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Abstract: Ground-Based Synthetic Aperture Radar (GB-SAR), due to its high precision, high resolu-
tion, and real-time capabilities, is widely used in the detection of slope deformations. However, the
weak scattering coefficient in low-coherence areas poses a great challenge to the observation point
selection accuracy. This paper introduces a selection process for reliable observation points that inte-
grates phase and spatial information. First, for various observation points with differentiated stability,
we propose to utilize maximum likelihood estimation (MLE) methods to achieve stability assessment.
Second, a phase correction approach is proposed to address unwrapped phase errors encountered
at less stable points. Third, adaptive filtering for deformation information at observation points is
achieved using estimated variance combined with wavelet filtering thresholds. Finally, in dealing
with unknown deformation trends, we propose utilizing a clustering method to accurately iden-
tify these trends, thereby enhancing the precision in identifying reliable observation points (ROPs).
The experimental results demonstrate that this method enhances the accuracy of observation point
selection in low-coherence areas, providing a broader observational field for deformation detection.

Keywords: GB-SAR; slope deformation detection; maximum likelihood estimation; low-coherence
areas; DBSCAN clustering method

1. Introduction

The successful application of spaceborne synthetic aperture radar (SAR) technology [1–3]
sparks interest in exploring higher precision and more detailed structural information of
targets, promoting the development of Ground-Based Synthetic Aperture Radar (GB-SAR)
technology [4–7]. GB-SAR, with its unique advantages over its counterparts, has carved
a niche in specialized applications. It offers superior spatial resolution and boasts versatile
deployment strategies. Although GB-SAR faces challenges in terms of spatial coverage, its
exceptional precision, real-time processing capabilities, and localized specificity are invalu-
able in certain application contexts. Through continuous monitoring [8], GB-SAR provides
more comprehensive structural information on targets, facilitating precise deformation
measurements of local areas. Additionally, the GB-SAR system, based on multiple input
multiple output (MIMO) technology [9,10], proves effective in detecting displacements
in large structures such as dams [11], bridges [12,13], buildings [14,15], and inverting the
velocity fields of landslides [16,17].

In deformation analysis [18], GB-SAR frequently faces challenges in low-coherence
areas with bare soil or vegetation. The typical characteristics of those areas are low-
coherence, weak scattering intensity, and high signal phase noise, which cause difficulties
in observation point selection and deformation analysis [19]. In deformation measurement
applications, “Permanent Scatterers (PS)” with relatively stable reflection properties are
commonly chosen for observation and analysis. This method was first proposed [20]
by Ferretti et al. to overcome the drawbacks brought about by time [21] and geometric
decorrelation [22]. Despite its widespread adoption [23,24], the PS method, which relies on
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amplitude discretization to pinpoint permanent scatterers, falls short in addressing phase
instability issues, prevalent in areas of low coherence. Subsequently, improved methods for
pixel selection based on sublook spectral correlation [25], the top eigenvalue of coherence
matrix [26], and the maximum likelihood theory were developed [27]. Currently, these
techniques are mainly applicable to spaceborne synthetic aperture radar [28,29] application
scenarios with relatively long temporal baselines [30], large resolution cells [31], and high
coherence [32]. In the GB-SAR fields, the accuracy of observation point identification
remains limited. The GB-SAR monitoring approach [33] introduces systematic error and
atmospheric error, but it lacks a comprehensive strategy for addressing the phase errors
associated with low-coherence areas. Image interpolation [34] or interference filtering in
signal processing leads to errors and fails to apply well to GB-SAR with low-coherence
coefficients and point scattering.

GB-SAR demands greater stability from observation points, as phase instability can
lead to unwrapped phase errors, thereby substantially impacting the accuracy of mea-
surement outcomes. Filtering techniques utilized to mitigate the issue of high noise in
low-coherence scenarios fall into two main categories: spatial filtering [35–37] and tem-
poral filtering [38,39]. In spatial filtering scenarios characterized by relatively high noise
levels, the high coherence point phase is susceptible to the influence of the surrounding
random phase. Consequently, the spatial filtering method, as detailed in literature [35],
is not adapted to higher noise application scenarios. In time-domain filtering, Gaussian
noise and mutation phases tend to contain wider spectral distributions. It is well known
that frequency domain filters [40] are usually designed for specific frequencies. However,
effectively filtering Gaussian noise and mutation by frequency domain filters is challeng-
ing. The Kalman filtering [38] in time-domain filtering methods proves effective, but it
is difficult to adaptively optimize observation points with different stability in the detec-
tion area. Therefore, a methodology is needed to solve the problems encountered in the
low-coherence areas.

The deformation analysis in low-coherence areas faces two important challenges. The
first one is to improve the density and phase stability of observation points, and the second
one is to screen observation points with correct deformation trends. To address the first
problem, this paper estimates the distribution parameters of the phase information based
on maximum likelihood estimation (MLE), which can reflect the stability and reliability of
the observation points. The preliminary screening of observation points needs to address
the unwrapped phase error caused by the phase mutation information and filter the phase
information based on the threshold value to improve the stability of the phase. It is worth
noting that there is a differentiation in the stability of observation points in different areas.
The filter parameters are adaptively adjusted according to the MLE results so that the
filter achieves the optimal filtering state compatible with each observation point. For the
second problem, since MLE cannot estimate the deformation trend of each observation
point, further processing is needed to filter the correct deformation trend. These filtered
observation points include both reliable targets such as rocks or buildings, and targets
with unreliable deformation trends, such as trees or vegetation. The deformation trends of
reliable points show similarity and consistency. Conversely, the deformation information
of unreliable points shows random trends. Based on the above basic regularity, this paper
realizes the selection of reliable observation points (ROPs) by combining the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm and the Lyddane–
Shindo criterion. In addition, atmospheric phase information can be estimated by fitting
these ROPs with a minimum mean square error (MMSE) criterion [41].

The organization of this paper is as follows: Section 2 describes the working principle
of MIMO GB-SAR and analyzes the phase information. Furthermore, the paper provides
a detailed explanation of both MLE and wavelet filters. Section 3 describes the entire signal
processing flow for deformation detection, discussing the application of DBSCAN clustering
and the Lyddane–Shindo criterion in this processing method. Section 4 presents an analysis
and discussion of the experimental results, and Section 5 concludes the document.
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2. Phase Information Estimation and Filtering
2.1. MIMO GB-SAR and Phase Analysis

GB-SAR is an advanced technology for capturing target scattering information by
transmitting and receiving electromagnetic waves. Generally, GB-SAR has one transmitter
unit and one receiver unit and is fixed on a mechanical rail. The GB-SAR accomplishes SAR
imaging by moving the rail, as shown in Figure 1a. SAR enhances imaging resolution by
synthesizing a large “virtual” aperture through the collection of reflected signals from the
same area at different positions. Similar to SAR imaging, GB-SAR transmits and receives
echo signals at different locations on the rail to realize aperture synthesis.

The GB-SAR system used in this paper is based on MIMO technology and has multiple
transmitter units and multiple receiver units. One transmitting unit and one receiving
unit can be equivalent to a virtual center. In far-field conditions, the transceiver units
work at different positions, which is equivalent to working at the virtual center. The
reasonable design of the transmitter unit and receiver unit position can realize the virtual
center in a straight line and equal interval distribution with the schematic diagram shown
in Figure 1b. Similar to the rail GB-SAR, the MIMO GB-SAR sequence works along the
virtual center position to complete the imaging. The MIMO GB-SAR has a higher image
acquisition rate than the rail GB-SAR (collectively referred to as GB-SAR).

Rail
transceiver

view

(a) (b)

Figure 1. (a) GB-SAR working diagram. (b) MIMO equivalent diagram. Transmit array (top),
receiving array (bottom), and the virtual center array (middle).

GB-SAR operates at a fixed position, so the temporal baseline and observation scenar-
ios are constant. When collecting data, image information of the same area is acquired over
a continuous time sequence, denoted as t1, t2, . . . , tN . This data acquisition method allows
us to capture the changes and movements of the target at different times. The information
obtained from the acquired images can be depicted as a set of images denoted as IM, which
can be expressed as

IM = [IM1, IM2, . . . , IMN ]. (1)

The phase of one point p in the IM can be expressed as

ϕp(t) = ϕdis(t) + ϕatm(t) + ϕnoise. (2)

In this model, the phase information is divided into three key components: ϕdis(t),
ϕatm(t), and ϕnoise. The first part, ϕdis(t), represents the surface objects’ deformation infor-
mation caused by various geological and anthropogenic factors. The second part, ϕatm(t),
is the atmospheric phase information, which cannot be neglected in remote sensing data
because the refraction effect of the atmosphere can lead to waveform fluctuations. The
third part, ϕnoise, denotes phase noise information, mainly caused by sensor noise, electro-
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magnetic interference, and other factors, which may cover up the signals of fundamental
ground changes. The feature deformation information ϕdis(t) can be represented as follows

ϕdis(t) = ϕtrend(t) + ϕperiod(t) + ϕmutation(t), (3)

where ϕtrend(t) is the deformation trend, representing the ground objects’ persistent trend
over time, reflecting long-term internal evolution or external gradual change. ϕperiod(t)
represents periodic deformation information, which refers to occasional fluctuations caused
by seasonal changes in ground objects over a long period [42]. ϕmutation(t) denotes mutation
information that characterizes sudden changes in the feature over a short period, which
usually cause phase unwrapped errors.

The atmospheric phase can be expressed as

ϕatm(t) =
4π

λ

∫ rp

0
η(t)dr, (4)

where rp denotes the electromagnetic wave propagation path between the target and the
radar. η(t) is the atmospheric refractive index, which, according to the latest definition of
the International Telecommunication Union [43], can be expressed as

η(t) =
(

77.6
Pd
Ta

+ 72
e

Ta
+ 3.75 × 105 e

T2
a

)
× 10−6 + 1. (5)

Water vapor pressure e is expressed as

e =
H

100
esat, (6)

esat = 6.1121 · exp

[{
18.678 − t

234.5
}
· t

t + 257.14

]
·
{

1 + 10−4
[
7.2 + P ·

(
0.0320 + 5.9 · 10−6 · t2

)]}
, (7)

where Pd represents dry atmospheric pressure (hPa), and the unit of water vapor pressure
e is hPa. Ta is the absolute temperature (K). esat is the saturation vapor pressure (hPa). H
is the relative humidity (%). t is the temperature (◦C). P is the total atmospheric pressure
(hPa). Atmospheric pressure, humidity, and temperature vary with time, resulting in
non-uniform electromagnetic characteristics. This will cause electromagnetic waves’ speed
and propagation direction to change as they travel through the atmosphere constantly.
Since there are regional inhomogeneities in the atmosphere’s temperature, humidity, and
pressure, the atmospheric phase is obtained by estimation rather than measurement.

2.2. Phase Distribution Maximum Likelihood Estimation

MLE is a statistical method for estimating model parameters. In the context of phase
distribution parameters, MLE aims to find parameter values that maximize the probability
of the phase distribution for a given observation. In deformation monitoring in low-
coherence areas, the phase information of the observation points conforms to a specific
probability distribution. The distribution parameters can reflect the stability and reliability
of observation points, which are our preliminary screening criteria. For the target point p,
the phase difference between two adjacent images is expressed as follows:

x(ϕp) =
[
ϕp(2)− ϕp(1), ϕp(3)− ϕp(2), . . . , ϕp(n)− ϕp(n − 1)

]
. (8)

Assuming the phase data follow a normal distribution, the probability density function
of the normal distribution is

f (x|µ, Σ) =
1√

(2π)k|Σ|
exp

[
−1

2
(x − µ)⊤Σ−1(x − µ)

]
, (9)
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where x is a k-dimensional vector, µ is the mean vector, Σ is the covariance matrix, and |Σ|
is the determinant of the covariance matrix. For a sample set x = {x1, x2, . . . , xn}, the likeli-
hood function is

L(µ, Σ|x) =
n

∏
i=1

f (xi|µ, Σ). (10)

Taking logarithms does not change the position of the extremes. For ease of calculation,
taking both ends of the above equation logarithmically at the same time,

ln L(µ, Σ|x) =
n

∑
i=1

ln f (xi|µ, Σ) =
n

∑
i=1

[
− k

2
ln(2π)− 1

2
ln |Σ| − 1

2
(xi − µ)⊤Σ−1(xi − µ)

]
. (11)

We take partial derivatives with respect to µ:

∂

∂µ
ln L(µ, Σ|x) =

n

∑
i=1

Σ−1(xi − µ). (12)

Letting this partial derivative be zero, the equation is as follows:

n

∑
i=1

Σ−1(xi − µ) = 0. (13)

The estimate is replaced by µ̄, then,

µ̄ =
1
n

n

∑
i=1

xi. (14)

The maximum likelihood estimate of µ̄ is the mean of the sample. We take partial
derivatives with respect to Σ:

∂

∂Σ
ln L(µ, Σ) = −n

2
Σ−1 +

1
2

Σ−1

(
n

∑
i=1

(xi − µ)(xi − µ)⊤
)

Σ−1. (15)

Letting this partial derivative be zero, the equation is as follows:

−n
2

Σ−1 +
1
2

Σ−1

(
n

∑
i=1

(xi − µ)(xi − µ)⊤
)

Σ−1 = 0. (16)

The estimate is replaced by Σ̄, then,

Σ̄ =
1
n

n

∑
i=1

(xi − µ)(xi − µ)⊤. (17)

The maximum likelihood estimate of Σ̄ is the covariance matrix of the sample. Nor-
mal distribution based on MLE is a commonly used and effective method that performs
especially well with large samples and satisfies the normality assumption.

2.3. Wavelet Filter

The wavelet denoising algorithm serves as an essential method by suppressing the
noise to maximize the retention of the meaningful part of the signal. The method utilizes
the wavelet transform’s multi-scale property to decompose the noise-affected signal into
several scale components. The wavelet transform is the inner product of the mother
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wavelet function shifted by b with the signal f (t) to be analyzed at different scales a,
with the expression

WF(a, b) =
∫ +∞

−∞
φa,b(t)dt. (18)

The scale shift transformation function is

φa,b(t) =
1√
a

φ

(
t − b

a

)
, a > 0, b ∈ R, (19)

where a is the scale factor with a range greater than 0. b is the shift factor, which can be positive
or negative. The act of stretching is accomplished by adjusting the magnitude of a, while a
shift is achieved by altering the value of b. The φa,b(t) is the mother wavelet or fundamental.
In the time domain, it is a bandpass function with zero mean, expressed as∫ +∞

−∞
φa,b(t) = 0. (20)

The signal is decomposed into sub-signals of different frequency ranges using a
wavelet transform. Subsequently, an appropriate threshold is set according to the character-
istics of the scale. The sub-signal components with amplitudes that exceed the threshold are
retained as helpful information. Meanwhile, sub-signal components with amplitudes that
are below the threshold are considered noise components to be suppressed or removed.

Wavelet filtering filters out noise by thresholding, where the most critical step is the
threshold selection. Thresholding for wavelet filtering is generally divided into hard and
soft thresholding. The soft-threshold expression is shown below:

s =

{
sign(x)(|x| − T), |x| > T

0, |x| ≤ T
, (21)

where sign(x) denotes the positive or negative sign of x. T is the threshold. x is the wavelet
coefficients after being decomposed. s is the wavelet coefficients after threshold filtering. In
the soft-threshold case, data exceeding the absolute value of the wavelet threshold become
a subtraction of two values. In contrast, data less than the absolute value of the wavelet
threshold become zero. The hard-threshold expression is shown below:

s =

{
x, |x| > T

0, |x| ≤ T
. (22)

In the hard-threshold case, the data are retained when the absolute value of the wavelet
coefficients is greater than the threshold while becoming zero when the wavelet coefficients
are less than the threshold. Relevant experimental studies [44] show that hard thresholding
may produce discontinuities that lead to oscillations or artifacts in the reconstructed signal,
while soft thresholding makes the reconstructed signal smooth. Therefore, we use soft
thresholding to filter the phase signal.

The size of the threshold affects the filtering effect. Figure 2 shows a standard normal
distribution curve with different confidence intervals labeled. The A area represents
the 68.3% confidence interval (±1 standard deviation), the B area represents the 95.5%
confidence interval (±2 standard deviation), and the C area represents the 99.7% confidence
interval (±3 standard deviation). Typically, the threshold is set around 3σ, which filters out
99.7% of the phase noise.
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Figure 2. Normal distribution with mean µ and standard deviation σ. A areas indicate 68.3%
confidence intervals, B areas indicate 95.5% confidence intervals, and C areas indicate 99.7%
confidence intervals.

In deformation monitoring, there is both high-frequency and low-frequency informa-
tion in the deformation monitoring phase. The period information, deformation trend,
and atmospheric phase information are slowly changing, and the mutation information is
rapidly changing. The deformation trend contains information about slow changes in ter-
rain, which is essential for deformation monitoring. Wavelet filtering plays a filtering and
smoothing role for noise signals or interference signals that are smaller than the threshold,
while it plays a detection role for signals that are greater than the threshold.

3. Reliable Observation Point Selecting Process

In low-coherence scenarios, there is a high level of noise or mutation information in the
target phase information. Mutation information often results in unwrapped phase errors,
and phase unwrapped errors directly affect the results of deformation processing. Higher
noise information affects phase stability. For the detection of low-coherence areas, this
paper proposes a screening process for low-coherence areas, and the whole deformation
information processing process is shown in Figure 3.

The whole signal processing contains 10 steps. In particular, the signal pre-processing
mainly comprises step 1 to step 6, to improve the density of observation points. Step 7
and step 8 screen the observation points to improve the accuracy of the observation points.
Step 9 and step 10 are atmospheric phase estimation and removal. The processing of each
step is described in detail in Sections 3.1 and 3.2.

3.1. Data Acquisition and Pre-Processing

GB-SAR continuously transmits a Frequency Modulated Continuous Wave (FMCW)
signal from a fixed ground position. These signals are transmitted toward the detection area,
and the system records the reflected signal. The echo signals contain information reflected
from different objects and ground features. These data are systematically calibrated and
compensated to result in SAR images [9].

Step 1 is the MLE estimation of the differential phase information. Differential phase
information is the phase difference between two neighboring images, which can effectively
eliminate the effect of the initial phase or linear trend. The differential phase accomplishes
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the operation in the complex domain, and the differential phase range is −π and π. Phase
mutations often occur in low-coherence areas with low signal-to-noise ratios, which are
indicated by the appearance of higher amplitude pulses for a short time. The occurrence
probability of the mutation phase is directly proportional to the standard deviation of
the distribution function, a relationship corroborated by the posterior probability. The
probability of a mutation phase diminishes with a decrease in the standard deviation of the
phase information.

image set
Imaging

Step4:

Phase

extraction

Step7:

DBSCAN
cluster 

Step8:

Lyddane-
Shindo

criterion 

Image set

Step10:

Remove

atmospheric 
information

Step9:

Atmospheric 

information

estimation

Displacement
information

Step2:

Preliminary
screening

Step1:

MLE 

estimation

Pre-processing

Step5:

Phase 


unwrapped


Step3:

Eliminate

error phase

Step6:

Wavelet filter


Select ROP

ROP

Figure 3. The proposed ROP selection method.

The estimation of the parameters of a Gaussian distribution is accomplished through
maximum likelihood estimation, with the accuracy of the estimation improving as the
sample size increases. The phase of stable observation points conforms to a Gaussian
distribution. However, as noise increases, phases exceeding ±π are wrapped back within
the range of ±π, gradually approaching a uniform distribution. Assessing the variance can
evaluate the stability of the phase. According to the literature [45], the critical variance for
completely decorrelated points is π2/3. Points with a variance greater than that value are
considered to be noise.

Step 2 involves an initial selection of observation points, guided by estimated parame-
ters. These parameters gauge the reliability of the observation points, with a lower standard
deviation indicating higher confidence. Consequently, a reduced standard deviation results
in a more selective screening process, potentially diminishing the number of observation
points. Nonetheless, an excessively limited set of observation points may affect the extent
of the observational coverage. Therefore, the screening threshold should be tailored to
the specific observational context. Typically, scatterers with a standard deviation greater
than 1.5 are meaningless for processing. This criterion strikes a balance between retaining
an adequate quantity of observation points and incurring a certain level of phase error
amongst them.

Step 3 is to eliminate the phase error or phase correction. Commonly used error
correction methods are interpolation, median filtering, and mean filtering. The interpolation
method is to interpolate the phase where the absolute value of the differential phase exceeds
π. When filters are used, the length of the filter should be moderate, because a longer filter
will filter out the useful deformation information.
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Step 4 is the phase extraction of observation points, which involves converting complex
information into phase information. The image set contains both magnitude and phase
information. The magnitude information in a low-coherence scene does not fully reflect the
stability of the phase, so the phase information is extracted for more accurate analysis. The
following equation can represent the process of phase extraction:

ϕex(ti) = arg{s(ti)}, i = 1, 2, . . . , N, (23)

where ϕex(ti) denotes the point phase information at moment ti. s(ti) is the phase-corrected
complex information. arg{·} denotes the phase calculation of complex data.

Step 5 is phase unwrapping, which recovers the actual phase of the target from the
wrapped phase information. The range of phase information calculated in the phase
extraction step is (−π, π), as the exceeding phases are also folded back into that range. The
following equation can represent the process of phase unwrapping:

ϕunwrapped(ti) = ϕex(ti) + 2πki , (24)

where ϕunwrapped(ti) is the true phase at moment ti after phase unwrapping. ϕex(ti) is the
wrapped phase information at that moment, calculated directly from the image data. ki is
the unwrapping constant, which must be added during the unwrapping process to ensure
that the phase values are continuous after the unwrapping. We judge the phases of two
adjacent images to return the wrapped phase to the actual phase information. The judgment
condition is

ki+1 =


ki + 1 , ϕex(ti+1)− ϕex(ti) < −π

ki ,−π ≤ ϕex(ti+1)− ϕex(ti) ≤ π

ki − 1 , ϕex(ti+1)− ϕex(ti) > π

. (25)

The condition for the above equation to be true is that the motion of the target point
is not ambiguous. In other words, the motion distance in the sampling interval cannot be
greater than λ/4.

Step 6 involves a wavelet filter that adaptively filters observation point phases or de-
formation curves by adjusting thresholds based on MLE standard deviation. The screened
observations have different estimated standard deviations due to their different stability.
Proper thresholding filters out most of the noise and retains the deformation trend informa-
tion. The specific realization is that the threshold value is the standard deviation multiplied
by the weight factor. The threshold of the wavelet filter can be adjusted according to
the MLE standard deviation so that less stable observation points can achieve the same
smoothness as stable observation points.

3.2. Reliable Observation Point Screening and Atmospheric Phase Processing

Filtering can remove the noise between several nearby phases, but it cannot constrain
the deformation trend of the observation points. Therefore we perform spatial dimension
clustering filtering to select observation points with correct deformation trends. In step 7,
the deformation data are clustered using the DBSCAN algorithm to identify the most
consistent set of observation points, while rejecting outliers that do not belong to any
group. These outliers are usually unreliable observations. Step 8 removes significant
anomalies and large deformation magnitude observations from the reliable group based on
the Lyddane–Shindo criterion. Step 9 fits the optimal atmospheric phase curve using the
MMSE estimation method. Step 10 removes the atmospheric phase information to obtain
the deformation information.

In step 7, the DBSCAN algorithm often identifies and eliminates outliers. Due to the
variable stability of the observation points, the dataset may still contain outliers even after
filtering. These anomalous data typically exhibit significant deviations from average data.
As a density clustering tool, the DBSCAN algorithm effectively differentiates between
different data groups and identifies ROPs and anomalies.
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The DBSCAN algorithm is characterized by two key parameters: the neighborhood
radius ε and the minimum number of points NPmin. Let us assume a given dataset
D = {x1, x2, . . . , xM}, where M represents the number of deformation curves. The neigh-
borhood radius ε is defined as follows: for any point xj ∈ D in the dataset, a search radius
within which the distance to xj is less than ε, i.e., Nε = {xj ∈ D|dis(xi, xj) ≤ ε}. If the
neighborhood number of xj is greater than NPmin, denoted as Nε(xj) ≥ NPmin, then xj is
defined as a core point. If a point xj in the ε neighborhood of xi and xi is a core point, then
xj is density-reachable with xi. Density-reachable exhibits transitivity, e.g., if core points xj
and xi are not within each other’s neighborhood radius, but both xj and xi are within the
neighborhood radius of xk, then xj and xi are density-reachable.

Based on the core concept of the DBSCAN algorithm, a point p is randomly chosen as
the starting point in the dataset D. Then, with the specified parameters ε and NPmin, we
find all the points that can be reached from the point p density. If p represents a core point,
all points within its ε neighborhood form a cluster. Next, the density reachability of these
points is examined to extend this cluster further until the complete set is identified. If p is
not a core point, the search moves to the next point until all points in the dataset have been
evaluated. Eventually, points in the dataset that do not belong to any cluster are classified
as outliers. Curves containing outliers are considered unreliable observations.

In step 8, the Lyddane–Shindo criterion uses the triple standard deviation σ of obser-
vations as the limit trade-off standard. Therefore, the Lyddane–Shindo criterion is also
known as the 3σ criterion. The standard deviation is a parameter calculated after extensive
repeated observations.

The basis for judgment under the Lyddane–Shindo criterion is as follows:

exm = |xm − x̄|, (26)

where exm represents the residual in the formula. In mathematical statistics, the residual
refers to the difference between the actual observed value and the estimated value, which is
the observed value of the error. Residuals greater than 3σ are significant errors that should
be compensated for or discarded. On the contrary, if the residual is less than or equal to 3σ,
it is classified as normal data that should be retained.

Generally, the Lyddane–Shindo criterion is applicable in scenarios involving many
observations, as its accuracy improves with extensive data calculation. According to
probability statistics, when data follow a normal distribution, the probability of residuals
exceeding 3σ is exceedingly tiny. Therefore, most instability points are screened when the
Lyddane–Shindo criterion discriminates outliers.

In step 9, the MMSE is a commonly used estimation method in signal processing.
It aims to find an estimator that minimizes the Mean Square Error (MSE) between the
estimated and actual values. The MSE is the expected value of the square of the estimation
error, commonly used to measure the accuracy of an estimated quantity. Mathematically,
if θ̂ is the estimator of θ, then the mean square error (MSE) is defined as

MSE
(

θ̂
)
= E

[(
θ̂ − θ

)2
]

(27)

where E denotes the expected value. The minimum Mean Square Error aims to find an
estimator θ that minimizes the MSE. Optimization algorithms such as the gradient descent
method achieve minimum mean square error estimation.

4. Experimental Results and Analysis

To evaluate the effectiveness of the proposed method in GB-SAR deformation monitor-
ing, this experiment analyzed the data measurements in a vegetation-covered scenario. The
experimental scenario is shown in Figure 4. Figure 4a is an optical picture, and Figure 4b is
a SAR image. In the SAR image, the scene targets in the red rectangle have shallow target
scattering coefficients at a distance of 200 to 280 m with relatively poor coherence due to
vegetation. The experiments are divided into two parts: the first part involves selecting



Remote Sens. 2024, 16, 1251 11 of 22

reliable observation points using the proposed method; the second part tests the accuracy
of the proposed method.

(a) (b)

AB

C D

reflector

MIMO GB-SAR system

Figure 4. Experimental scenarios with vegetation cover. (a) The view of the GB-SAR system. (b) SAR
image results.

For deformation monitoring, a high-speed GB-SAR system [9] was used with the
parameters shown in Table 1. The image acquisition rate can be as high as 100 frames
per second. The image acquisition rate can be flexibly adjusted according to different
application scenarios. In landslide scenarios, the image sampling rate was adjusted from
one frame per second to one frame per few minutes. The first part of the experiment was
3.3 h long, with an observation interval of 24 s, and the number of images acquired was
500. The second part of the experiment was 4.6 hours long, the observation interval was
24 s, and the number of images acquired was 700.

Table 1. GB-SAR system parameters.

Items Value

Center frequency 30 GHz
Frequency band 1000 MHz

ADC sampling rate 400 MSPS
Single ramp time T ≥20 µs

Time for a single full scan ≥4.96 ms
Detection distance 20–2000 m

4.1. Data Pre-Processing

Data pre-processing mainly comprises three parts. The first part is the parameter
estimation of the phase distribution based on MLE, which is mainly used to obtain the
distribution model through estimation. The second part is the mutation information
correction, which mainly addresses the unwrapping phase error. The third part is mainly
wavelet filtering, which filters the noise using the estimated distribution parameter.

To verify that the phase distribution conforms to a Gaussian distribution, MLE was
performed for a number of points from A to D in Figure 4, with the estimation outcomes
presented in Figure 5. The bar graph represents the actual statistical measurements, while
the red curve depicts the estimated probability distribution curve. Specifically, Figure 5a il-
lustrates the estimation results for point A, exhibiting a standard deviation of approximately
0.5. Figure 5b details the results for point B, where the standard deviation stands at 1.0.
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Figure 5c displays the findings for point C, with a standard deviation of 1.4, and Figure 5d
outlines the estimations for point D, showing a standard deviation of 1.8. The collective
results from Figure 5a–d affirm that, for low-noise observations, the phase conforms to
a normal distribution, gradually converging to a uniform distribution with a probability
distribution function of 1/2π as the noise increases.

(a) (b)

(c) (d)

Figure 5. The maximum likelihood estimate of the phase distribution parametric model (a) with
standard deviation 0.5 and mean 0, (b) with standard deviation 1.0 and mean 0, (c) with standard
deviation 1.4 and mean 0, and (d) with standard deviation 1.8 and mean 0.

Figure 6 presents the differential phase information for the corresponding distribution
parameters. Concurrently, Figure 7 exhibits the unwrapped phase information correspond-
ing to these parameters. In Figure 6a, the curve’s standard deviation is 0.5, showcasing that
most differential phases are confined within the [−1.5, 1.5] radian range. Correspondingly,
Figure 7a reveals stable unwrapped phase information without errors in phase unwrap-
ping. Figure 6b illustrates that the curve standard deviation is 1.0 and the phase is mostly
distributed in the range [−2, 2] radian, which is relatively stable. Figure 7b displays the
corresponding unwrapped phase information with one unwrapped error. In Figure 6c,
the curve standard deviation increases to 1.4, as evidenced by more differential phases
approaching π, suggesting a decrease in phase stability. This is further corroborated in
Figure 7c, where the unwrapped phase information contains a dozen unwrapping errors.
The unwrapped phase information shows a stepped pattern, due to the presence of un-
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wrapped errors. Figure 6d displays a curve with a standard deviation of 1.8, indicating
poor phase stability. Figure 7d shows the differential phase information for the incoherent
points, where the unwrapped phase information shows randomness. The progression from
Figures 5–7 clearly indicates a decline in phase information stability as standard deviation
rises, alongside an escalated likelihood of unwrapped phase errors.
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Figure 6. Differential phase information at different standard deviations (a) with standard devi-
ation 0.5, (b) with standard deviation 1.0, (c) with standard deviation 1.4, and (d) with standard
deviation 1.8.

The red curve in Figure 8 contains multiple unwrapped phase errors. Unwrapped
phase errors show more pronounced phase jumps that deviate from the standard curve 2π
with random jump directions. This is caused by a relatively large phase mutation, and two
consecutive relatively large noises cause unwrapped phase errors. The blue curve shows
the corrected phase information.

The mean and median filters can filter out the larger noise, and the minor noise is still
noticeable. To further filter the noise, the phase information is wavelet filtered. The red
curve in Figure 9 shows the curve before filtering, and the noise is more evident with an
amplitude of 2–3 mm. The blue curve is the deformation curve after filtering, which is
relatively smooth. Wavelet filtering can be used to detect larger deformation information,
such as the deformation in the circle in Figure 9.
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Figure 7. Phase unwrapping information at different standard deviations (a) with standard deviation
0.5, (b) with standard deviation 1.0, (c) with standard deviation 1.4, and (d) with standard deviation
1.8. Red circles indicate unwrapped phase errors.
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Figure 8. Unwrapped phase error and corrected phase. The red generation contains the unwrapped
phase error, and the blue is the corrected phase.

Figure 10 displays the comparative results after different processing steps. Figure 10a
shows the result without phase correction, where red points represent unstable scatterers.
In Figure 10b, the observation points in Figure 10a with deformations less than 10 mm
are screened, totaling 5084 points. Figure 10c presents the outcome after phase correction,
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where the density of candidate points significantly increased from 5084 to 31,020 points.
Figure 10d illustrates the result following a wavelet filtering step. Compared to the un-
filtered result, the phase stability is improved and deformation is reduced after filtering,
hence the deeper blue color. After data pre-processing, both the density and phase stability
of observation points have markedly improved.
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Figure 9. Example of wavelet filtering results. Red represents the curve before filtering, and blue
represents the curve after filtering.

-100 -50 0 50 100

Azimuth [m]

140

160

180

200

220

240

260

280

R
a
n
g
e
 [
m

]

0

2

4

6

8

10

c
u
m

u
la

ti
o
n
 d

is
p
la

c
e
m

e
n
t 
[m

m
]

(a)

-100 -50 0 50 100

Azimuth [m]

140

160

180

200

220

240

260

280

R
a

n
g

e
 [

m
]

0

2

4

6

8

10

c
u

m
u

la
ti
o

n
 d

is
p

la
c
e

m
e

n
t 

[m
m

]

(b)

-100 -50 0 50 100

Azimuth [m]

140

160

180

200

220

240

260

280

R
a

n
g

e
 [

m
]

0

2

4

6

8

10

c
u
m

u
la

ti
o
n
 d

is
p
la

c
e
m

e
n
t 
[m

m
]

(c)

-100 -50 0 50 100

Azimuth [m]

140

160

180

200

220

240

260

280

R
a
n
g
e
 [
m

]

0

2

4

6

8

10

c
u
m

u
la

ti
o
n
 d

is
p
la

c
e
m

e
n
t 
[m

m
]

(d)

Figure 10. The comparison results at different processing steps. (a) is the processing result before
phase correction, with standard deviation less than 1.5. (b) is the observation point with deformation
lower than 10 mm in (a). (c) is the result after phase correction, with the same standard deviation as
(a). (d) is the processing result after filtering.



Remote Sens. 2024, 16, 1251 16 of 22

4.2. Clustering–Screening and Atmospheric Phase Estimation

The filtered target points contain both correct and incorrect deformation trends. The
clustering–screening method selects the ROPs with correct deformation trends. The selected
ROP curves are used to estimate the atmospheric phase. To verify the effectiveness of
the clustering–screening and estimation method, the deformation data are first clustered
using the DBSCAN algorithm, and the clustered data are screened using the Lyddane–
Shindo criterion. Atmospheric phase estimates are obtained by MMSE fitting based on
screened curves.

Figure 11 shows the deformation curves for part of the observations in Figure 10d. The
blue curves are ROPs filtered by DBSCAN clustering combined with the Lyddane–Shindo
criterion. The blue observation curve area has the same density, and the curve is the
most stable. Red deformation curves indicate that not all points are within the 3σ limits
or that some curves have a deformation trend that is separated from the majority of the
deformation curve. Red curves are considered to be un-ROP.

Figure 11. Results of clustering–screening. Red indicates un-ROP curves, and blue indicates
ROP curves.

Figure 12 shows the changes in the MMSE estimation curves before and after removing
these un-ROP. In the figure, the red curves indicate the MMSE estimation results for scene
data containing stable and unstable curves, and the blue curve represents the ROP curve
estimation results after screening. The difference between the fitting results before and after
the cluster screening gradually increases is caused by the deviation of the instability point
from the normal deformation trend. The pink curve represents the deformation curve of
the corner reflector in Figure 4. With no deformation, the deformation curve of the corner
reflector is the atmospheric phase curve. It is proved that after removing the observation
points with incorrect deformation trends, the estimated curves of the reliable observation
points are closer to the actual deformation curves.
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Figure 12. Comparison results of MMSE curve estimation before and after clustering–screening.
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Figure 13a,b show that there is a significant difference before and after clustering
screening. Figure 13a shows a large blue area with a certain amount of red dots mixed in,
especially at close distances where the red dots are more pronounced. Figure 13b shows
only a patch of blue points. Before the clustering screening step, the observation area
contains mostly points with regular deformation trends and a small number of irregular
points, and after the screening, there are only observations with regular deformation trends.
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Figure 13. Processing results (a) before cluster screening and (b) after cluster screening.

This proves the successful application of the clustering–screening method in defor-
mation processing. Since curves with large changes in volatility trends also have some
weight in the curve estimation process, this can cause deviations in the estimation results.
Through clustering–screening, these observations with fluctuating deformation trends were
effectively identified and excluded, and the accuracy and reliability of the fitted curves were
improved. The significance of this is that, without knowing the deformation distribution
and trend of the observation points, the clustering–screening can separate the reliable and
unreliable observation points.

4.3. Comparison with Amplitude Deviation PS Method

In the second part of the experiment, the radar’s position remained stationary while
continuous observation of the area was conducted. To differentiate from the first part of
the experiments, artificial deformation was introduced in the second experiment. Both the
amplitude deviation PS method and the proposed method were employed for processing.
While the selection methods differed, data pre-processing remained the same for both
approaches. The selection of reliable observation points for the proposed method was
determined by the first part of the experiment, and the observation points were not screened
in this experiment.

Figure 14 presents the image outcomes from both selection methods. Deformations
identified by each method are highlighted with red circles in Figure 14, and the resulting
deformation curves align due to the application of identical processing steps across both
approaches. However, the precision in pinpointing reliable observation points diverges
between the two methods. Figure 14a shows the target points selected using an amplitude
deviation method with a threshold value of 0.25, while Figure 14b utilizes the proposed
method selecting the same number of 846 ROPs. While both methods achieve high accuracy
and similar observation distributions, the number of observed results they produce is quite
limited. Figure 14c,d feature the same number of 8864 ROPs, with a standard deviation
threshold of 1.0. Figure 14d demonstrates better accuracy in identifying reliable points
in local areas compared to the amplitude dispersion method, though the difference is
slight. The processing result in Figure 14f was achieved using the proposed method with
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a standard deviation threshold of less than 1.5. Figure 14e,f share the same 27,707 ROPs.
Figure 14f exhibits a higher accuracy in identifying reliable points compared to Figure 14e.
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Figure 14. Comparison of the proposed ROP method with the conventional method. The amplitude
deviation PS processing results (a,c,e). The proposed ROP method processing results (b,d,f). Red
circles indicate areas of artificial deformation.
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Figure 15 presents the accuracy results of two methods. It demonstrates that the
proposed method outperforms the amplitude deviation selection method in terms of
accuracy. Although the accuracy of target points decreases with an increase in the standard
deviation of estimates, the advantage of the proposed method grows as the number of
target points increases. Table 2 shows a data comparison between the proposed method
and the amplitude deviation PS method. As the phase standard deviation increases,
the filtering threshold for the amplitude deviation method also rises. When the phase
standard deviation of the proposed method reaches 1.5, the amplitude standard deviation
nears 0.5, where the amplitude standard deviation cannot fully reflect the stability of
the phase standard deviation. In Table 2, a significant drop in accuracy is observed for
a standard deviation greater than 1.5, which is attributed to the insufficient number of
reliable observation points in the target area. With the screening condition of a standard
deviation of 1.5, the accuracy of stable observation points can be improved by 14.66%.
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Figure 15. Comparison results of MMSE curve estimation before and after clustering–screening.

Table 2. The relationship between different estimation standard deviations and accuracy.

Standard
Deviation

Total ROP
Number

Amplitude PS
Method

Accuracy Rate
[%]

Proposed
Method

Accuracy Rate
[%]

Amplitude
Dispersion

Index

σ = 0.4 1222 100.0 100.0 0.278
σ = 0.5 2024 99.75 99.11 0.319
σ = 0.6 2912 98.49 97.84 0.350
σ = 0.7 4005 97.30 96.88 0.378
σ = 0.8 5309 96.01 95.16 0.402
σ = 0.9 6869 94.66 93.46 0.423
σ = 1.0 8864 92.87 91.31 0.441
σ = 1.1 11,155 91.03 88.61 0.456
σ = 1.2 14,022 88.69 84.64 0.469
σ = 1.3 17,526 85.72 78.73 0.478
σ = 1.4 22,098 81.87 70.53 0.485
σ = 1.5 27,707 76.64 61.98 0.491
σ = 1.6 45,718 55.07 44.73 0.501
σ = 1.7 78,070 36.10 30.90 0.510
σ = 1.8 162,860 17.91 19.25 0.531
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5. Conclusions

Phase correction and the correct selection of deformation trends are crucial for defor-
mation detection in areas of low coherence. In this paper, by applying phase correction
to observation points and combining this with a clustering filtering method, the number
of reliable observation points increased from 5084 (before correction) to 27,707, achiev-
ing an approximate fourfold increase. This process significantly improved the density of
observation points, providing robust data support for the accuracy of deformation detec-
tion. Moreover, experimental validation in real scenarios revealed that using a standard
amplitude deviation value of 0.25 to select stable observation points resulted in a limited
number, leading to suboptimal regional detection effects. By relaxing the selection criteria
to an amplitude deviation value of 0.49, a larger number of observation points could be
obtained. However, the standard amplitude deviation PS method does not include the
phase correction and other data pre-processing steps proposed in this paper. Without these
pre-processing steps, the accuracy of the amplitude deviation PS method would be lower
than 18.35%. By adopting the proposed method, the accuracy reached 76.64%, effectively
enhancing the precision of ROP selection.

For high coherence areas, such as urban or structural environments, high signal-
to-noise ratio amplitude deviations can accurately reflect phase deviations, making the
amplitude deviation PS method an appropriate choice for selecting observation points.
However, in non-urban environments or vegetated areas, due to weaker scattering char-
acteristics and lower coherence, amplitude deviations no longer effectively reflect phase
deviations, and phase information is unstable. In these cases, the proposed method effec-
tively solves the problem of identifying observation points, making it a preferable option.
Finally, theoretical analysis and experimental results validated the effectiveness of the
proposed method for selecting ROPs in low-coherence areas.
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ADC Analog-to-Digital Converter
DBSCAN Density-Based Spatial Clustering of Applications with Noise
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