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Abstract: The assessment of forest structural parameters is crucial for understanding carbon storage,
habitat suitability, and timber stock. However, the labor-intensive and expensive nature of field
measurements, coupled with inadequate sample sizes for large-scale modeling, poses challenges. To
address the forest structure parameters in the Western Tianshan Mountains, this study used UAV-
LiDAR to gather extensive sample data. This approach was enhanced by integrating Sentinel satellite
and topographic data and using a Bayesian-Random Forest model to estimate forest canopy height,
average height, density, and aboveground biomass (AGB). Validation against independent LiDAR-
derived samples confirmed the model’s high accuracy, with coefficients of determination (R2) and
root mean square errors (RMSE) indicating strong predictive performance (R2 = 0.63, RMSE = 5.06 m
for canopy height; R2 = 0.64, RMSE = 2.88 m for average height; R2 = 0.68, RMSE = 62.84 for density;
and R2 = 0.59, RMSE = 29.71 Mg/ha for AGB). Notably, the crucial factors include DEM, Sentinel-1
(VH and VV backscatter in dB), and Sentinel-2 (B6, B8A, and B11 bands). These factors contribute
significantly to the modeling of forest structure. This technology aims to expedite and economize
forest surveys while augmenting the range of forest parameters, especially in remote and rugged
terrains. Using a wealth of UAV-LiDAR data, this outcome surpasses its counterparts’ by providing
essential insights for exploring climate change effects on Central Asian forests, facilitating precise
carbon stock quantification, and enhancing knowledge of forest ecosystems.

Keywords: forest height; forest density; forest aboveground biomass; Bayesian-Random Forest model;
Central Asian

1. Introduction

The Tianshan forests are essential for preserving the ecological balance among oasis,
desert, and forest ecosystems. They regulate the climate cycle, conserve soil and water,
protect biodiversity, sequester carbon, and support the timber economy [1]. However, the
forests are facing challenges due to fluctuating climate change, including prolonged extreme
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droughts and rising temperatures [2,3]. Conducting a survey to assess the current state of
the forests is imperative to address these impacts and implement conservation measures.

Forest canopy height, average height, density, and aboveground biomass (AGB) are
key indicators of forest ecosystem structure and biodiversity [4–6]. However, due to the
complex topography and steep slopes of the region, manual data collection and instrumen-
tal measurements face challenges and accuracy issues. Presently, most available results are
based on large-scale simulations or small forest surveys, lacking a complete representation
of the natural forests in Tianshan. To address this, it is necessary to redesign sampling
sites to better reflect the characteristics of forests, thereby improving the precision of forest
structure parameter simulations and gaining a more comprehensive understanding of the
forest ecosystem in this region.

The accuracy of mapping products in remote sensing applications heavily relies on
the quantity and quality of training data [7,8]. However, gathering ground reference data
has limitations, such as the quantity being constrained by time-consuming and expensive
fieldwork. Long-established forest inventories provide valuable data but lack the spatial
information at the local and regional scales required for effective forest management in the
context of climate change challenges. Moreover, ground-based observations face challenges
such as dense canopy cover, accessibility, and representativeness, making it difficult to
establish statistical links with satellite observations taken from above the canopy. The
discrete nature of field data also poses difficulties in matching them with continuous earth
observation data at various spatial scales.

To overcome these limitations, this study proposes the use of unmanned aerial vehicles
(UAVs) as a source of reference data collection. UAV-based remote sensing can obtain
spatially continuous information on species coverage at very high spatial resolution [9–11].
The application of UAV data instead of in-situ data has several advantages: (1) increased
data quantity can be obtained in each timeframe, (2) data collection is not impeded by
accessibility (e.g., topography) and is therefore more representative, (3) UAV data have
the same viewing angle as satellite data, and (4) descriptions of target species from UAV-
collected data can be leveraged with automated algorithms to enhance the efficiency of
reference data collection [12]. However, UAV data still have limitations when it comes to
characterizing large-scale forests, and the significant time and economic costs of acquiring
them cannot be ignored.

Satellite systems are essential for forest monitoring, especially when UAV-LiDAR
resources are limited or analysis requires regional/global scale [13,14]. Satellites offer
global remote sensing data, ensuring consistency across different geographical areas and
enabling long-term monitoring of forest structural parameters. High-resolution satellites,
like Sentinel missions, provide detailed forest characteristics for small-scale studies, local
forest management, and environmental sensitivity analyses [15]. Sentinel multiple spectral
bands, including visible, infrared, and microwave, allow estimation of forest biomass,
chlorophyll content, and vegetation cover [16,17]. Sentinel Synthetic Aperture Radar (SAR)
complements optical sensors, providing all-weather, day-and-night visibility and retrieving
surface roughness like vegetation density and forest species [18,19].

Machine learning combined with remote sensing image data has been widely used
to simulate forest structural parameters, encompassing both classification and regression,
which have certain advantages [16,20]. Machine learning can effectively deal with large-
scale, complex data through automated feature selection, model tuning, and prediction. The
most common and widely used machine learning methods are decision trees (e.g., random
forest) and support vector machines. Random Forest (RF), a prominent machine learning
approach based on integrated learning, conducts classification and regression analyses
by constructing multiple decision tree models and aggregating their predictions. Notably,
RF demonstrates robustness against noisy data and overfitting while being adaptable to
diverse data distributions and feature relationships. It provides feature importance analysis,
quantifying the contributions of features used in decision tree construction. Furthermore,
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RF excels at handling high-dimensional and large-scale datasets, effectively managing data
with numerous features and samples, and mitigating dimensionality issues [21–23].

This study employed the Bayesian-Random Forest model to assess the capabilities
of Sentinel-1 and -2 series data, along with DEM data, for modeling forest structural
parameters. To train and validate predictive models, UAV-LiDAR data were used as
real-world data. The objectives of this study were to (1) demonstrate the adaptability of
the Bayesian-Random Forest model in accurately predicting forest structural parameters;
(2) investigate the potential of Sentinel-1, Sentinel-2, and DEM data in predicting forest
structural parameters in the Tianshan Mountains; and (3) explore the spatial distribution
characteristics of forest canopy height (m), average height (m), density (plant/ha), and
AGB (t/ha) in the western Tianshan Mountains.

2. Materials and Methods
2.1. Study Region

The study area is in the Western Tianshan Mountains (Figure 1), which is characterized
by an arid and semi-arid climate and is the source of several international rivers. The
forest on the northern slopes of Tianshan Mountain is predominantly composed of shade-
and drought-tolerant Schrenk spruces (Picea schrenkiana). These forests primarily thrive in
regions with mild climates, fertile soils, and ample rainfall. The average annual temperature
within the distribution area ranges from 3 to 5 ◦C, with an annual precipitation of 400 to
700 mm. During summer, the relative humidity of the atmosphere exceeds 64%, and the
average temperature of the hottest month ranges between 10 and 12 ◦C (lower limit) and
16 and 18 ◦C (upper limit) [24]. Mature forests in the area exhibit an average tree height
above 30 m, reaching heights of up to 60 m. Their diameter at breast height (DBH) ranges
from 40 cm to a maximum of 1.5 m, with a characteristic straight and rounded stem
shape [25].

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 18 
 

 

learning approach based on integrated learning, conducts classification and regression 
analyses by constructing multiple decision tree models and aggregating their predictions. 
Notably, RF demonstrates robustness against noisy data and overfitting while being 
adaptable to diverse data distributions and feature relationships. It provides feature im-
portance analysis, quantifying the contributions of features used in decision tree construc-
tion. Furthermore, RF excels at handling high-dimensional and large-scale datasets, effec-
tively managing data with numerous features and samples, and mitigating dimensional-
ity issues [21–23].  

This study employed the Bayesian-Random Forest model to assess the capabilities of 
Sentinel-1 and -2 series data, along with DEM data, for modeling forest structural param-
eters. To train and validate predictive models, UAV-LiDAR data were used as real-world 
data. The objectives of this study were to (1) demonstrate the adaptability of the Bayesian-
Random Forest model in accurately predicting forest structural parameters; (2) investigate 
the potential of Sentinel-1, Sentinel-2, and DEM data in predicting forest structural pa-
rameters in the Tianshan Mountains; and (3) explore the spatial distribution characteris-
tics of forest canopy height (m), average height (m), density (plant/ha), and AGB (t/ha) in 
the western Tianshan Mountains.  

2. Materials and Methods 
2.1. Study Region 

The study area is in the Western Tianshan Mountains (Figure 1), which is character-
ized by an arid and semi-arid climate and is the source of several international rivers. The 
forest on the northern slopes of Tianshan Mountain is predominantly composed of shade- 
and drought-tolerant Schrenk spruces (Picea schrenkiana). These forests primarily thrive in 
regions with mild climates, fertile soils, and ample rainfall. The average annual tempera-
ture within the distribution area ranges from 3 to 5 °C, with an annual precipitation of 400 
to 700 mm. During summer, the relative humidity of the atmosphere exceeds 64%, and 
the average temperature of the hottest month ranges between 10 and 12 °C (lower limit) 
and 16 and 18 °C (upper limit) [24]. Mature forests in the area exhibit an average tree 
height above 30 m, reaching heights of up to 60 m. Their diameter at breast height (DBH) 
ranges from 40 cm to a maximum of 1.5 m, with a characteristic straight and rounded stem 
shape [25].  

 
Figure 1. Overview of the study area and location of sampling sites. Figure 1. Overview of the study area and location of sampling sites.

The sampling sites were uniformly distributed in the study area, and at the same
sampling site, sample plots distributed at different altitudes were set up to ensure the
collection of forest structural parameters at different altitudes (Figure 1). The metrics used
to characterize the structural parameters of the forest in this area were: forest canopy height
(m), average height (m), density (plant/ha), and above-grand biomass (AGB) (t/ha). We
defined forest canopy height as the 95th height percentile in a 30 m × 30 m plot; forest
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average height as the mean of all tree heights in a 30 m × 30 m plot; density as the number
of trees per unit area; and forest AGB as the SUM of aboveground biomass of all trees per
unit area, which was obtained based on the height of each tree. The equation used was as
follows [26]:

W = 0.0641H2.854 (1)

AGB = ∑n
i=1 Wi (2)

where H represents the height of a single tree, W represents the aboveground biomass of a
single tree, i represents the ith tree in the sample plot, and n represents the number of trees
in the sample plot.

The comprehensive framework for data processing and model development is illus-
trated in Figure 2.
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and LiDAR data.

2.2. UAV-LiDAR Data

In July 2022, we conducted UAV LiDAR data acquisition using the L1 sensor mounted
on a DJI M300 UAV (Figure 3). The data acquisition parameters were configured as follows:
the echo mode was set to dual echo, the sampling frequency was selected as 240 KHz, and
the UAV maintained a course speed of 8 m/s, and a point cloud density > 200 points/m2.
Furthermore, we established a laser overlap of 60% to guarantee adequate coverage. The
relative height between the UAV’s course height and the ground was maintained within
the range of 50 to 200 m. These specific parameters were chosen to optimize the data
collection process and enhance the quality of the acquired LiDAR data. The LiDAR data
were georeferenced using the WGS 84/UTM zone 44 N coordinate system. This allowed us
to proceed with detailed analysis and exploration of the dataset.
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Figure 3. UAV LiDAR data acquisition using the L1 sensor mounted on a DJI M300 UAV in July 2022,
and a total of 25 sample plots were scanned. (a) Setting UAV flight parameters; (b) drone taking off
and beginning data collection; and (c) drone completing data collection.

In this study, the LiDAR data in LAS format was imported into LiDAR360 6.0 software
developed by GreenValley, Beijing, China (https://www.greenvalleyintl.com/LiDAR360/,
(accessed on 31 May 2023)). Pre-processing steps were performed, including cropping areas
with incomplete edge point clouds, resampling, denoising, ground point classification, and
normalization based on ground points. Forest parameters, such as height metrics, were
calculated using a grid-based approach. In addition, single tree segmentation was used to
obtain latitude, longitude, height, and canopy data for all single trees in the sample plots.
ArcGIS 10.5 software was used to join the single-tree segmentation data to 30 m × 30 m
grids to calculate the number of trees and the average height on each grid. Based on the
height of the tree, the AGB of all the individual trees on the grids was calculated using
Equation (1), and subsequently, the sum of the AGB on each grid was calculated using
Equation (2). The above process acquires four variables: forest canopy height, average
height, density, and AGB with a resolution of 30 m.

For this, 163.35 ha of LiDAR data were used for model training, which came from
25 sample plots of 400 m × 400 m, and a total of 1815 samples were used for statistical
analysis and model training.

2.3. Topography (DEM)

The digital elevation model (DEM) data used in this study was obtained from the
Shuttle Radar Topography Mission (SRTM). SRTM employed a multibeam radar system
capable of capturing high-quality elevation data. To derive slope and aspect information,
the DEM data were processed using ArcGIS 10.5 software. The SRTM-generated DEM data
had a spatial resolution of 30 m, encompassing the study area. The data were downloaded
from the United States Geological Survey’s Earth Explorer platform (https://earthexplorer.
usgs.gov/, (accessed on 15 March 2023)).

2.4. Sentinel Image Data

This study used data from Sentinel-1 (Synthetic Aperture Radar) and Sentinel-2 (Multi-
spectral) imagery, which were acquired from the European Space Agency and downloaded
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home,
(accessed on 20 March 2023)). All pre-processing steps were performed using the SNAP
9.0.0 software, which is specifically designed for processing and analyzing satellite data.

https://www.greenvalleyintl.com/LiDAR360/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
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The Sentinel-1 C-band (5.405 GHz) images used in this study were collected in In-
terferometric Wide Swath mode with VH (Vertical transmit–Horizontal receive) and VV
(Vertical transmit–Vertical receive) polarizations. They were processed to a high-resolution
Level-1 Ground Range Detected (GRD) level, already multi-looked (5 × 1) with a pixel size
of 10 m. Preprocessing in SNAP 9.0.0 software involved steps such as orbit file application,
thermal noise removal, radar calibration, speckle filtering, terrain correction, conversion
to/from dB, and resampling to a 30 m × 30 m pixel size. These processing steps resulted in
backscatter coefficient data, providing valuable information about surface parameters such
as geometry, dielectric properties, and roughness.

The Sentinel-2 data used in this study is a Level 1C product consisting of orthorectified,
top-of-atmosphere reflectance imagery. It covers a 100 km by 100 km area in UTM/WGS 84
projection and includes 13 spectral bands spanning the visible, near infrared, and short-
wave infrared regions. The spatial resolutions vary, with 10 m (4 bands), 20 m (6 bands), and
60 m (3 bands) options available. We chose multiple bands that are sensitive to reflections
from vegetation. The Level-1C data underwent atmospheric correction using the Sen2Cor
(version 02.11.00) processor, based on the radiative transfer model. The resulting Level-2A
products were then converted to this study’s common map projection of WGS 84/UTM
zone 44 N and resampled to a 30 m pixel size. The vegetation indices listed in Table 1 were
calculated using band math. In the final analysis, multiple single bands and vegetation
indices were obtained from the Sentinel-2 imagery.

Table 1. The list of indices for predicting in this study.

Source Image Predictor Variable Relevant
Channel/Band/Index Definition

SRTM Topographic features DEM, slope, and aspect /

Sentinel-1 Polarization/channel Sentinel1_1 and
sentinel1_2

VH and VV
backscatter in dB

Sentinel-2
Multispectral bands B4, B5, B6, B7, B8, B8A,

B11, and B12 /

Vegetation indices NDVI (B8 − B4)/(B8 + B4)

2.5. Machine Learning Algorithm

A Bayesian optimizer was employed to optimize a random forest regression model
(RF) that integrated LiDAR-based forest structural parameters with predictor variables. A
total of 14 predictor variables were added to the model during training. The predicted forest
structural parameters included forest canopy height, average height, density, and AGB.

2.5.1. Random Forest Regression Model with Bayesian Optimization

The random forest regression model (RF) is an effective and versatile integrated learn-
ing method used for regression problems [27]. It is based on decision tree algorithms and
combines multiple decision trees to make predictions. This model is particularly suitable
for datasets with numerous features and intricate relationships, as it exhibits robustness
and high prediction performance. Moreover, the random forest model demonstrates strong
resilience against outliers and noise, requiring minimal data pre-processing. Its wide appli-
cability and ability to handle complex datasets make it a popular choice in many research
studies [28–30].

A Bayesian optimizer was employed to fine-tune the model parameters. The Bayesian
optimizer effectively improves the objective function value by iteratively selecting the next
parameter point, leading to the identification of the best parameter combination within
a finite number of iterations. Compared to traditional grid search or stochastic search
methods, Bayesian optimizers converge to the optimal solution more efficiently, resulting
in faster and more effective parameter tuning [31,32].
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The models used an 80/20 train-test split, with 80% of the samples (N = 1452) used
for training and 20% for validation (N = 363). To reduce the dimensionality of the data
and identify the most informative variables, an importance analysis was conducted using
the RF model. Recursive feature elimination and cross-validation based on the ordering
of predictor importance were implemented to select a subset of predictors that would
facilitate the best predictions. A RF-based predictive model was then built using these
selected variables. This approach ensured the inclusion of the most relevant variables while
reducing the complexity of the model and improving its predictive performance.

All data processing and model simulations were conducted in Python 3.10, using
libraries such as BayesOpt and scikit-learn [33,34].

2.5.2. Accuracy Assessment

To assess the performance of the predictive model for the specific regression problem,
a comprehensive evaluation of the prediction results was conducted. This evaluation was
essential in determining the reliability and suitability of the model, as well as identifying
areas for improvement or alternative model selection. Multiple metrics were employed,
including root mean square error (RMSE), BIAS, coefficient of determination (R2), and
scatterplot analysis between predicted and measured values. These evaluation metrics
provided insights into the accuracy and precision of the model’s predictions.

RMSE =

√
∑i(yi − ŷi)

2

n

R2 = 1 − SSres

SStot
= 1 − ∑i(yi − ŷi)

2

∑i(yi − yi)
2

Bias =
1
n

n

∑
i=1

(yi − ŷi)

where yi is the measured value for the i-th data point from LiDAR data, ŷi is the predicted
value for the i-th data point, and n is the total number of measurements.

Additionally, we compared them with those obtained from other studies or models.
Four sample plots were randomly selected and compared with the sliding average of forest
canopy height estimated by our model and others with that measured by UAV-LiDAR. Both
training and validation data were present in these sample plots. The aim was to confirm
which model-simulated forest canopy heights were closer to those interpreted by LiDAR.
We conducted a visual comparison of canopy heights estimated by our model and other
models with Google Earth images. This comparison served two purposes: first, to illustrate
the variations in simulation outcomes across different models, and second, to highlight
how each model distinguishes forest boundaries. These sample plots for this comparison
were selected randomly in the study area.

3. Results
3.1. LiDAR-Derived Forest Structure Parameters

Figure 4 illustrates the results of the measurements from the LiDAR data for the
forest structural parameters. The maximum forest canopy height was 50.3 m, with a mean
of 20.1 m; the maximum forest average height was 34.0 m, with a mean of 13.4 m; the
maximum forest density was 778 trees per hectare, and a mean was 264 trees per hectare;
and the maximum AGB was 348.5 t/ha, and the mean was 56.3 t/ha.
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3.2. Predictor Variable Selection

To assess variable contributions in the predictive model, the Bayesian-Random Forest
algorithm has been employed for optimal parameterization. Using the variable importance
module, the top 6 variables were ranked and selected from 14 variables. Figure 5 illustrates
the importance of these variables in different forest structural parameter estimation models,
each with a unique variable combination.
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Figure 5 illustrates how the forest canopy height model identified DEM as the variable
with the greatest influence, followed by B6, NDVI, sentinel1_2, sentinel1_1, and slope. For
the average height model, DEM and B8A emerged as the primary variables, followed by B8,
slope, sentinel1_1, and sentinel1_2. For the density model, DEM ranked as the predominant
variable, followed by B11, sentinel1_2, B5, slope, and NDVI. For the AGB model, DEM is
the most influential variable, followed by B6, slope, sentinel1_1, B8A, and aspect.

In conclusion, DEM, slope, B6, B8, B8A, and the Sentinel-1 backscatter coefficient emerge
as crucial variables for estimating forest structural parameters in the Tianshan Mountains.
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3.3. Accuracy Assessment of the Forest Structural Parameter Estimation

Estimation models were created for four forest structural parameters using selected
variables. The aim was to assess the capabilities of SRTM DEM, Sentinel-1, and Aentinel-2
in forest structural parameter estimation. Using 20% of the sample data (N = 363), accu-
racy assessments were conducted. Figure 6 displays scatter plots of tested values versus
estimated values, along with the corresponding linear regression lines.
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independent test data.

Based on the data presented in Figure 6, the accuracy of the forest canopy height
model was evaluated, which resulted in R2 = 0.63, RMSE = 5.06, and BIAS = −0.47.
The accuracy metrics for the forest average height model were R2 = 0.64, RMSE = 2.88,
and BIAS = 0.01. For the forest density model, the assessment resulted in R2 = 0.68,
RMSE = 62.84, and BIAS = 14.18. The forest AGB model demonstrated accuracy indicators
of R2 = 0.59, RMSE = 29.71, and BIAS = 1.17. Excellent simulation abilities were displayed
by all the estimation models.

3.4. Results of the Forest Structural Parameters

Four estimation models based on the Bayesian-Random Forest regression model were
used to estimate the results for the study area. The input data for the models were STRM
DEM, Sentinel-1, and Sentinel-2.

Figure 7 shows that taller trees are mainly distributed in the southern part of the
study area. Based on the observation of the localized map and DEM, the taller trees are
distributed at lower elevations in the same area. This phenomenon is strongly related
to growth conditions such as water-heat combinations, soil fertility, and so on. Usually,
Schrenk spruce grows well on the north slopes with adequate soil fertility, high humidity,
warmth, and no direct sunlight in the Tianshan Mountains. As the elevation increases, the
temperature gradually decreases, which also affects Schrenk spruce growth. Additionally,
there was a significant positive correlation between forest AGB and tree height because
AGB comes from a single tree’s height. Similarly, the taller the tree, the lower the density.
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Figure 7. Overall and local estimates of forest structural parameters with a resolution of 30 m. The
localized locations are labeled as A, B, and C.

To analyze tree growth in different altitude ranges, the study area was divided into
altitude intervals of 1500~2000 m, 2000~2500 m, and 2500~3000 m based on the digital
elevation model (DEM). Forest structural parameters have been assessed at each of these
distinct altitudes. Figure 8 shows the statistical findings. Forests are predominantly situated
on the northern slopes at elevations between 2000 and 2500 m, which is also the area with
the highest density of forests. With increasing elevation, there’s a noticeable decrease in
both the height of the forest canopy and the average tree height, along with a reduction in
the aboveground biomass per unit area.
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4. Discussion
4.1. UAV-LiDAR Data for Measuring Forest Structure Parameters

This study used point cloud data from an L1 sensor mounted on a DJI M300 UAV for
forest structural parameter interpretation. UAV-LiDAR data are well-suited for coniferous
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forest structure estimation at the plot level, offering high spatial resolution and detailed
topographic insights [35]. LiDAR stands out as a superior method for measuring direct
canopy height [36]. The top-down data acquisition method is consistent with satellite data,
facilitating enhanced spatial integration [13,16]. UAV-LiDAR minimizes ecosystem disrup-
tion while providing the flexibility of data acquisition through adaptable flight trajectories,
optimizing data coverage, and sampling density for thorough forest structure characteriza-
tion [37]. Visualizing LiDAR data as points and DEMs allows intuitive three-dimensional
exploration of forest structure. Coupled with GIS and other tools, spatial analysis and
modeling facilitate parameter extraction and detailed structural assessment [38]. Tianshan’s
forest features, primarily spruce species, lend themselves to effective LiDAR use in captur-
ing forest structure parameters. Their regular tree shapes, tower-like crowns, and limited
bifurcations enable precise extraction using UAV-LiDAR data.

In complex and dense forests, UAV-LiDAR data can lead to reduced accuracy in tree
parameter estimation. Challenges arise from understory trees being missed in the UAV-
LiDAR point cloud and similar-looking canopies being wrongly identified as individual
treetops. Conversely, local maxima not related to treetops can also be misinterpreted.
Figure 9 demonstrates single-tree segmentation results for both spruce forests and mixed
forests. Spruce forests (Figure 9a) with uniform canopies produce better segmentation
outcomes due to minimal canopy intersections. On the other hand, the irregular and
intersected canopies of mixed forests (Figure 9b) decrease segmentation accuracy. To
address intricate forest parameters, complementing UAV-LiDAR with other data like
terrestrial laser scanning (TLS) and mobile laser scanning (MLS) is necessary [39,40].
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Figure 9. Single-tree segmentation results in coniferous and mixed forests based on UAV-LiDAR data.
(a) represents different angle observation maps and single wood segmentation results for coniferous
forests; (b) represents different angle observation maps and single wood segmentation results for
mixed forests; (1,2) represent different angle three-dimensional maps created from LiDAR data and
images; (3,4) represent single wood segmentation results maps for different angles.



Remote Sens. 2024, 16, 1268 12 of 16

4.2. Relevance of Forest Structural Parameters with Predictive Variables

From the results on the importance of variables presented in Section 3.2, the most
contributing variables have been identified and retained for each of the forest structural
parameter estimation models (Figure 5).

DEM plays a crucial role in estimating forest structural parameters and exhibiting
distinct correlations. Topographic factors intricately affect vegetation growth, stand struc-
ture, and species composition by modifying hydrothermal conditions [41]. Precipitation
exhibits significant variations with changes in altitude. Rapid changes in elevation cause
obstruction of air mass movement to form terrain rains and can also cause air mass to rise
to form terrain rains. As the air mass loses water vapor, there will be less precipitation
at higher altitudes, or the air mass will roll over the mountain and bring dryness to the
leeward slopes. For every 100 m of elevation increase, the temperature will decrease by
0.6 ◦C. Differences in ground cover will also affect the temperature. Furthermore, varying
slopes have an impact on soil layer depth and nutrient content. Steeper slopes tend to
be less conducive to substantial soil layer development, and the nutrients in the soil are
relatively shielded from rainfall compared to gentler slopes. These changes in climate
and soil due to elevation, slope, and aspect directly affect the growth of the trees. Ac-
knowledging the impact of topography on forest structure parameter estimation aligns
with existing research [42,43], emphasizing the significance of topographical influence on
forest attributes.

The backscattering data in VH and VV polarization offer substantial potential for esti-
mating forest structural parameters. Sentinel-1 SAR C-band penetrates the upper canopies
and interacts with foliage, making backscatter values indicative of forest structure [19].
VV-polarized and VH-polarized data exhibit distinct responses when interacting with
vegetation and ground surfaces. This polarization discrepancy enables the inference of
vegetation structure [14]. Various vegetation types show differing scattering traits under
VV and VH polarizations. Dense vegetation like forests produces strong reflection signals
in SAR images, while sparser vegetation like grasslands shows weaker signals.

Sentinel-2 is widely recognized for its pivotal role in vegetation monitoring. Specifi-
cally, the spectral bands B4, B5, B6, B7, B8, and B8A offer distinct advantages for evaluating
various aspects of vegetation, including its coverage, health, leaf physiology, and photosyn-
thetic efficiency. Integrating spectral data with forest structural parameters can significantly
enhance the accuracy of the assessment. In previous studies, it has been observed that a
significant correlation between the near-infrared (NIR) and short-wave infrared (SWIR)
bands of Sentinel-2 and forest structural parameters persists regardless of environmental
conditions. These correlations have proven to be a reliable means of achieving highly
accurate results [13,15,44]. NDVI, computed from the near-infrared band (B8) and the
red band (B4) of Sentinel-2, serves a wide range of applications, particularly in the assess-
ment of surface vegetation cover and overall vegetation health [45,46]. It is also widely
acknowledged as a fundamental vegetation index, extensively used in the modeling of
forest structural parameters [13,14].

4.3. Comparison with Other Forest Canopy Height Products

To assess the model’s accuracy, LiDAR-measured forest canopy heights were com-
pared with our estimated forest canopy heights and three other authors’ results [47–49].
These three studies used machine learning or deep learning methods to simulate forest
canopy height, the reference data extracted by GEDI (Global Ecosystem Dynamics Inves-
tigation) data, and our study’s reference data extracted by UAV-LiDAR. We chose only
the results of the canopy height simulation because it was difficult to find other forest
structure parameters. The selected canopy height products are all current, dating from the
post-2020 period.

Four sample plots were randomly selected among the estimates for comparison. To
capture trend differences effectively, a sliding mean was applied to the five datasets, as
presented in Figure 10. LiDAR-measured forest canopy height (A1) exhibited strong
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alignment with our model’s estimate (A2), which confirms the model’s high accuracy in
representing Tianshan forest conditions. Other results also showed consistency with A1;
however, A4 displayed overestimation, A5 underestimated, and A3 matched measured
values in some plots but lacked precision compared to our model’s estimates. The selected
studies have advantages in describing large-scale forests and have important implications
for understanding the current state of global forests. Our model has higher accuracy, and
this accuracy will better serve forest management.
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Upon visual inspection of the comparison presented in Figure 11, it becomes evident
that A2 and A5 exhibit distinct accuracy in delineating the forest boundary. Despite being
able to identify the forest boundary, A3 encounters challenges in identifying small clearings
inside the forest. On the other hand, the A4 model not only struggles to accurately identify
the forest boundary but also demonstrates a noticeable tendency to overestimate forest
canopy height.

Our model performed well in both accurate height estimation and precise forest
boundary extraction. The datasets obtained by others also exhibit a high level of accu-
racy, particularly when characterizing the current state of large-scale forests. The superior
performance of our estimated results is attributed to the accuracy, quantity, and represen-
tativeness of the training data, which is difficult to achieve with global models [50]. It is
worth noting that trees of the same height but different species exhibit variations in spectral
reflectance values. Even for the same tree species, a very limited number of samples cannot
accurately depict the general characteristics of this species. Consequently, the quantity
and representativeness of the samples used in modeling forest canopy height significantly
influence the model’s estimation results. Using a large number of samples, a substantial
enhancement in the accuracy of our training model created for single-species forests was
achieved. This improvement holds substantial significance for the focused exploration of
specific forest types.
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5. Conclusions

In this study, forest canopy height, average height, density, and AGB for natural
Schrenk spruce forests in the western Tianshan Mountains were successfully estimated.
We used a machine learning model called Bayesian-Random Forest, using data from UVA-
LiDAR to measure the forest structural parameters and data from STRM DEM, Sentinel 1,
and Sentinel 2 to predict these parameters. This is the first time such extensive UAV-
LiDAR data have been used to estimate forest characteristics in this region. The Bayesian
optimizer efficiently found the best parameters for the Random Forest model and created
accurate predictions in a short time. Based on the prediction results, the largest forest
area, the highest forest height, the highest density, and the larger AGB were distributed in
the 2000–2500 altitude range of the western Tianshan Mountains. Additionally, all forest
structural parameters exhibit a gradual decrease with increasing mountain altitude. This is
crucial knowledge for researching how climate change affects forests in Central Asia and is
useful for comprehending the growth and ecological function of Schrenk spruce forests.
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