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Abstract: Determining background aerosol optical depth threshold value (BAOD) is critical to aerosol
type identification and air pollution control. This study presents a statistical method to select the
best BAOD threshold value using the VIIRS DB AOD products at 1 × 1 degree resolution from
2012 to 2019 as a major testbed. A series of multiple lognormal distributions with 1 to 5 peaks are
firstly applied to fit the AOD histogram at each grid point, and the distribution with the highest
correlation coefficient (R) gives preliminary estimations of BAOD, which is defined as either the
intersection point of the first two normal distribution curves when having multiple peaks, or the
midpoint between the peak AOD and the first AOD with non-zero probability when the mono peak
is the best fit. Then, the lowest 1st to 100th percentile AOD distributions are compared with the
preliminary BAOD distribution on a global scale. The final BAOD is obtained from the best cutoff
percentile AOD distributions with the lowest bias compared with preliminary BAOD. Results show
that the lowest 30th percentile AOD is the best estimation of BAOD for different AOD datasets and
different seasons. Analysis of aerosol chemical information from MERRA-2 further supports this
selection. Based on the BAOD, we updated the VIIRS aerosol type classification scheme, and the
results show that the updated scheme is able to achieve reliable detection of aerosol type change in
low aerosol loading conditions.

Keywords: aerosol type; background aerosol; threshold value; AOD; VIIRS; MERRA-2

1. Introduction

Atmospheric aerosols play a key role in the earth-ocean-atmosphere system [1]. As a
direct effect, they absorb and scatter the incoming short-wave solar radiation and the long-
wave earth radiation; as an indirect effect, they modify the cloud formation processes by
acting as the cloud condensation nuclei [2]. Aerosol particles can be emitted from various
sources, such as the ocean, desert, wildfires, and urban/industrial emissions. Retrieving
aerosol type information helps to characterize regional aerosol optical properties, track
aerosol transport paths, and provide composition information for air quality research [3].

Background aerosol optical depth (BAOD) is a parameter characterizing the light
extinction ability of local aerosol particles and represents the long-term stable level of
aerosol concentrations from local emissions, rather than the long-range transport pollutants
(i.e., dust storm), abrupt emission events (i.e., volcanic eruptions, wildfires), or unexpected
aerosol accumulations due to adverse weather condition (i.e., haze). For a single site, BAOD
could simply be regarded as a certain low level of AOD, but when applied to a large regional
or global scale, BAOD should vary with locations; for example, BAOD in urban areas with
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anthropogenic emissions is supposed to be different from (generally higher than) BAOD at
remote continent or grassland. Extracting BAOD from the total aerosol loading is important
for us and model simulation to separate anthropogenic effects from natural variability and
evaluate climate effects of specific aerosol types, e.g., urban/industrial, biomass burning,
dust, etc. [4,5]. BAOD is also a key factor for some satellite retrieval algorithms performing
atmospheric corrections of surface reflectance to remove aerosol contributions from satellite
signals [6,7]. Thus, determining the BAOD threshold value is fundamental for both aerosol-
climate effect assessment and satellite remote sensing correction.

Typical aerosols usually have certain AOD ranges. For example, background aerosols
like clean continental and maritime aerosols often have an AOD value from 0 to 0.2, while
anthropogenic and biomass-burning aerosols have much higher AOD, which ranges from
0.3 to 1.0, or even over 2 in some extremely polluted situations [8]. AOD is quite useful
in identifying background aerosols, which are characterized by relatively low aerosol
loading emitted from local sources [9,10]. Many previous studies have determined the
BAOD threshold value when identifying aerosol types (e.g., urban industry, dust) from
clean or background types. For example, Zhang, Kondragunta, Laszlo, Liu, Remer, Huang,
Superczynski, and Ciren [6] used the lowest 5th percentile AOD as the estimate of the
background AOD based on global AERONET observations; Xia, et al. [11] set the back-
ground level AOD550 as less than 0.1 based on 40 ground-based observations across China;
Petrenko, et al. [12] selected the peak histogram AOD as the background threshold for
the month before the burning season; Chen, et al. [13] chose AOD440 less than 0.2 as the
background threshold over an urban area in Northeast China. These BAOD threshold
values are generally determined by the researcher’s understanding of local emission and
aerosol transport as well as their own experience and preference. There are also aerosol-
type identification methods without the use of AOD [14,15], such as Angstrom Exponent
and Single scattering albedo (AE-SSA) [16], fine mode fraction, and single scattering albedo
(FMF-SSA) [17], and scattering Angstrom Exponent and absorbing Angstrom Exponent
(SAE-AAE) [18]. However, it should be noted that the widely used aerosol properties, such
as SSA and SAE from sun-photometer observations, are only available when AOD > 0.4.
Therefore, these methods often miss the classification at AOD < 0.4 when ground-based
sun-photometer products are used, and an AOD of 0.4 could be considered the hidden
BAOD threshold value.

In addition to these ground-based studies, satellite sensors like VIIRS also provide
global products with background aerosol information [19]. In the VIIRS aerosol classi-
fication algorithm, aerosols are divided into eight types, in which AOD less than 0.3 is
identified as background type [3]. Different from ground-based observation, the selection
of 0.3 as the BAOD threshold for VIIRS is more like a compromise to the limitation of the
sensor and algorithm because the accuracy of AE is really limited when AOD is lower than
0.3. Aerosol type cannot be accurately identified, and thus, a ‘background’ type is used to
represent these low-loading aerosol situations [20]. Zheng, Che, Xia, Wang, Yang, Chen,
Wang, Zhao, Li, Zhang, Gui, Yang, Liang and Zhang [15] identified clean continent aerosols
with AOD < 0.25 based on MODIS data. Chen, et al. [21] used an AOD threshold value of
0.2 to identify clean aerosols over China based on Himawari-8 observations, and the clean
aerosol is identical to the background aerosol type. Whether for ground or satellite aerosol-
type classification, the background AOD threshold value varies substantially from 0.1 to 0.3
and has not yet been properly defined. The classification of aerosol types, however, is rather
sensitive to the selection of the BAOD threshold value [5,15,22]. Such a large variation
in BAOD threshold value will cause uncertainty in the classification of aerosol types and
decrease the comparability of similar studies [23–25]. Establishing a more reasonable and
statistically based BAOD standard will help to unify the incoherence in aerosol-type studies,
lower the level of difficulty in data comparisons, reduce the uncertainty in aerosol-type
retrievals, and improve the quantification of the aerosol climate effects.

This study presents a reference map of global BAOD threshold values using a statistical
method based on long-term satellite AOD observations from VIIRS, MODIS, and MISR. The
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statistical base of the BAOD determination involves multiple lognormal fitting processes
for AOD histograms within each grid and an optimized process to search the best cutoff
percentile of the lowest AOD on a global scale. With the help of the MERRA-2 dataset, we
discussed the rationality of the BAOD from the chemical view, and we further discussed
the implications of the BAOD threshold value for aerosol-type classification using VIIRS
observations as an example.

2. Materials and Methods
2.1. Satellite AOD Data

VIIRS is a scanning radiometer onboard the Suomi National Polar-orbiting Partnership
satellite launched in October 2011 [19]. It provides multi-spectral data twice per day, once
during the daytime and once during the nighttime [26]. Aerosol properties are retrieved
only during the daytime measurements at 1:30 P.M. local time. In this study, we choose
VIIRS data as a testbed for our statistical method because of the following reasons: (1) VIIRS
orbital swath is broader (by ~50%) than Moderate Resolution Imaging Spectroradiometer
(MODIS), and it has no data gaps at equatorial regions and also twice or more sampling per
day at the middle to high latitudes, which means VIIRS provides a broader spatiotemporal
coverage of AOD measurement. (2) Since the aging of MODIS (especially Terra, launched
in 1999) and Multi-angle imaging spectroradiometer (MISR, onboard) sensors, their data
accuracy is getting unstable, and lots of efforts are needed to ensure the data is suitable
for climate studies [3]. As a new generation sensor designed to continue the EOS-era data
records, VIIRS will become the major sensor replacing MODIS soon. Thus, we choose
the VIIRS DB AOD product as our major testbed. The VIIRS data used in this work is
VIIRS V1 AOD from the Deep Blue Level 3 Daily aerosol data in the Level 1 Atmosphere
(Archive Set 5110) collection (AERDB_D3_VIIRS_SNPP). The spatial resolution of the data
is 1 × 1 degree, and the temporal coverage is from March 2012 to December 2019. Also, the
latest MODIS C6.1 Level 3 Daily AOD product from Dark Target (DT), Deep Blue (DB), and
their fusion (DTB) (MOD08_D3 for Terra and MYD08_D3 for Aqua) and MISR Version 23
Level 3 Global AOD product (MIL3DAEN) are also included to analyze the influence of
spatial-temporal coverage of AOD on the determination of BAOD threshold value. VIIRS
and MODIS data can be found at NASA’s Level-1 and Atmosphere Archive and Distribution
System Distributed Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 25 March 2024), and MISR data can be found at the Atmospheric Science Data
Center (https://eosweb.larc.nasa.gov/project/misr/misr_table, accessed on 25 March
2024). The time ranges for MODIS and MISR AOD are from January 2012 to December 2019.

2.2. AERONET Data

Aerosol Robotic Network (AERONET) is a ground-based remote sensing network that
provides long-term and continuous aerosol properties around the world [27]. The AERONET
collaboration provides globally distributed observations of spectral AOD, inversion products,
and precipitable water. These products are often used in aerosol-related research and satellite
data validations [28]. The AERONET data are publicly accessible at the AERONET Team
website at NASA Goddard Space Flight Center (http://aeronet.gsfc.nasa.gov/, accessed on
25 March 2024). In this work, Level 2.0 daily AODs at 440 nm and 670 nm in the AEROSOL
OPTICAL DEPTH (V3)-SOLAR collection are used to obtain AOD550 using an Angstrom
Exponential relation. The interpolated AOD is regarded as the ground truth value to validate
the VIIRS AOD.

2.3. MERRA-2 Aerosol Chemical Data

The Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRA-2), was developed by the NASA Global Modeling and Assimilation Office
(GMAO) [29]. There are two primary objectives of developing MERRA-2: one is to assimi-
late data from NASA’s Earth Observation System (EOS) and demonstrate its usefulness for
climate study, and the other is to improve the representation of the atmospheric hydrologi-
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cal cycle in reanalysis models compared to previous ones. MERRA-2 reanalysis data has
a resolution of 0.625◦ longitude by 0.5◦ latitude on a global scale, and it provides hourly
column mass density of black carbon (BC), organic carbon (OC), dust, SO4, sea salt, SO2,
and Dimethyl sulfide (DMS) [30]. MERRA-2 data are available at MDISC, managed by
the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)
(https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, accessed on 25 March 2024). Since
this study focuses on background AOD over land, only column mass densities of BC, OC,
dust, SO4, and SS are taken into account. The time period of MERRA-2 data used in this
study is between 2018 and 2019 (two years).

2.4. Multiple Lognormal Distribution Fitting for AOD Histogram

This study determines BAOD values by utilizing multiple lognormal fitting processes
for AOD histograms within each grid. Multiple models in AOD histogram can be a
representation of aerosol species [31,32]. The AOD histogram for each grid is created using
a log10 AOD space ranging from −2 to 1 with an interval of 0.1 (a total of 31 bins with AOD
ranging from 0.01 to 10). In each grid, five lognormal distributions with 1 to 5 modes are
fitted to the histogram. P(logτ) denotes the fitted AOD histogram for the five lognormal
distributions. Function F is used to evaluate the fitting performance of the five lognormal
distributions. The lognormal mode number with the lowest F value is considered the best
estimation. Specifically, the target function is the square of the absolute bias between the
AOD histogram and the fitted one.

P(log τ) =
m

∑
i=1

Pi

σi
√

2π
× exp(−

log(τ2/µ2
i )

2σ2
i

) (1)

F =
n

∑
j=1

[
Pf it(log τj)− Phist(log τj)

]2
(2)

where τ represents AOD, m denotes the number of lognormal modes ranging from 1 to
5, P(log τ) is the probability density of m lognormal with modal probability density Pi,
geometric mean µi, and standard deviation σi, F is the target function, j represents the j-th
AOD bin, Pfit represents the fitted probability density function, and Phist is the reference
probability density function from the AOD histogram.

The least squares method is used for fitting. The main idea of the least squares method
is to minimize the sum of the squares of the errors (also known as residuals) of the true and
predicted values by determining the unknown parameters (usually a matrix of parameters).
The loss function F can be treated as a multivariate function, and F is a partial derivative of
the parameters, respectively, so that the partial derivatives are equal to 0. Thus, a system
of nonlinear equations is obtained, and then the iterative method is used to solve for the
unknowns (i.e., Pi, µi, and σi).

∂F
∂Pi

=
∂F
∂σi

=
∂F
∂µi

= 0 (3)

min f (x) =
n

∑
i=1

[
Phist,i − Pf it,i

]2
(4)

F(x + dx) = F(x) + dxF′(x) + O
(

α2
)
≈ F(x) + dxF′(x) (5)

where x is the unknowns (i.e., Pi, µi, and σi), dx is the perturbation, and F′ represents
the derivative.

An initial guess pool for each AOD histogram is constructed before fitting. In this
pool, the highest point of the mono-mode, the turning points for the multi-modes (second,
third, and later peak points), and the points where the slope changes significantly make
up the initial guess of mode locations and their corresponding probability densities serve

https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
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as the initial guess of mode heights. The initial standard deviations are 0.5, 0.45, 0.3, 0.35,
and 0.3 for 1 to 5 modes, respectively. The boundary of each mode is set to be the same
as > 0, −2 < < 1, and 0.05 < < 1. If any of the three parameters in each mode exceeds
the boundaries, the fit is rejected. For example, if a negative Pi value is observed in a
bimodal distribution, this fit is rejected, and we turn to fit the trimodal distribution. To
avoid redundant modes, we calculate the specific value of each mode on the log10 AOD
space. If less than two positive values are detected, this mode is deleted. For instance, if
a trimodal fit is performed and the third mode generates only two positive values in the
entire log10 AOD space, with all other values being zero, we delete the mode and degrade
the trimodal distribution to a bimodal distribution. Sites with fewer than 60 observations
are avoided during each fitting process because they are statistically insignificant and may
cause unstable or unrealistic fitting results.

The best fit goes to the lognormal distribution with the lowest F values. The prelimi-
nary BAOD is either the intersection point of the first two normal distribution curves when
having multiple modes, or the midpoint between the peak AOD and the first AOD with
1/10 peak probability density values when the mono normal distribution is the best fit
(Figure 1).
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Figure 1. Determination of background AOD threshold value for different AOD histogram situations.
(a) fitted mono mode, and (b) fitted multiple modes. Here, two AERONET AOD histograms from
Karlsruhe and Georgia Tech are used as an example to illustrate the determination of BAOD threshold
value for the mono- and multi-lognormal distributions.

2.5. Determination of the Best Cutoff Percentile for BAOD

Since the preliminary BAOD is obtained from statistical methods, the results will be
inevitably influenced by factors such as the difference in the observation number in each
grid and the data accuracy. Thus, the preliminary BAOD may not be smooth, and some
outliers may appear. To avoid the outliers, we create 100 guesses with the lowest 1st to
100th AOD as reference BAODs and select the best cutoff percentile for the final BAOD
threshold value. To determine the best estimation of BAOD, we have two target functions:
an absolute bias (R) between the preliminary and guess BAOD and the other is a relative
bias (Q).

R =
180

∑
lon=−180

90

∑
lat=−90

(
BAODk

lon,lat − BAODpre
lon,lat

)2
, (6)

Q =
180

∑
lon=−180

90

∑
lat=−90

(
1 −

BAODk
lon,lat

BAODpre
lon,lat

)2

, (7)
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where BAODk
lon,lat represents the AOD of the lowest kth percentile, and BAODpre

lon,lat is the
preliminary BAOD; R and Q are the k-th absolute and relative bias, respectively. The best
cutoff percentile is chosen as the percentile with the lowest R and Q, and the results based
on VIIRS data are presented in Section 3.3.

2.6. IDW Interpolation

To evaluate the rationality of the reference BAOD obtained from VIIRS AOD using
the methods described in Sections 2.4 and 2.5, a ground-based BAOD map from global
AERONET sites is obtained using an Inverse Distance Weight (IDW) interpolation [6]. The
IDW interpolation is a deterministic method for multivariate interpolation with a known
scattered set of points. The values at unknown points are calculated with a weighted aver-
age of the values available at the known points. A general form of finding an interpolated
value y at a given point x based on samples yi = y(xi) for i = 1,2, . . . ,N using IDW is an
interpolating function:

y(x) =


N
∑

i=1
wi(x)yi

N
∑

i=1
wi(x)

, i f d(x, xi) ̸= 0

yi , i f d(x, xi) = 0

, (8)

where wi = 1/d(x, xi)
p is the IDW weighting function, x denotes an interpolated point, xi is

an interpolating (known) point, d is the distance from the known point xi to the unknown
point x, N is the total number of known points, and p is the power parameter [33]. Specifi-
cally, xi denotes the BAOD values from the i-th AERONET site using the same multiple
lognormal fitting processes described in Section 2.4, and x denotes the same grid point as
that in the VIIRS BAOD map.

3. Results
3.1. VIIRS DB AOD Comparison with AERONET AOD

The temporal coverage of the VIIRS DB AOD measurement is shown in Figure 2a.
VIIRS DB AOD product has a high temporal coverage between 10 N and 50 N and between
−10 N and −50 N, while a much lower temporal coverage is observed between the two
belts. Such a temporal coverage difference is probably due to the high occurrence of clouds
near the equator [34]. The scattering circles in Figure 2a illustrate the 697 AERONET sites
used in evaluating the VIIRS DB AOD products. The vertical color bar illustrates the
magnitude of the correlation between AERONET and VIIRS DB AOD, and the horizontal
color bar indicates the VIIRS DB AOD observation frequency. Since AERONET provides a
point observation with a sampling frequency of 5–15 min while satellite provides a regional
snapshot at a single time, a spatiotemporal matchup scheme is applied. To be specific,
AERONET data is firstly averaged within a time window of ±30 min from the satellite
overpass, and then a spatial average is conducted if more than one AERONET observation
is available in the 1◦ × 1◦ grid cell.

Figure 2b shows the overall statistics based on 189,939 common observations from
paired AERONET and VIIRS observations. VIIRS DB AOD generally performs well in
most AERONET sites and has an overall correlation of 0.862 with AERONET AOD, and
74.2% of VIIRS DB AODs fell in the estimated error (EE) envelopes of ±(0.05 + 15%).
The VIIRS DB data set was previously validated by Sayer et al. [35] on an instantaneous
basis. Compared with the results from Sayer et al. [35], a similar RMSE (0.125) and median
bias (0.005) values were obtained. Their correlation R (0.82) is slightly higher, while the
Estimated Error envelope (EE) within the ratio (0.80) is a little bit lower. We also observe
a regional dependency on the correlation, which is in agreement with the results from
Sayer et al. [35]. The correlation coefficients tend to be less than 0.4 over low AOD areas
like southwest Africa and Australia, as well as highly elevated terrain such as the Rocky
Mountains and the Tibetan Plateau in western China, while they are close to 1 over other
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regions with high aerosol loading or low elevated terrain [3]. Figure 2d shows the VIIRS
DB AOD performance over the low AOD regime. High EEs with a ratio >60% are observed
for low AOD bins (0–0.3), which indicates that most of the observations fall into the EE
envelope of ±(0.05 + 15%).
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Figure 2. (a) Map of the available VIIRS DB AOD observations from March 2012 to December 2019
and the correlations with AERONET measurements, circles denote the involved AERONET sites, the
vertical color bar denotes the magnitude of the correlation, and the horizontal color bar denotes the
VIIRS DB AOD observation number during the study period; (b) the overall correlation between
VIIRS DB and AERONET AOD. EE represents estimated error; the 1:1 line is shown in black dotted
line; the gray dotted lines indicate ±(0.05 + 15%) of the AERONET AOD; and (c) Annual mean DB
AOD map at 550 nm from VIIRS measurements during March 2012 to February 2019. (d) performance
of VIIRS DB for different AOD bins.

A high correlation of 0.862 between VIIRS and AERONET AOD indicates that VIIRS
AOD can accurately represent the daily variation of aerosol loadings globally. The low
fitting intercept of 0.025 suggests that VIIRS generally overestimates AOD by 0.025, which
is higher than the AERONET uncertainty of 0.01 but still accurate for satellite observations.
However, it is important to note that such overestimation on VIIRS AOD would be passed
to BAOD threshold values. AOD observations fall within the expected error, which means
a maximum overestimation or underestimation of around 0.1 when AERONET AOD is
lower than 0.3. Low R or EE ratios are observed in southwest Africa and Australia, as well
as highly elevated terrain such as the Rocky Mountains and the Tibetan Plateau in western
China. This can lead to an imprecise estimation of the absolute BAOD threshold value, and
BAOD from satellite observations in these regions needs further examination before usage.
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3.2. Global AOD Distribution

Figure 3 shows the map of VIIRS DB AOD at different lowest percentiles. The lowest
50th percentile (the median), 25th and 75th percentile (50% of the data), 16th and 83rd
percentile (one-standard deviation, 68% of the data), and 3rd and 97th percentile (two-
standard deviation, 95%) of AOD are selected to show the global AOD characteristics. The
AOD map shown in Figure 3a with the lowest 3rd percentile could be regarded as the
cleanest aerosol condition for different regions. The lowest 3rd percentile AOD in most
parts of the world is lower than 0.1; however, a relatively high AOD above 0.2 is observed
in the northern part of South America, North Africa, and India, indicating a high aerosol
loading base. With the increase of percentile, a relatively fast increase of AOD is observed
in the Middle West Africa, Middle East, India, and East Asia (Figure 3a–e), which indicates
these regions are the major aerosol sources around the world. From Figure 3f, 83% of AOD
in most parts of North and South America, South Africa, Europe, Australia, and North
Asia are below 0.3, which means an overall clean aerosol condition over these regions.
However, from the lowest 97th percentile AOD map (Figure 3g), extremely high AOD
events (AOD > 1) appear in some of these clean regions. The extreme AODs found in the
northern part of North America and the tropical region of South America are mostly from
biomass-burning smoke [3]. Those extreme AODs observed in East Asia are partly due
to the heavy anthropogenic emissions and partly due to transported dust from the desert
region and occasionally biomass-burning smoke from Siberia and Southeast Asia [36]. Also,
97% of AODs are found always below 0.3 over the southwest part of North and South
America, the southern part of South Africa, North Europe, and the Non-desert region
of Middle Asia (e.g., Tibetan Plateau) and West Australia, indicating a year-round clean
aerosol condition.
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83rd, and 97th percentile.

3.3. Preliminary BAOD from Multiple Lognormal Fitting

Figure 4a shows the global multiple lognormal fitting correlation map. Most parts of
the world have a very high fitting correlation of over 0.98. Although relatively low fitting
correlations are observed over the high latitude northern hemisphere (50 N–80 N), the
Tibetan Plateau, and Midwest Australia, it does not hinder the determination of BAOD
threshold over these regions, and a generally ‘smooth’ BAOD map is finally obtained
despite some abrupt points with abnormal BAOD values. The quadruple and triple
lognormal modes are found to appear most frequently around the world and their combined
fraction is around 80%. This high frequency of occurrence of multiple AOD modes indicates
that aerosol types tend to vary among three or four kinds in most parts of the world [37].
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The preliminary BAOD from multiple lognormal fitting is shown in Figure 4b. A
distinct high BAOD is found over the Indo-Gangetic Plain, Arabian Peninsula, and North
and Mid Africa since the annual mean AOD over these regions is generally over 0.4. South-
east Asia also has a relatively high annual mean AOD, but the preliminary BAOD there is
much lower than in areas like the Indo-Gangetic Plain and the Arabian Peninsula. Such
difference is due to the fact that aerosol loading over Southeast Asia varies in a wide range,
and a number of AOD measurements fall in low AOD bins; thus, the corresponding AOD
histogram has a potential mode in low AOD bins [38]. While in high BAOD regions like
the Indo-Gangetic Plain and the northern part of South America, most AOD observations
fall in relatively high AOD bins, leading to the AOD histogram moving towards the high
AOD end. High BAOD values are also found in the eastern part of North America, for
these areas have relatively large industrial emissions [4].

3.4. Best Cutoff Percentile of the Lowest AOD for Background Aerosol

Figure 5a shows the variations of BAOD bias (R and Q) with an increasing percentile
of the lowest AOD. The lowest R and Q appear in the 9th and 30th percentile, respectively.
Considering that the global mean BAOD from preliminary multiple lognormal fitting is
0.113, we select the 30th percentile of the lowest AOD as the best estimation of BAOD
because its global mean (0.105) is very close to the preliminary mean BAOD of 0.113, while
the 9th percentile is only about half (0.063). The final BAOD map (Figure 4b) shows similar
patterns to those of the preliminary BAOD. North and Mid Africa, the Arabian Peninsula,
North and Mid Africa, and the northern part of South America are still characterized by
high BAOD threshold values. The eastern part of America has a slightly higher BAOD than
the western part. Compared with Figure 4b, wider coverage of BAOD over 0.1 is observed
over Europe and West Asia, and a distinct increase of BAOD from 0.1 to 0.4 is found in
Southeast Asia. Such an increase is generally acceptable for the background aerosol loading
because the annual mean AOD (especially in Southeast Asia, Figure 4b) is still much larger
(nearly twice) than the lowest 30th percentile AOD.
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To evaluate the rationality of the BAOD map in Figure 5b, the lowest 30th percentile
of AERONET AOD is selected as AERONET BAOD value, and then the IDW interpolation
method is applied to get a ground-based BAOD map. Here, the distance is set as 25 degrees,
and the power parameter is set as 2 in the IDW interpolation. Figure 5c shows the ground-
based interpolated BAOD map. We then calculate the global mean bias and RMSE between
the lowest 30th percentile of VIIRS AOD and the IDW interpolated AOD from AERONET.
The global mean BAOD bias and RMSE are 0.03 and 0.06, respectively. Similarly, high
BAOD pools are observed over South America, North Africa, and North Asia, while low
BAOD pools are over North America, Europe, and Australia. The interpolated AERONET
BAOD map generally agrees well with the VIIRS BAOD map, indicating the rationality of
the reference BAOD in Figure 4b. The differences between VIIRS BAOD and the BAOD
obtained from AERONET mainly come from two aspects. One is that the interpolation
process itself generates bias. Since the number of ground-based sites is limited, most regions
are short of reliable observations. Since aerosols are of high spatiotemporal variation, the
interpolated one may not be able to fully describe the variation of spatial aerosol conditions
compared to satellite observations. The other is that, as a statistical method, the multiple
lognormal fitting results may vary due to different inputs. Although high consistency
between VIIRS and AERONET AOD is observed, a lot of observations outside the EE
envelope (Figure 2b) will lead to changes in BAOD values and even outliers.

4. Discussion
4.1. Variation of BAOD to Different Satellite Datasets and Seasons

Due to the inconsistency of spatiotemporal coverage, systematic bias, and retrieval
algorithm between different sensors, the best estimation of the BAOD threshold value
may vary with different AOD products. To assess how the reference BAOD could vary
with different satellite AOD inputs, we apply the same BAOD determination process to
MISR and Terra- and Aqua-MODIS datasets. Figure 6a–g shows the overall fitting results
from Terra-MODIS, Aqua-MODIS, and MISR AOD inputs. Similar to VIIRS, the best
estimation of BAOD threshold value for MISR, Terra-MODIS, and Aqua-MODIS is selected
between the 28th and 33rd percentile of their lowest AOD. Since the first derivatives of the
absolute bias R are all around 0 in the vicinity of their best-fitting percentile, the difference
is negligible between the 30th and 28th/33rd percentile of the lowest AOD being the
best BAOD. Thus, the reference BAOD obtained from the current study varies little with
different satellite AOD products, and the use of the 30th percentile of the lowest AOD as
background AOD threshold value should be reasonable for various satellite sensors.

Aerosol loading and type usually vary with seasons, and such a seasonal variation
may also have an impact on the determination of the best BAOD threshold value. Following
the same data processing, the monthly mean BAOD threshold value from different sensors
is shown in Table 1. Due to the least data limitation (N > 60), the seasonal BAOD threshold
value from MISR is not available here. In general, the monthly average best percentile is
selected between 26.6 and 30.7. The best percentile shows an insignificant seasonal variation,
which tends to be low in June and July while high in January and December. The largest
difference to the reference 30th percentile is observed from the Terra-MODIS DB product,
where the 22nd percentile in June is found to be the best estimation. Figure 6h shows
the corresponding bias curve, and the use of the 30th percentile is acceptable because the
difference in log bias between the 30th and 22nd percentiles is not very large. Therefore, the
use of the 30th percentile of the lowest AOD as the background AOD threshold value is also
reasonable for different months. It should be noted that although the BAOD threshold value
is the 30th percentile, the monthly mean AOD will vary with seasons, and consequently,
the reference BAOD value also has a seasonal variation.



Remote Sens. 2024, 16, 1210 12 of 20
Remote Sens. 2024, 16, 1210 12 of 22 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 6. Variation of the BAOD bias with lowest AOD percentiles at 550 nm from (a) Terra-MODIS 
DT, (b) Terra-MODIS DB, (c) Terra-MODIS DTB, (d) Aqua-MODIS DT, (e) Aqua-MODIS DB, (f) 
Aqua-MODIS DTB, (g) MISR and (h) Terra-MODIS DB in June during 2012–2019. 

Aerosol loading and type usually vary with seasons, and such a seasonal variation 
may also have an impact on the determination of the best BAOD threshold value. Follow-
ing the same data processing, the monthly mean BAOD threshold value from different 

Figure 6. Variation of the BAOD bias with lowest AOD percentiles at 550 nm from (a) Terra-MODIS
DT, (b) Terra-MODIS DB, (c) Terra-MODIS DTB, (d) Aqua-MODIS DT, (e) Aqua-MODIS DB, (f) Aqua-
MODIS DTB, (g) MISR and (h) Terra-MODIS DB in June during 2012–2019.



Remote Sens. 2024, 16, 1210 13 of 20

Table 1. Seasonal summary of the best cutoff percentile of the lowest AOD for background aerosol for
different AOD products. The seasonal MISR results are not available due to its limited input number
(>60).

Dataset Year
2012–2019

Month

January February March April May June July August September October November December Average

VIIRS DB 30% 33% 32% 29% 27% 27% 27% 28% 28% 27% 32% 33% 31% 29.5%
MOD DB 28% 31% 27% 26% 24% 26% 22% 25% 25% 24% 25% 29% 31% 26.3%
MOD DT 32% 31% 28% 27% 28% 30% 27% 27% 27% 30% 28% 32% 31% 28.8%

MOD DTB 31% 27% 27% 27% 26% 27% 25% 26% 27% 38% 27% 28% 28% 26.9%
MYD DB 28% 30% 30% 28% 29% 27% 27% 30% 28% 30% 28% 29% 32% 28.9%
MYD DT 33% 30% 28% 29% 31% 29% 29% 28% 29% 32% 32% 32% 33% 30.2%

MYD DTB 32% 29% 28% 28% 29% 30% 29% 29% 29% 30% 28% 28% 29% 28.8%
MISR 32% - - - - - - - - - - - - -

Average 30.8% 30.1% 28.6% 27.7% 27.7% 28.0% 26.6% 27.6% 27.6% 28.7% 28.6% 30.0% 30.7% 28.5%

4.2. BAOD Determination from an Aerosol Chemical Perspective

Although we have determined that the 30th percentile of the lowest AOD is the best
background AOD threshold through a statistical approach, it is preferred to validate this
from a different perspective, such as a chemical view, to prove its rationality. Typical
aerosol particles have specific chemical components [5,13], and therefore, the variation
of aerosol types could be reflected by the variation of their chemical components [29].
The rationality of the BAOD threshold value is illustrated using the co-located aerosol
chemical information from MERRA-2. A spatiotemporal matchup scheme is applied to
ensure accurate validation. This is because VIIRS provides a regional snapshot at a single
time, and the resolutions of MERRA-2 and VIIRS AOD are different. Specifically, hourly
MERRA-2 data are first selected within a time window of ±30 min from the satellite
overpass. Then, they are re-scaled at a resolution of 1◦ × 1◦.

The global average variation of the normalized standard deviation of column aerosol
mass density with the lowest percentile of AOD over land is shown in Figure 7. The increase
of the lowest AOD percentile leads to an increase in the normalized standard deviation,
indicating a corresponding increase in the degree of chemical component change. When
AOD is located in the lowest 30th percentile, aerosol loading is relatively light, and there is
little variation in chemical components (as indicated by a low standard deviation of both
the average and each chemical).
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Figure 8 shows a decreasing trend in slope variation of normalized standard deviation
from 0 to the 30th lowest percentile AOD, followed by a stable slope variation from the 30th
to around the 75th lowest percentile AOD. This indicates that the chemical component vari-
ations are gradually becoming more prominent before the 30th lowest percentile AOD, but
they still remain at a low level of change, as indicated by the low standard deviation. After
the 30th lowest percentile AOD, a relatively stable rate of change in chemical components is
observed, indicating a gradual and significant shift in aerosol type as AOD increases (with
a high standard deviation). Thus, from a chemical perspective, the aerosol type is generally
stable when the AOD is low but becomes increasingly unstable as the AOD increases. The
breaking point of the changing rate of the standard deviation occurs at the 30th lowest
percentile AOD, which separates these two aerosol conditions.
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4.3. Case Studies of BAOD Applying on Satellite Aerosol Type Discrimination

For passive observations, particle radius is a key parameter in aerosol type classifi-
cation, and Angstrom Exponent (AE) is a widely used parameter that describes the bulk
aerosol particle size. Previous studies have proposed many well-established aerosol-type
classification methods via ground-based datasets [39–41], but they are not applicable in
low aerosol loading conditions because the key parameter, SSA, can only be accurately
measured or retrieved when AOD is high (e.g., AOD > 0.4 for AERONET inversion prod-
uct) [28]. Alternatively, the AOD-AE scheme is often used to achieve a rough classification
in low aerosol loading conditions [42]. For ground observations, both AOD and AE can be
accurately obtained, and aerosol types can be identified as background (continental clean),
urban industry/biomass burning, dust, and mixed over land. However, the situation gets
worse for satellite observations because AE can not be accurately retrieved in low aerosol
loading conditions. Also, due to a lack of proper background AOD threshold value for
a different region, a concession is made to simply tag the aerosol as a ‘background’ type
when AOD is less than 0.3 in the current VIIRS dataset, and in fact, the aerosol type is not
actually identified.

To illustrate the usefulness of BAOD in aerosol type classification, we update the VIIRS
DB aerosol type classification scheme by replacing the original ‘background’ threshold of
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0.3 with BAOD, and two case studies are introduced to compare their classifying results.
Figure 9 shows the original and updated VIIRS aerosol-type classification schemes. In
the updated scheme, the background AOD threshold value is determined dynamically
with consideration of both the reference BAOD and the sensor limitation (AOD < 0.3),
choosing the smaller one of BAOD and 0.3. A new aerosol type LP (Low Polluted) is
introduced when AOD falls between the reference BAOD (if less than 0.3) and 0.3. This LP
type represents a situation when aerosol loading is higher than the background condition
with potential influence by weak aerosol sources, such as thin dust layers with AOD less
than 0.3. To highlight the differences, we changed the VIIRS background aerosol type to an
unknown type since VIIRS does not perform the type identification when AOD < 0.3.
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The first case is a comparison of detecting thin dust layers over the Mediterranean
(Figure 10). A thin dust layer can be observed above the Mediterranean region on 10 April,
26 April, and 9 June 2019 from the MODIS true color images (1st column of Figure 10).
The thin yellow layer over the blue Mediterranean region is composed of suspended dust
particles blown from the southwest to the northeast, and the white pixels are clouds. AODs
over the north part of this region are generally below 0.3. Thus, the original VIIRS typing
scheme reports a UNK (VIIRS background) aerosol type over these areas and loses sight of
the thin dust layers (2nd column of Figure 10). However, the thin dust layers can generally
be detected via the updated typing scheme as LP type, which uses BAOD as the background
threshold value (3rd column of Figure 10).

The second case is a comparison of detecting thin smoke layers over South Africa
(Figure 11). The thin smoke layer (gray) can be easily distinguished from the cloud (white)
on 3 days in May 2019 (1st column of Figure 11). AODs over most of South Africa in the
selected days are generally below 0.3. Thus, the original VIIRS typing scheme reports a
‘background’ aerosol type over this region and fails to identify the thin smoke layers (2nd
column of Figure 11). However, using the updated typing scheme developed in this study,
the smoke layers can be well detected as LP type (3rd column of Figure 11). From these two
dust and smoke case studies, it is clear that the BAOD determined in this study is useful in
detecting aerosol-type variations when AOD is lower than 0.3, which cannot be achieved
using a unified background threshold of 0.3.
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background, and low pollution in low aerosol loading, respectively.

Remote Sens. 2024, 16, 1210 17 of 22 
 

 

HAS, NSFM, UNK, BG, and LP represent the high altitude smoke, non-smoke fine mode, unknown, 
background, and low pollution in low aerosol loading, respectively. 

The second case is a comparison of detecting thin smoke layers over South Africa 
(Figure 11). The thin smoke layer (gray) can be easily distinguished from the cloud (white) 
on 3 days in May 2019 (1st column of Figure 11). AODs over most of South Africa in the 
selected days are generally below 0.3. Thus, the original VIIRS typing scheme reports a 
‘background’ aerosol type over this region and fails to identify the thin smoke layers (2nd 
column of Figure 11). However, using the updated typing scheme developed in this study, 
the smoke layers can be well detected as LP type (3rd column of Figure 11). From these 
two dust and smoke case studies, it is clear that the BAOD determined in this study is 
useful in detecting aerosol-type variations when AOD is lower than 0.3, which cannot be 
achieved using a unified background threshold of 0.3. 

 
Figure 11. Similar to Figure 10, but for three biomass-burning events over South Africa on 19th May 
(a–c), 21st (d–f), and 24th (g–i), 2019. HAS, NSFM, UNK, BG, and LP represent the high altitude 
smoke, non-smoke fine mode, unknown, background, and low pollution in low aerosol loading, 
respectively. 

  

Figure 11. Similar to Figure 10, but for three biomass-burning events over South Africa on 19th
May (a–c), 21st (d–f), and 24th (g–i), 2019. HAS, NSFM, UNK, BG, and LP represent the high
altitude smoke, non-smoke fine mode, unknown, background, and low pollution in low aerosol
loading, respectively.
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4.4. Definitions and Identification of Background Aerosols

The definitions of background aerosol in the previous AOD-AE scheme, the current
VIIRS DB algorithm, and our study are different. Specifically, the background aerosol used
in many previous AOD-AE schemes usually refers to a remote clean continental aerosol
type away from anthropogenic influence (hereafter BG-RM), while the background aerosol
in the VIIRS DB algorithm is more like an unknown aerosol type. The background aerosol
in this study represents a local common aerosol condition without impact from transported
aerosols or occasional emission events like wildfires, and it changes with locations. For
example, in remote locations, the background aerosol has the same definition as BG-RM; in
urban regions, it represents the daily urban/industrial aerosols without influence from dust
or wildfire events or pollution episodes; and in the desert region, it refers to the natural
dust aerosol.

Many previous studies used a threshold value for background type classification at
a single site, and the background aerosol in these studies is similar to BG-RM. However,
when classifying aerosol type at a large domain, a unified threshold value may not be
proper because background aerosol types for different locations may be different, leading to
different background aerosol loadings. For example, Yu, et al. [43] used 0.2 as a background
threshold value to classify aerosol types in the urban Beijing area. For a clean region
like the Tibetan Plateau, however, a unified threshold of 0.2 will lead to a severe loss
of aerosol-type information. Thus, Pokharel, Guang, Liu, Kang, Ma, Holben, Xia, Xin,
Ram, Rupakheti, Wan, Wu, Bhattarai, Zhao and Cong [42] chose a much smaller value of
0.05 as a background threshold value to catch the aerosol-type variations. This indicates
that background aerosol type and its corresponding aerosol loading should vary with
locations. Thus, a location-specified threshold value may be more reasonable to represent
local ‘clean’ conditions (background aerosol). On a global scale, Zhang, Kondragunta,
Laszlo, Liu, Remer, Huang, Superczynski and Ciren [6] used the lowest 5th percentile AOD
as a background threshold value and Xia [44] used the lowest 25 percentile as a background
threshold value, but their selections tend to be personal experience or preference. Based on
a statistical basis in this study, we recommend the lowest 30th percentile AOD as the best
background threshold value.

Although changing the background threshold value from unified 0.3 to 30th percentiles
does not introduce further information regarding the aerosol type (available information
for typing aerosol is still AOD and AE, and AE is unreliable when AOD is less than 0.3), it
does help to identify possible aerosol type changes in a location with low AOD. The reason
is that the BAOD value obtained from the statistical process can be regarded as a priori
knowledge of local common aerosol loading. When AOD is lower than BAOD, the aerosol
generally represents the local background type. When AOD at a certain location is higher
than BAOD, it means that the particular region is influenced by biomass burning, pollution,
or dust episodes. Consequently, the local aerosol type may change from background to
some other types, e.g., smoke or dust. In other words, the 30th percentile itself contains
local background aerosol loading information. Thus, background aerosol can be identified
by comparing AOD and BAOD without the use of AE, which becomes unreliable under
low AOD conditions.

The multiple models in the AOD histogram can be a representation of aerosol species.
A relatively large increase or decrease in AOD is mostly related to the change in local
aerosol type. For a specific location, for example, Los Angeles, the background aerosol type
should be urban/industrial type without transported aerosols (e.g., smoke or dust), and its
AOD histogram tends to be a mono-normal distribution. When wildfire happens, however,
AOD increases sharply, and a peak appears toward a larger AOD end. If dust aerosols or
pollutants are transported into the area, aerosol loading will also increase, and another peak
may appear. Therefore, the first peak could be representative of local background aerosol,
but the later peaks are influenced by the transported pollutants or unusual local emissions
like wildfires. However, what these later peaks represent or which kind of aerosol they are
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(e.g., dust, smoke, or some kind of mixture) needs further in-depth analysis because it may
vary substantially from location to location.

5. Conclusions

This study develops a statistical method to determine global background AOD thresh-
old values using the VIIRS AOD product. The 30th percentile of the lowest AOD is found
to be the best estimation of BAOD for multiple datasets and different seasons. According
to the multiple lognormal fitting, quadruple and triple lognormal modes are found to
occur most frequently around the world, indicating a distinct aerosol-type variation on a
global scale. A high BAOD value of over 0.4 appears in North and Mid Africa, the Arabian
Peninsula, North and Mid Africa, and the northern part of South America, while other
regions generally have a BAOD value of less than 0.1. The original VIIRS dataset left 80% of
observations (AOD < 0.3) unclassified in low aerosol loading regions like America, Europe,
and Australia and tagged them as a ‘background’ type; thus, the aerosol type information
for low AOD remains unknown in the original VIIRS aerosol type classification scheme.

Chemical component information from MERRA-2 is involved in examining the selec-
tion of the 30th percentile of the lowest AOD as the BAOD threshold value. On a global
scale, aerosol chemical components vary slightly when AOD is lower than BAOD, while
the degree and rate of change of aerosol chemical components gradually become strong
and significant when AOD is greater than BAOD. And the breaking point of the changing
trend coincides with our statistical results properly.

Based on the reference BAOD threshold value, we update the AOD-AE aerosol type
classification scheme. We redefine the background type and introduce a new aerosol-type
cluster, low polluted (LP), into the classification scheme. Through two dust and smoke
case studies, it is clear that our updated AOD-AE scheme is able to achieve a pretty good
detection of aerosol type changes in low aerosol loading conditions, and it can give us
a better view of aerosol type variation for VIIRS-like passive sensors over low aerosol
loadings regions like America, Europe, and Australia.

There are also some limitations that should be concluded. VIIRS AOD performs
relatively worse over low AOD areas, such as the highly elevated Tibetan Plateau in western
China. This can lead to biased BAOD threshold value estimation. Although BAOD provides
more details about the variation of aerosol types under low aerosol loading conditions
from satellite observation, it is still insufficient to quantitatively identify the specific aerosol
particles that cause an increase in aerosol loading above the BAOD threshold when the
overall AOD is lower than 0.3. Future efforts will focus on improving the performance
of satellite inversion algorithms over rugged mountain regions. Additionally, detailed
identification of aerosol types under low aerosol loading conditions may be achieved by
including polarized observations or chemical information from real-time model simulations,
with possible assistance from machine learning.
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