weight the calculated value vector.
This way of assigning attention weight to yourself can be expressed by the following dot
product formula:

An = so f tmax(Kn
TQn), (2)

fn
′ = Vn An. (3)

Taking n = 1 and n = 2 as examples, the structure of the bi-temporal feature interac-
tion layer is introduced. In this layer, we allow information to interact and pass between
two tenses to better understand image changes.

First, we generate separate query vectors for n = 1 and n = 2, respectively. These query
vectors represent specific information at different time points. Then, we exchange the query
vectors and apply the query vectors of n = 1 to n = 2, and vice versa. In this way, we can
realize the information interaction between two tenses. Next, we use the exchanged query
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vector together with the corresponding temporal key vector to calculate the similarity
score of the elements between different temporals. These similarity scores are used to
determine the correlation of different elements between the two tenses for information
transmission. Finally, we use these similarity scores as the weights of the self-attention
mechanism, and exchange them again to weight the value vectors of each other’s tenses.
This produces two outputs, f1

′ and f2
′, that fuse multi-temporal information. The following

two sets of dot product formulas can express the above interaction process:

A1 = so f t max(K1
TQ2) (4)

A2 = so f t max(K2
TQ1) (5)

f1
′ = V2 A1 (6)

f2
′ = V1 A2 (7)

The existing feature interaction methods often directly perform bi-temporal interaction
at the feature level. For example, the FC-CD series methods [29] interact with features
through pixel-level subtraction and channel cascade. This method easily leads to semantic
information confusion, making it difficult for the model to distinguish the similarities and
differences between the two groups of pictures. By exchanging attention-related queries and
key value information between two temporals, the BFIL can bridge the feature information
of another branch while retaining the single temporal feature. The self-association and the
guidance of parallel branches enhance the global attention of the model across the time
domain to a certain extent and suppress the interference of pseudo-changes.

3.3. Bi-Temporal Feature Fusion Layer

In the field of change detection, common bi-temporal feature fusion methods include
difference maps and transformation vectors, which aim to capture the change information
between two moments. However, they mainly use simple non-parametric operations, such
as pixel-level subtraction, pixel-level addition, channel concatenation, or bilinear pooling,
resulting in a low matching degree of multi-channel information in bi-temporal scenarios,
which is easy to confuse with feature information. Considering the low resolution and high
channel properties of deep features, we propose the bi-temporal feature fusion layer (BFFL)
in Figure 5. This layer can extract the global attention weight to summarize the bi-temporal
features. The generation of the global attention matrix Ag can be expressed as

Ag = σ(Conv1×1(GELU(AvgPool(Concat[ f1, f2])))), (8)

where f1 and f2 represent the input bi-temporal features. Concat[·] represents the channel
cascade. AvgPool(·) represents average pooling. GELU(·) represents the GELU activation
function [38]. Conv1×1 represents 1 × 1 convolution operation. σ(·) represents the Sigmoid
activation function. These weights are used to adjust the existing dual-branch original
features. By performing pixel subtraction on the attention matrix corresponding to the bi-
temporal and the original features after the compressed channel, it is helpful to deeply mine
the potential difference features. Finally, the obtained bi-temporal features are integrated
through channel cascades to improve the information richness of bi-temporal features.
The formula of the feature fusion operation is expressed as follows:

fout = Concat
[∣∣Conv1×1(Ag f1)− f2

∣∣, ∣∣Conv1×1(Ag f2)− f1
∣∣]. (9)

This layer combines global attention and simple difference operations so that our
fusion layer can capture the subtle differences of the transformation more carefully and
comprehensively, thereby improving the accuracy of change detection. Existing fusion
feature algorithms, such as bilateral guided aggregation layer [39] and ensemble channel
attention module, rely on high-channel fusion of multi-scale features, resulting in huge
computational overhead. BFFL is more flexible and efficient, and can better adapt to
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transformations in complex scenes. Through the targeted operation of deep features, our
method shows stronger discrimination when dealing with high-channel deep features, thus
providing a more powerful feature expression for change detection tasks.

C

Conv1×1

AvgPool

GELU

Conv1×1 Conv1×1

C

 

C :Channel-wise concatenation

:Pixel-wise multiplication

:Pixel-wise substraction

T1 Features: T2 Features:

Interactive Features:

1f 2f

outf

Figure 5. Structure diagram of bi-temporal feature fusion layer.

3.4. Multi-Scale Decoding Layer Based on Transformer

Change detection involves capturing the changes in images at different times, and these
changes usually contain rich details and semantic information. The encoding module
maps the input image to a high-level abstract feature space, but simple deconvolution or
bilinear interpolation may lead to reduced resolution and loss of information. Therefore,
in order to restore high-level abstract features to the original input space, a decoder with a
global receptive field is a wise choice [27].

Compared with traditional CNNs, using a swin transformer block based on self-
attention mechanisms as a decoding module has unique advantages. In Figure 3, the
swin transformer block introduces the concept of a mobile attention window, which en-
ables the network to capture long-distance dependencies in the global range with a small
computational cost. This solves the problem that the computational complexity of ViT
increases with the square of the image size, which is conducive to processing large-scale
images better. Compared with CNNs, the swin transformer provides better scalability and
global modeling capabilities while maintaining efficient performance [34]. This feature is
particularly important for change detection tasks, because the impact of changes usually
involves a wide area of the image. The mathematical expression of the continuous swin
transformer block using the shift window division method is

ŷl = W_MSA(Linear(yl−1)) + yl−1, (10)

yl = MLP(Linear(ŷl)) + ŷl , (11)

ŷl+1 = SW_MSA(Linear(yl+1)) + yl , (12)

yl+1 = MLP(Linear(ŷl+1)) + ŷl+1 (13)

where ŷl and yl represent the output characteristics of the (S)W_MSA module and the
multi-layer perceptron (MLP), respectively. W_MSA(·) and SW_MSA(·) represent multi-
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head self-attention based on conventional window partition and multi-head self-attention
based on moving window partition, respectively. Linear(·) represents the linear layer.

Bilinear interpolation is used to recover the features layer by layer between the coding
modules. In addition, as shown in Figure 3, skip connection is used to associate the
encoding layer with the decoding layer. Specifically, the output of each decoding block is
reduced to a feature matrix and added with the difference output of the bi-temporal feature
interaction layer, so as to realize the weighting of the local difference feature to the global
feature and further reduce the loss of difference information in the upsampling process.

4. Experiment
4.1. Datasets
4.1.1. LEVIR-CD

As shown in Figure 6, the dataset uses large-scale and high-resolution remote sensing
images obtained by Google Earth, and the target changes include various types of buildings
in urban and rural areas such as homes and warehouses. Containing multiple sets of
image data, the time span between different groups varies, and the introduction of seasonal
changes and changes caused by illumination can effectively verify the network’s ability to
focus on target changes. The details of the dataset are shown in Table 1.

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Img1

Img2

GT

Figure 6. LEVIR-CD diagram. Each column of (a–e) represents a sample. The first and second rows
show the bi-temporal remote sensing images, and the third row shows the ground truth.

4.1.2. GZ-CD

As shown in Figure 7, the dataset captures Guangzhou in 2006 and 2019 using 19 pairs
of remote sensing images obtained from Google Earth. The target changes in the dataset
include various types of buildings. It is worth noting that GZ-CD contains a small number
of samples, so the degree to which the network relies on a large number of labeled data can
be checked by comparing the level with other datasets [40]. The details of the dataset are
shown in Table 1.

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Img1

Img2

GT

Figure 7. GZ-CD diagram. Each column of (a–e) represents a sample. The first and second rows show
the bi-temporal remote sensing images, and the third row shows the ground truth.

4.1.3. Lebedev Dataset

As shown in Figure 8, the dataset was collected from Google Earth, and the shooting
objects included multiple sets of remote sensing images from the same geographical area
but different seasons, and the shooting resolution was inconsistent. Actual change regions
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included man-made objects such as roads, cars, buildings, and natural objects such as
individual trees and forests. Significant seasonal differences led to significant brightness
changes, which made it difficult for the network to distinguish between target changes and
background changes [41]. The details of the dataset are shown in Table 1.

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Img1

Img2

GT

Figure 8. Lebedev dataset diagram. Each column of (a–e) represents a sample. The first and second
rows show the bi-temporal remote sensing images, and the third row shows the ground truth.

Table 1. The main parameter information of the three datasets we used.

Dataset Size Resolution Number of Pixels Number of Images
(pixel) (m/pixel) Actual Change Pseudo-Change Ratio Train Validation Test

LEVIR-CD 256 × 256 0.5 30,913,975 637,028,937 1:20.61 7120 1024 2048
GZ-CD 256 × 256 0.55 20,045,119 200,155,821 1:10.01 2504 313 313

Lebedev 256 × 256 0.03–2 134,068,750 914,376,178 1:6.83 10,000 3000 3000

4.2. Implementation Details

In terms of hardware, our experiments were configured by Intel Core i5-13600 CPU
and NVIDIA RTX3080 GPU. In terms of software, Python (3.9) and Pytorch (1.10) were used.
We used Binary cross entropy (BCE) loss, which is a commonly used loss function in binary
change detection tasks. It combines the Sigmoid activation function with BCE loss to make
the calculation more stable and efficient. The optimizer used Adam. During the network
training, we used the ploy method to dynamically change the learning rate. The initial
learning rate (lrbase) was set to 0.001. Since most of the networks converge to the minimum
loss at about 200 iterations, the maximum training iteration (max_epoch) was 250, and the
batch size was set to 16. The learning rate of each epoch was calculated as follows:

lrbase × (1 − epoch
max_epoch

) (14)

Five typical indicators were used to evaluate the performance of change detection,
and the higher the value, the better. Four of them were used to evaluate target changes:
Precision (P), Recall (R), Intersection over Union (IoU), and F1 score; two indicators were
used to evaluate the overall classification accuracy: Overall Accuracy (OA). Formally,
the five indicators are defined as

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

F1 =
2

P−1 + R−1 (17)

IoU =
TP

TP + FP + FN
(18)
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OA =
TP + TN

TP + TN + FP + FN
(19)

where TP, TN, FP, and FN represent the quantities of true positives, true negatives, false
positives, and false negatives, respectively.

4.3. Ablation Experiments on LEVIR-CD

In this section, we perform ablation research on LEVIR-CD and GZ-CD, add and
subtract modules on the basis of the backbone network, and perform experiments one by
one to evaluate the effectiveness of using each module in the encoding and decoding stages.
Table 2 shows the results of the ablation test. The training parameters of all models are
exactly the same.

Table 2. Ablation experiment on LEVIR-CD.

Method LEVIR-CD GZ-CD
F1 (%) IoU (%) F1 (%) IoU (%)

Backbone 86.54 78.41 82.70 71.45
Backbone + BFIL 87.53 80.95 84.09 73.97
Backbone + BFIL + BFFL 88.11 81.93 84.90 74.19
Backbone + BFIL + BFFL + Dec. (CNN) 89.96 82.12 85.59 74.44
Backbone + BFIL + BFFL + Dec. (Transformer) 90.12 82.33 86.08 74.87

1. The influence of BFIL: It is difficult for a simple twin CNN network to discover
the common and different features of bi-temporal features, and the ability of bi-
temporal mutual understanding will become worse as the number of layers deepens.
Therefore, we added a BFIL to the backbone network to strengthen the interactive
attributes of bi-temporal features, and used the attention weight as an interactive
means. The experimental results show that the BFIL can help the network to improve
the accurate detection of changing targets in the coding stage. For LEVIR-CD, F1
increased by 0.99% and IoU increased by 2.54%. For GZ-CD, F1 increased by 1.39%
and IoU increased by 2.52%.

2. The influence of BFFL: The fusion operation of deep bi-temporal features is a great test
of the lightweight degree and differential feature extraction ability of the module. It is
easy to confuse features using simple pixel subtraction or channel cascade, while BFFL
reduces the occurrence of feature confusion through multiple residual connections.
The experimental results show that the BFFL bi-temporal feature fusion significantly
increases the segmentation accuracy of the changed region features. For LEVIR-CD,
F1 increased by 0.58% and IoU increased by 0.98%. For GZ-CD, F1 increased by 0.81%
and IoU increased by 0.22%.

3. The influence of decoder selection: We compared two kinds of decoder methods.
One is ResNet18, which is consistent with the encoder, and the other is the swin
transformer used in our model. In terms of experimental results, the improvement in
indicators in the changing region is limited. The F1 for LEVIR-CD increased by 0.16%,
and IoU increased by 0.21%. For GZ-CD, F1 increased by 0.49% and IoU increased
by 0.43%.

4.4. Comparative Experiments on Different Datasets

We evaluated the multifaceted performance of MFINet by comparing it with eleven
competitive change detection methods on two datasets. The methods involved in the
comparison included the classic FC-CD series based on twin fully convolutional neural
networks and some mainstream change detection models combined with multi-class visual
algorithms in recent years. The types can be divided into two categories. Firstly, there are
models based on CNNs and traditional attention mechanisms. For example, the FC-CD
series includes FC-EF, FC-Siam-diff, and FC-Siam-conc. Based on the improved decoder–
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encoder structure of Unet++_MSOF and SNUNet [42], IFNet uses channel attention and
spatial attention to optimize the feature weight distribution in the process of multi-scale
skip connections. SAGNet and SAFNet [43] add a bi-temporal interaction layer between the
encoding layers to communicate the semantic information of the twin branches. Secondly,
there are models combining transformers and self-attention mechanisms, such as STANet,
which models spatio-temporal relationships through multi-scale pooling and self-attention
mechanisms. DASNet [44] introduces a dual attention mechanism to capture long-distance
dependencies and enhance feature representation to improve the recognition performance
of the model. BIT uses a CNN in the initial feature extraction, and uses a transformer
encoder and decoder to correlate bi-temporal information in the form of sequences in the
middle and late stages. These methods have achieved competitive performance on various
change detection datasets. Figures 9–11 qualitatively show the prediction graphs of each
method on three datasets, where different colors are assigned to identify the correctness or
inaccuracy of the detection, including TP (white), TN (black), FP (red), and FN (green).

Ground TruthImg1 Img2 FC-Siam-conc Unet++_MSOF STANet DASNet SAGNet BIT MFINet

(a)

(b)

(c)

(d)

Figure 9. The quantitative performance visualization of different methods on LEVIR-CD. (a–d) denote
the prediction results of all comparison methods for different samples. In the color classification,
the true positive is white, the true negative is black, the false positive is red, and the false negative
is green.

(a)

(b)

(c)

(d)

Ground TruthImg1 Img2 FC-Siam-conc Unet++_MSOF STANet DASNet SAGNet MFINetBIT

Figure 10. The quantitative performance visualization of different methods on GZ-CD. (a–d) denote
the prediction results of all comparison methods for different samples. In the color classification,
the true positive is white, the true negative is black, the false positive is red, and the false negative
is green.
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Img1 Img2 Ground Truth FC-Siam-conc Unet++_MSOF STANet DASNet SAGNet BIT MFINet

(d)

(c)

(b)

(a)

Figure 11. The quantitative performance visualization of different methods on the Lebedev dataset.
(a–d) denote the prediction results of all comparison methods for different samples. In the color
classification, the true positive is white, the true negative is black, the false positive is red, and the
false negative is green.

4.4.1. Comparative Experiments on LEVIR-CD

Table 3 shows the performance of different models on multiple performance indicators
in detail. MFINet achieves the best performance in Recall, F1-score, IoU, and OA. However,
the BIT using the transformer codec is slightly higher in precision than our proposed
model. This shows that MFINet is ahead of other models in comprehensive performance.
In transformer-based models, such as BIT, STANet, and DASNet, although Precision and
Recall are slightly lower than those in CNN-based models such as SNUNet, SAGNet, and
SAFNet, OA remains at a very high level. This shows that the transformer-based model
has advantages in global correlation, especially when training large-scale datasets such
as LEVIR-CD. However, due to the lack of a twin structure, FC-EF leads to the confusion
of the input bi-temporal features, thus showing low accuracy. In contrast, FC-Siam-conc,
FC-Siam-diff, and Unet++_MSOF adopt a simple bi-temporal interaction and lack a multi-
scale attention mechanism, so the model does not pay enough attention to changing targets.
SAGNet and SAFNet are modeled in a multi-scale interactive manner. However, due to
the lack of a global feature extraction module with a large receptive field, it is difficult
to establish long-distance semantic associations when processing high-resolution remote
sensing images. In summary, MFINet performs well in both comprehensive performance
and processing ability of high-resolution images, showing its superiority in remote sensing
image change detection tasks.

Table 3. The comparison results of different comparison models in the LEVIR-CD test set (bold
numbers represent the optimal results).

Method P (%) R (%) F1 (%) IoU (%) OA (%)

FC-EF 86.91 80.17 83.42 72.01 97.29
FC-Siam-diff 89.56 83.41 86.31 75.99 98.67
FC-Siam-conc 88.17 84.64 86.37 76.01 98.77
Unet++_MSOF 89.47 85.37 87.19 78.10 98.51
IFNet 89.74 85.26 87.34 78.23 98.70
STANet 90.53 84.68 87.51 77.79 98.22
DASNet 90.91 87.70 88.48 80.02 98.99
SNUNet 90.89 88.31 89.28 80.55 98.93
BIT 92.67 87.61 89.32 80.72 99.00
SAGNet 91.33 86.95 88.65 81.59 98.72
SAFNet 91.60 88.70 89.43 81.66 98.95
MFINet (Ours) 92.09 89.02 90.12 82.33 99.21
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In Figure 9, we select some individuals with representative structures and ideas in
the comparison models, and present four sets of detailed visual comparison maps. These
illustrations aim to highlight the advantages of MFINet over other models in different
scenarios. Firstly, (a) and (b) show houses with similar styles and no obvious vegetation
interference. Although the two images were captured under different bi-temporal illumina-
tion conditions, MFINet significantly reduces the negative impact of illumination changes
on the detection results by making full use of multi-scale bi-temporal feature interaction
modeling. In particular, it is worth noting that MFINet has excellent recognition ability
for building shadows, and the false detection rate is significantly lower than that for other
comparison models. Secondly, the images in (c) involve the interference of dense vegetation.
Plants are usually regarded as pseudo-changes in change detection tasks, and all contrast
models miss a corner of the building because of tree cover. On the contrary, our proposed
model uses transformer decoding to achieve long-distance feature association, and suc-
cessfully restores the semantic information blocked by vegetation, so there is no large area
of missed detection. Finally, the images in (d) involve container rooms of different sizes
and irregular distribution. In this scenario, the models participating in the comparison
are susceptible to shadows and are prone to miss small targets. In contrast, our proposed
model guarantees a low missed detection rate and shows its strong ability to deal with
complex scenes and small targets. These visualization results intuitively demonstrate the
robustness and generalization of MFINet in different scenarios. Its ability to deal with
illumination changes, vegetation occlusion, and small targets makes it perform well in
remote sensing image change detection tasks.

4.4.2. Comparative Experiments on GZ-CD

From the data in Table 4, MFINet achieves the best performance on Precision, Recall,
F1-score, IoU, and OA. This result significantly highlights the excellent performance of
our proposed model in remote sensing image change detection tasks. It is worth noting
that in the horizontal comparison, BIT, STANet, and DASNet perform relatively well on
LEVIR-CD, while they perform much worse on small-scale datasets such as GZ-CD. This
phenomenon reveals that the transformer-based model has some challenges when dealing
with small-scale datasets. The number of parameters of such models is usually large,
and they rely more on a large number of labeled data for support or pre-training. When
the training set is small, these models may face the problem of overfitting, that is, they
rely too much on the details of the training data and have difficultly generalizing unseen
data. On the contrary, models based on traditional convolutional neural networks and
multi-level skip connections, such as SAGNet, SNUNet and Unet++_MSOF, perform better
on small datasets. One of the reasons is that these models have the characteristics of local
connection and weight sharing, which makes CNNs more robust in learning features.
In the context of small-scale datasets, this robustness enables traditional convolutional
neural networks to capture the characteristics of the data better, thereby achieving better
performance. In general, the superior performance of MFINet is not only reflected in
large-scale datasets, but also in small-scale datasets. This further verifies the robustness
and generalization of our proposed model, which gives it application potential in remote
sensing image change detection tasks of different scales and complexities.

In Figure 10, we select some individuals with representative structures and ideas in
the comparison models, and present four sets of detailed visual comparison maps. These
illustrations aim to highlight the advantages of MFINet over other models in different
scenarios. Firstly, for Figure 10a,b, the land cover changes significantly due to the long
shooting time interval. Although the actual change region is relatively easy to identify, there
are also many pseudo-change regions that are easily misjudged as actual changes. Unusual
factors such as hardened land color or shadows lead to high false detection rates in many
models. This further highlights the challenges of the model in dealing with complex land
cover changes. In this regard, MFINet successfully reduces the false detection rate through
effective feature learning and bi-temporal interaction, and has a more accurate ability to
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distinguish between true and false changes. Secondly, for Figure 10c, both tenses contain
buildings, but the small buildings in Img1 are removed in Img2. This bi-temporal image is
a typical case to test the bi-temporal interaction ability of the model. All the comparison
models visually missed the small, white building on the right side, and MFINet successfully
achieved accurate detection. This shows that MFINet has advantages in capturing small
details in the spatio-temporal changes of images, which helps to better understand and
utilize temporal information. Finally, in Figure 10d, the target size involved is small and
easily ignored. Relying on the advantages of global feature extraction, the transformer-
based method can identify the approximate area of small targets, but it is also accompanied
by more missed detection. In contrast, our proposed model achieves the lowest missed
detection rate, further confirming the superiority of MFINet in small target detection. These
visualization results provide an intuitive confirmation of our model performance, and also
highlight the advantages of MFINet over other models in different scenarios and challenges.

Table 4. The comparison results of different comparison models in the GZ-CD test set (bold numbers
represent the optimal results).

Method P (%) R (%) F1 (%) IoU (%) OA (%)

FC-EF 85.16 61.62 72.33 56.95 95.26
FC-Siam-diff 84.20 58.76 69.22 56.70 95.51
FC-Siam-conc 87.43 61.82 72.64 56.98 95.36
Unet++_MSOF 87.91 72.84 81.13 73.90 97.55
IFNet 85.65 61.28 76.91 69.52 96.22
STANet 84.95 67.61 79.37 68.92 96.80
DASNet 86.71 77.97 83.23 73.08 96.93
SNUNet 87.92 83.86 85.26 74.38 97.09
BIT 87.10 72.90 84.67 73.90 96.60
SAGNet 88.00 80.66 84.01 73.32 97.34
SAFNet 87.59 83.93 84.91 73.28 97.51
MFINet (Ours) 88.12 84.20 86.08 74.87 97.70

4.4.3. Comparative Experiments on Lebedev Dataset

From the data in Table 5, MFINet achieves the best performance on Precision, Recall,
F1-score, IoU, and OA. This result significantly highlights the excellent performance of our
proposed model in remote sensing image change detection tasks. The transformer-based
model performs well on large-scale Lebedev datasets but still has defects. Although the
Precision of BIT is very high, it is easily affected by the imbalance of dataset samples,
resulting in poor Recall. STANet’s multi-scale spatio-temporal attention can effectively
focus on targets of different sizes, but the low depth limits the performance. The overall
accuracy of DASNet and SNUNet is high, indicating that the use of traditional channel
attention and multi-scale fusion is conducive to segmenting multiple types of small targets,
but the global retrieval ability is still inferior to SAGNet and MFINet, which refer to
dual-temporal self-attention interactions. The FC-CD series models and the UNet-based
detection model have the problem of confusing bi-temporal feature semantics. There are
serious intra-class inconsistencies in the Lebedev dataset with high target diversity, and the
detection performance is extremely poor.

In Figure 11, we choose a representative method in the comparison model and present
four sets of detailed visual comparison diagrams. These illustrations aim to highlight the
advantages of MFINet over other models in different scenarios. First, for Figure 11a,b,
the detection objects include two types of roads, soil roads and snow roads. The MFINet
of bi-temporal interactive modeling can distinguish pixel-level difference regions and
explore shadows that are difficult for the human eye to see. For Figure 11c,d, the detection
objects include vehicles and buildings, and the size of the detection objects varies greatly.
In particular, vehicles at long distances are difficult to detect using the model. However,
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thanks to the transformer decoder’s comprehensive restoration of feature details, MFINet
can effectively restore target edge information and small targets.

Table 5. The comparison results of different comparison models in the Lebedev dataset test set (bold
numbers represent the optimal results).

Method P (%) R (%) F1 (%) IoU (%) OA (%)

FC-EF 89.03 61.63 70.87 55.76 94.56
FC-Siam-diff 89.98 63.53 74.47 59.32 94.86
FC-Siam-conc 89.74 60.49 72.26 56.57 94.52
Unet++_MSOF 93.84 88.6 92.57 88.12 95.99
IFNet 95.71 89.66 92.9 88.87 97.05
STANet 96.02 90.65 93.68 88.10 98.56
DASNet 96.55 92.31 94.51 89.00 98.61
SNUNet 96.32 92.42 94.33 89.27 98.69
BIT 96.76 94.28 95.74 83.74 98.03
SAGNet 96.59 95.33 95.96 92.23 99.05
SAFNet 96.25 94.80 95.92 91.96 99.02
MFINet 96.81 96.44 96.62 93.40 99.29

4.5. Discussion
4.5.1. Comprehensive Efficiency Analysis of the Models

This paper aims to achieve high-precision detection while reducing computational
complexity. Therefore, for LEVIR-CD, we conducted a comprehensive analysis and com-
parison of the network from multiple perspectives, including floating-point operations
(FLOPs), number of parameters (Params), inference time, and F1-score. The unit of flops
is Memory Access Cost (Mac). We randomly selected 1000 images of 256 × 256 pixels in
the validation set for the inference operation, and averaged all the results to evaluate the
inference time of the model. The specific results are shown in Table 6. MFINet performed
well on multiple performance indicators. Although the FC-CD series had a slight advantage
in the F1 value, MFINet was significantly better than other models involving transformers
in FLOPs and Params, achieving the highest F1 value. This shows that MFINet greatly
reduces the computational burden while achieving high performance, and provides a more
efficient solution for practical applications. However, it is worth noting that because our
model uses GELU as the activation function many times in the bi-temporal feature fusion
layer and decoder, the inference time does not show an advantage over other comparison
models. Although it is competitive in computational cost, it also suggests that we can
consider the choice of activation function when further optimizing the model to further
improve the inference speed. In general, MFINet achieves excellent detection results with
less computational cost, and is more friendly to hardware devices. This provides a more
feasible choice for actual deployment, especially in resource-constrained environments.
MFINet shows potential in high-performance target detection.

4.5.2. Model Characteristics and Future Prospects

In the case of remote sensing image change detection, it is a complex task to construct
a robust change detection method, which requires not only the extraction of high-level
semantic information to obtain the cognition of the change area, but also the acquisition of
local and global intrinsic features. Our network innovatively uses a lightweight ResNet18
backbone network and the bi-temporal feature interaction layer in the coding stage, which
effectively integrates multi-temporal remote sensing image information. In the decoding
stage, the transformer decoding layer and the classifier further improve the effect of
feature size recovery, so as to realize the fast and accurate change detection of remote
sensing images.
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Table 6. Comparative experiments of multiple efficiency indicators of the models.

Method Flops (G) Param (M) Inference (ms/picture) F1 (%)

FC-EF 1.19 1.35 2.29 83.42
FC-Siam-diff 2.33 1.35 9.82 86.31
FC-Siam-conc 2.33 1.55 10.41 86.37
Unet++_MSOF 18.04 7.76 18.83 87.19
IFNet 77.88 35.99 13.02 87.34
STANet 18.03 16.94 13.16 87.51
DASNet 107.69 57.36 19.27 88.48
SNUNet 43.94 12.03 12.51 89.28
BIT 25.92 11.99 14.03 89.32
SAGNet 12.25 32.23 16.37 88.65
SAFNet 14.47 40.22 18.30 89.43
MFINet (Ours) 6.89 4.95 15.62 90.12

Although our model achieved remarkable results in high-performance change detec-
tion, we should also admit that it is still highly dependent on a large number of labeled
data points as support. In the future, we plan to improve the performance of the model
through various optimizations, especially to improve the generalization ability on small
datasets. In this regard, we will actively explore the introduction of more unsupervised
learning techniques to reduce the dependence on labeled data, thereby improving the
adaptability and robustness of the model. Unsupervised learning methods can help the
model learn feature representations from unlabeled data, thereby improving its ability
to detect changes in various environments. On the other hand, we will also continue to
study the introduction of more supervised learning and self-supervised learning methods
to enhance the learning ability of the model when changing patterns. Considering the
particularity of different scenarios, we will deepen the adaptability of the model in complex
environments. This means that we will be committed to providing more extensive and
accurate change detection services. We plan to introduce more domain-specific data in
future studies to ensure that our models perform well in various complex situations.

5. Conclusions

The multi-scale feature interaction network proposed in this paper provides an inno-
vative solution for remote sensing image change detection tasks. Different from the existing
model’s dependence on high-depth encoding, our model achieves efficient information
interaction for multi-temporal remote sensing images through lightweight encoding and
bi-temporal feature interaction. At the same time, the transformer decoding layer is in-
troduced in the decoding stage of the network architecture, which effectively improves
the recovery effect of the feature size, and makes the network capture the details and
contour information of the building more accurately in the output stage. The model shows
high change area detection accuracy and overall image prediction accuracy on datasets of
different scales, and the computational overhead is far lower than that of similar models. It
shows strong generalization ability and is suitable for remote sensing images of different
scenes and time scales.
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