
Citation: Li, H.; Luan, Q.; Liu, J.; Gao,

C.; Zhou, H. A Framework Based on

LIDs and Storage Pumping Stations

for Urban Waterlogging. Remote Sens.

2024, 16, 1207. https://doi.org/

10.3390/rs16071207

Academic Editor: Gabriel Senay

Received: 16 January 2024

Revised: 23 March 2024

Accepted: 27 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Framework Based on LIDs and Storage Pumping Stations for
Urban Waterlogging
Huayue Li 1,2, Qinghua Luan 1,*, Jiahong Liu 3 , Cheng Gao 2 and Hong Zhou 2

1 National Cooperative Innovation Center for Water Safety & Hydro Science, Hohai University,
Nanjing 210024, China; 211601010108@hhu.edu.cn

2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;
cgao@hhu.edu.cn (C.G.); hong_zhou@hhu.edu.cn (H.Z.)

3 Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China;
liujh@iwhr.com

* Correspondence: 20200050@hhu.edu.cn

Abstract: Climate change has resulted in an increase in extreme rainstorm events, posing the chal-
lenges of urban waterlogging and runoff pollution. Low Impact Development (LID) is widely used
to address the issues above, but its effectiveness is unknown in mountainous areas. Due to a flash
flood and high flood peak, storage pumping stations are also needed to drain. Thus, a framework
composed of storage pumping stations and Low Impact Developments (LIDs) was proposed based
on the topography and the regional upstream and downstream relationships. The water quantity in
this framework is applied to YI County in Hebei Province, China. The results showed that individual
LIDs effectively reduced runoff volume, with the implementation area being more crucial than the
location. Combining storage pumping stations with LIDs significantly reduces peak outflow and
delays it by 5 to 51 min. The combined downstream implementation of storage pumping stations
and LIDs yielded the most effective results. These findings offer important insights and management
strategies for controlling waterlogging in mountainous cities of developing countries.

Keywords: LIDs; RS; scheme optimization; storage pumping station; SWMM; upstream and
downstream relationships; urban waterlogging

1. Introduction

Extreme rainfall events worldwide occur frequently, which can be conceived of as the
one of major impacts generated by these interacting physical and societal mechanisms [1].
Physical drivers, for instance, are shaped by global warming and atmospheric circulation,
while societal forces are composed of rapid urbanization, impervious land, and infrastruc-
tural networks [2–5]. The complexity of interacting mechanisms has caused the frequent
occurrence of extreme rainfall events and significant economic losses and casualties [6],
including in Germany (13 July 2021), Pakistan (June 2022), Pennsylvania (2023), and Libya
(September 2023). In China, extreme rainstorms have also been frequent, notable one in
Zhengzhou on 20 July 2021, which caused over 380 casualties and garnered widespread
attention [7]. Developing countries have limited practical experience and infrastructure for
urban waterlogging control, leading to more challenges in mitigating waterlogging during
frequent extreme rainstorms than in developed countries.

Considering the limited land availability, many countries have proposed flood risk
assessment methods [8] and urban waterlogging control measures [9], including America’s
Best Management Practices (BMP) [10], Low Impact Development (LID) [11], and Green
Infrastructure (GI) [12]; Britain’s Sustainable Urban Drainage Systems (SUDs) [13]; Aus-
tralia’s Water Sensitive Urban Design (WUDs) [14]; New Zealand’s Low Impact Urban
Design and Development (LIUDD) [15]; and China’s Sponge City [16]. Most of the above
measures are small-scale and dispersed green infrastructures at the source, demonstrating
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remarkable effectiveness in reducing rainwater and pollution load during light rainstorms
but exhibiting limitations in heavy rainstorms. Additionally, the mountainous land avail-
ability for LIDs is restricted and it is focused on infiltration and detention; considering the
large slope variation and frequent flash floods, pumping stations and storage tanks are
necessary to be applied.

Heavy rainfall and large slope variations in mountainous areas intensify scouring
and non-point source pollution, making storage tanks essential for reducing peak runoff
and pollution. Some researchers indicate that sewer sediments in urban pipelines lead to
high-concentration overflow pollution [17,18]. The “Overflow Peak Pollution Interception”
(OPPI) method, addressing both water quality and quantity in overflow situations, has
been proposed for designing storage tanks [19]. However, there is a noticeable lack of
studies specifically focusing on drainage efficiency in this context. Combining storage
tanks with pumping stations proves effective and economical, especially considering land
use and construction costs. Research suggests that vertical combinations of up-pumping
stations and down tanks are notably effective, but limited underground space requires
consideration, shifting the focus to the scale of storage facilities. American and British
storage volume formulas, based on the water balance principle and mathematical algo-
rithms like the finite difference method and continuous rainfall time series, are widely
used [20,21]. However, these formula calculations can lead to significant errors. The devel-
opment of urban stormwater models like the Storm Water Management Model (SWMM)
and Inforworks has made them popular for scale simulation [22,23]. One study [24] used
the Inforworks model to design four scales of pumping stations, optimizing them with the
deprivation coefficient method and calculating the effective storage tank volume using the
rainfall depth method. Overall, while most studies design storage pumping stations based
on a specific rainwater volume, the regional scope has expanded to include watersheds,
extending rainwater collection time and increasing drainage pressure. Storage pumping
stations are effective in rapid drainage and flood peak reduction, but the reduction of water
volume requires source control. So, the combination measures of storage pumping stations
and LIDs need to be considered, but recent research focuses on the optimization of LID.

LIDs are viewed as a promising strategy for controlling urban waterlogging and ecosys-
tem pollution [24]. Initially, research concentrated on experiments and identifying suitable
areas for implementing a single LID [25]. Subsequently, urban flood models, particularly
the open-source Storm Water Management Model (SWMM), were used for quantitative
analysis of LID’s effects [26]. The focus of subsequent studies shifted from a single LID to a
combination of LIDs [27,28]. Furthermore, the spatial layout of LIDs is a critical aspect of
engineering construction. Research has shown that dispersed LID implementations can
effectively reduce surface runoff and pollution [29,30]. The results were consistent with
the study [31]. Considering the limited land use in mountainous areas, dispersed LID
implementation was not feasible. Therefore, while the potential for LID implementation
based on upstream–downstream relationships has been discussed, actual research on this is
rare [32,33]. To address these challenges, including the differences between upstream and
downstream areas and flash floods, a comprehensive “source reduction-process control-end
treatment” framework integrating LIDs and storage pumping stations is being explored.

The above-mentioned research focused on optimizing LID and pumping stations
separately from scale design and spatial layout [24,25]. However, few studies have com-
bined both. Further, there is little research on the rainwater drainage network distribution.
It is very valuable for dividing drainage areas based on regional terrain characteristics.
However, some research just focuses on water distribution network partitioning and opti-
mizing based on simultaneous cost and energy optimization [34–36]. Therefore, the main
contributions of this work are as follows: (1) Proposing a reduction–process control–end
treatment framework, coupling storage pumping stations and LIDs, for reducing urban
waterlogging. (2) Designing various combination schemes based on upstream–downstream
relationships and waterlogging point distribution, selecting the best solution using differ-
ent runoff indicators. The analysis extends the understanding of runoff control through
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LIDs and storage pumping station coupling, filling gaps in previous research and offering
insights for urban construction in developing countries.

2. Materials and Methods
2.1. Framework

Based on the characteristics of flash floods and high flood peaks in mountainous areas,
we proposed a source reduction–process control–end treatment framework composed of
storage pumping stations and LIDs, as shown in Figure 1. The framework consists of
three systems: the source LID system, the drainage network, and the storage pumping
stations. The LID system integrates decentralized green infrastructure components to
reduce surface runoff volume and pollution at the source, easing the pressure on the
pipeline network. The drainage network system collects and transports surface runoff
and the storage pumping stations drain at the end. During drainage, rainwater acts as the
key link connecting different components of the system. LIDs have limited capacity to
regulate and store rainwater. Residual rainwater, which acts as a lower boundary condition
for discharge, significantly impacts pipeline network design. However, when discharge
exceeds the drainage network’s design standards, urban waterlogging, as a lower boundary
condition, determines the capacity of storage tanks and pumping stations. Additionally,
pollution concentration, another critical factor, is similarly considered in this framework.
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Figure 1. The source reduction–process control–end treatment framework.

This framework has a better effect when applied in areas with significant terrain
changes and upstream and downstream relationships. So, the effectiveness of this frame-
work was demonstrated in a case study in Yi County, Hebei Province, China, focusing only
on water quantity due to the absence of water quality data.

2.2. Study Area

Yi County located in northern Taihang mountain, in Hebei Province, China, with 70%
mountainous and hilly areas, was adopted as the case study. The region belongs to the
warm temperate continental monsoon climate with an average annual precipitation of
about 560 mm. The rainfall displays an uneven characteristic, mainly focusing on summer.
The case study (115◦28′~115◦32′E, 39◦19′~39◦21′N) is surrounded by the North Yishui River
and the Line of South-to-North Water Diversion, which has a total area of 1200.01 km2, as
shown in Figure 1, including 33% residential land, 26% commercial land, 18% roads, 14%
green land, and 10% industrial land. The slope changes significantly, with a maximum
slope value of 22.72% and an average slope of 5.01% (Figure 2). The topography gradually
descends from northwest to southeast, leading to notable variations in water flow levels
and a higher risk of inundation.
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2.3. Data Sources
2.3.1. Data for Modeling

To establish the model of the study area, Digital Elevation Model (DEM) and land
use data were collected for sub-catchment delineation. The pipeline network was dig-
itized from pipe network data, and the model was calibrated and validated using pre-
cipitation and waterlogging data. DEM with a spatial resolution of 30 m was down-
loaded from the Geospatial Data Cloud website (https://www.gscloud.cn/ (accessed on
1 April 2023)). The land use and pine network data were obtained from Norendar In-
ternational Ltd. Baoding, China. Precipitation data were obtained from The Bureau of
Hydrology and Water Resources Survey of Baoding. Waterlogging data was obtained from
the site survey. Table A1 displays the detailed data sources and their usage required for the
modeling process.

2.3.2. Waterlogging Site Survey

The extreme rainfall event in Yi County on 19 July 2016 caused extensive waterlog-
ging and the distribution of severe waterlogging points was determined based on remote
sensing images. To survey the waterlogging situation in this study area, the site survey
was conducted in Yi County in July 2019, identifying eleven representative points cho-
sen based on topography and the distribution of waterlogging, as illustrated in Figure 3.
Two waterlogging monitoring experiments were conducted on 21 July 2019 and 12 July 2020,
based on weather forecasts. The first rainfall event lasted 7 h with a total of 27 mm, and the
second rainfall event lasted 9 h and had an average intensity. We monitored and recorded
the process of road waterlogging and its maximum depth of waterlogging while measuring

https://www.gscloud.cn/
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the extent of inundation and the recession time. The maximum waterlogging depth at the
eleven points was calculated by averaging measurements taken near each point using a
box ruler [37]. Relevant data is shown in Figure 4.
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event in 2019 and (b) “7.12” rainfall event in 2020.

2.4. Remote Sensing

The calibration and validation of maximum waterlogging depth in SWMM accounted
for extreme values, despite local disturbances. Nowadays, many studies use remote sensing
images to simulate precipitation and urban flooding [38–40]. Consequently, remote sensing
(RS) was employed to determine the extent of inundation, compared with the SWMM [41].

2.4.1. Data Preprocessing

To accurately obtain the waterlogging extent of the study area, Sentinel-2 imagery with
a spatial resolution of 10 m was downloaded from the European Space Agency’s official
website (http://scihub.copernicus.eu/ (accessed on 1 April 2023)), and the 30 m resolution
SRTM-1 Digital Elevation Model (DEM) data were downloaded from the Geospatial Data
Cloud Platform [42,43]. Image processing was conducted using the SNAP 8.0 software’s
resampling tool to adjust Sentinel-2 data to a 10 m wavelength and resolution, and the
images were synthesized using EVNI 5.3.

2.4.2. Image Feature Extraction

The Region of Interest (ROI) is utilized for the classification of remote sensing im-
ages, with the Jeffries–Matusita method assessing the degree of difference in training
sample separation. Simulation result accuracy was determined using the Nash–Sutcliffe
Efficiency coefficient (NSE), which varies between 0 and 2. A Jeffries–Matusita value above
1.8 indicates significant differences and strong separability between the two samples. A
Jeffries–Matusita value between 1.4 and 1.8 suggests reduced differences and weaker
separability between samples. A Jeffries–Matusita value below 1.4 implies insignificant dif-
ferences between samples, necessitating their division and resampling. A Jeffries–Matusita
value under 1 indicates that the samples should be merged into the same category. Its
calculation formula is as follows:

Jmn =

{∫
x
[√

p(x/m)−
√

p(x/n)
]2

dx

} 1
2

(1)

http://scihub.copernicus.eu/
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where Jmn represents Jeffries–Matusita.
√

p(x/m) represents the conditional probability
of any pixel x appearing in class m in the image.

√
p(x/n) represents the conditional

probability of any pixel x appearing in class n in the image.
Using downloaded Sentinel-2 images and site survey data, land use types were

classified via indoor visual interpretation, with specific samples chosen as training data.
ROI separability was calculated until the Jeffries–Matusita parameter exceeded 1.8. The
maximum likelihood classification method was employed for these samples, with the
Kappa coefficient serving as an indicator of classification accuracy in ENVI 5.3 [3]. Its
calculation formula is as follows:

Kappa =

M ×
n
∑

i=1
Xii −

n
∑

i=1
(Xi+ × X+i)

M2 −
n
∑

i=1
(Xi+ × X+i)

(2)

where Kappa represents the accuracy evaluation index. M represents the total number of
samples extracted from the area. N represents the total number of land use types divided.
i represents quantity (i = 0, 1, 2, . . ., n). Xii represents the value on the corner line. Xi+ and
X+i, respectively, represent the partition classification in the confusion matrix the sum of
columns and rows.

2.5. SWMM
2.5.1. Model Setup

SWMM as an open source and free urban flood model, was initially proposed in 1971
and had upgraded SWMM 5.2. SWMM was widely used. It was chosen for this study
due to its ability to simulate LIDs, storage pumping stations, and other relevant features.
Runoff generation and sink flow processes were modeled separately using the nonlinear
reservoir routing method and the de Saint-Venant equations. Additionally, infiltration was
simulated through the application of the Horton method [44]. Eventually, this study area
was generalized into 4 drainage zones, 351 sub-catchments, 196 nodes, 196 pipelines, and
4 drainage outlets by using the above data (Figure 5).
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2.5.2. Calibration and Validation

Calibration and validation are vital for model simulation. In areas lacking the moni-
toring flow data, the comprehensive runoff coefficient method and the maximum depth of
surface water accumulation method are widely used [45,46]. The former emphasizes the
adjustment of non-deterministic parameters, guided by the empirical value range in diverse
regions until the targeted value of the comprehensive runoff coefficient is reached [47,48].
The latter emphasizes that parameters are adjusted according to the relative error between
simulated and measured values. In particular, simulated values of waterlogging depth are
calculated by evenly distributing the maximum overflow of waterlogging points obtained
from SWMM to nearby streets. The relative error is calculated by Equation (3).

Relative error =
H1 − H2

H1
× 100% (3)

where H1 represents the measured value of waterlogging (cm), and H2 represents the
simulated value of waterlodding (cm).

The study area belongs to the central urban area with dense buildings. According to
the above methods, the comprehensive runoff coefficient was calculated as 0.692 based on
land use type. Non-deterministic parameters were adjusted multiple times until reaching
this target value. Then, we calculated the error between simulated and measured values of
maximum waterlogging depth under two rainfall events. The results indicated that the
error of each waterlogging point was within 20%, which means the model performed well
(Figure 6). The parameter values are shown in Table A2.
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Figure 6. The relative error between the simulated and observed maximum waterlogging depths
during the two rainfall events.

The above methods compared the simulated and measured values of maximum
waterlogging depth. Due to the limited accuracy data, it is not possible to accurately
identify changes in road waterlogging depth, but it can reflect the inundation ranges. So,
we used remote sensing to compare the inundation ranges derived from remote sensing
images with those from SWMM. The categorization of the area was clear, encompassing
buildings, roads, and water bodies. Jeffries–Matusita scores of 1.813 and 1.827 indicate
strong sample separation and clear differentiation. This level of sample separation meets
differential evaluation requirements, confirming the sample selection’s adequacy. For visual
comprehension of its distribution, the maximum likelihood classification method was used
to generate a figure. Figure 7a,b show that the waterlogging distribution is relatively
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concentrated in the southwest and dispersed in the northeast. The results revealed that the
waterlogging areas during the two rainfall events were 22% and 17%, respectively. The
former rainfall events generated bigger inundation ranges, which also indicates that rainfall
intensity affects inundation ranges. The results of the SWMM (Figure 8) indicate that the
waterlogging areas under two rainfall events are 19.8% and 16.2%, respectively, which
is consistent with the results obtained from remote sensing images. Due to the limited
accuracy, the changes in the accumulated depth of waterlogging cannot be obtained by
remote sensing images, but the maximum overflow of waterlogging points obtained from
SWMM is similar to measured values. Therefore, the waterlogging distribution in the main
urban area is consistent with SWMM and monitoring data, which indicates that the SWMM
model has good accuracy.
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2.5.3. Design Rainfall

Rainfall was designed for return periods of 2, 5, 10, and 20 years referring to topog-
raphy and design standards of pipe networks and pumping stations in Yi County. The
rainfall intensities of a two-hour duration were calculated based on the Chicago design
storm method [49], and the Baoding rainstorm formula Equation (4), which are shown in
Figure 9.

i =
14.973(1 + 0.6856lgP)

(t + 13.877)0.776 (4)

where i represents rainfall intensity (mm/min), P represents rainfall return period (year),
and t represents rainfall duration (min).
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2.5.4. LID Implementation

LID is an ecological technology system that can easily achieve urban rainwater collec-
tion and utilization. Land use type and suitable construction area are usually considered
for LID implementation. The most common LID measures are permeable pavements,
infiltration trenches, sunken greenbelts, rain gardens, green roofs, and rain barrels [45].
Permeable pavements, preferred for their permeability and aesthetics over infiltration
trenches, are widely used in sidewalks and parking lots. Sunken greenbelts and rain gar-
dens excel in rainwater retention; however, rain gardens, with higher maintenance costs,
are typically used in upscale residential areas. Green roofs are ideal for buildings with
strong roof-bearing capacity, while rain barrels are the preferred choice for collecting roof
rainwater. Overall, considering Yi County’s land use and older buildings, the decision was
made to use permeable pavements in residential and commercial areas, sunken greenbelts
in green spaces, and rain barrels for roof rainwater collection. The results of LID parameters
referring to related articles like [47–50] were shown in Table A3.

2.5.5. Storage Pumping Station Setup

Storage tanks can delay and reduce flood peaks by retaining rainwater in urban areas.
When combined with pumping stations, they offer the benefits of reduced construction
scale and rapid drainage in low-lying areas. The smaller diameters of downstream pipes,
as indicated by pipe network data and drainage conditions, lack capacity for upstream
rainwater. Consequently, eight storage pumping stations were established near outfalls and
severe waterlogging locations, depicted in Figure 2. Taking into account the extensive land
use and dense population in residential and commercial areas, green spaces and squares
were generally prioritized.

The effective volume of the storage tanks is critical, influencing their construction scale
and size. In China, the deprivation coefficient method is widely used due to the lack of pipe
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network flow data [23]. At present, the design return period of the rainwater pipe networks
is 2 years. To enhance the drainage standards, a 10-year design return period was used
for determining the scale of storage pumping stations. First, the discharge coefficient was
calculated as 0.693, 0.677, 0.676, 0.681, 0.663, 0.680, 0.689, and 0.658, respectively, based on
its definition. Then, the results were substituted into Equation (5) to calculate the effective
volume of eight storage tanks. To enhance design safety, the volumes of the eight storage
tanks were increased to 500 m3, 1200 m3, 2500 m3, 1000 m3, 1000 m3, 1250 m3, 800 m3,
and 600 m3. Considering the limited land use and construction difficulty, the rectangular
storage tanks were selected, and their depth was 2 m, 3 m, 2.5 m, 2 m, 2.5 m, 2.5 m, 2 m,
and 3 m.

V =

[
−(

0.65
n1.2 +

b
t

0.5
n + 0.2

+ 1.10) log(α+ 0.3) +
0.215
n0.15

]
Qit (5)

where V represents the volume of the storage tanks (m3), α represents the deprivation
coefficient (downstream design flow of storage facilities divided by upstream design flow),
Q represents the upstream design flow of the storage tank (m3/min), b and n represents
rainstorm intensity parameters, and t represents confluence duration (min).

Setting relevant parameters for the front tanks of pumping stations and their pumps
is essential. SWMM is commonly employed when data are lacking. In this study, the scale
of the pumping stations was determined by simulating surface overflow changes for a
10-year return period, and validated for a 20-year return period. SWMM offers five pump
types and four pump curve options; type 3 and its corresponding curves were chosen for
their ability to reflect flow variation with head [48,51]. Parameters like pump type and
design flow were determined based on the relevant literature [52]. The control areas for
the storage pumping stations 1 to 8 were calculated as 0.171 km2, 0.107 km2, 0.133 km2,
0.116 km2, 0.057 km2, 0.072 km2 0.048 km2, and 0.062 km2, respectively. Based on the design
flow of storage tanks, the AmacanPA 41000-700/160 8UTG1 pump sourced from Laverton
North, Australia was chosen for storage pumping stations 1 to 4, and the 600ZQB-100
submersible pump for stations 5 to 8 [52]. For reliable operation, each storage pumping
station was equipped with two pumps of the same type, including a backup pump. At the
same time, based on the principle that the depth of waterlogging cannot exceed 0.15 m for
a 10-year return period, the startup and shutoff depths of each storage pumping station are
displayed in Table 1.

Table 1. Startup and shutoff depth of the storage pumping stations.

Storage Pumping
Station

Startup Depth/(m) Shutoff Depth/(m)
Maximum Depth of Surface Waterlogging/(m)

10-Year Return Period 20-Year Return Period

1 1.4 0.7 0.10 0.11
2 1.4 0.5 0.06 0.07
3 2.2 0.8 0 0.00
4 1.3 0.6 0.12 0.13
5 1.7 0.6 0 0.01
6 1.2 0.7 0.11 0.14
7 1.2 0.5 0.02 0.04
8 1.3 0.7 0 0.00

2.5.6. Design Schemes

The study area was divided to compare runoff response mechanisms among LIDs
implemented upstream, downstream, and throughout the entire area, ensuring similar
control areas for both upstream and downstream LIDs. Considering significant topograph-
ical changes, land use types, and the orientation of the pipeline network, the area north
of Chaoyang Road was designated as upstream (722.06 ha) and the south as downstream
(477.95 ha), as shown in Figure 2. It was crucial to combine the three selected LIDs with
10% permeable pavements for residential and commercial areas, 60% sunken greenbelts
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for green land, and 1046 rainwater buckets (526 upstream and 520 downstream) near the
building. LIDs were then implemented separately upstream, downstream, and in the
entire area, creating three different spatial layouts. Three new schemes were formed by
integrating LIDs with eight storage pumping stations. The control areas of a single LID and
multiple LIDs were similar, both upstream and downstream. The six schemes are shown in
Figure 10. Schemes 1 to 3 are only implemented LIDs separately upstream, downstream,
and the whole area. Schemes 4 to 6 are based on the first three schemes and combined with
eight storage pumping stations.
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3. Results
3.1. Surface Runoff Reduction

The effect of each scheme in mitigating the amount of runoff is presented in Figure 11.
Scheme 1 reduces runoff by 33.47% to 34.76% and Scheme 2 by 32.43% to 32.71% during
four rainfall return periods. Scheme 3, with a runoff reduction of 66.12% to 68.10%,
performed the best. However, integrating storage pumping stations (Schemes 4 to 6) had a
minimal impact on runoff reduction compared to Schemes 1 to 3. Overall, LID measures,
implemented either upstream or downstream, demonstrated similar runoff reduction
effects within the same return period Notably, the cumulative effect of implementing LID
measures across the entire area was roughly equal to the combined impact of separate
upstream and downstream implementations. This suggests that storage pumping stations
have a limited impact on reducing runoff. Additionally, it is important to note that each
scheme’s performance declined with longer return periods.
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3.2. Peak Outflow Reduction

Peak outflow reduction varied among different scenarios, as shown in Figure 12.
Scheme 1 achieved a peak runoff reduction of only 8.46% for a 2-year return period.
However, Scheme 2’s peak outflow reduction, ranging from 40.83% to 48.97%, significantly
surpassed Scheme 1’s across rainfall return periods of 2 to 20 years.
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20 years.

Scheme 3 showed a peak runoff reduction between 40.97% and 50.19%, comparable
to Scheme 2’s performance. Notably, the effectiveness of Schemes 1 to 3 decreased with
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longer return periods. When analyzing schemes with storage pumping stations, peak
outflow reductions were 21.12% to 21.39% for Scheme 4, 35.26% to 40.21% for Scheme
5, and 33.52% to 37.29% for Scheme 6. Particularly, Scheme 4’s peak outflow reduction,
after implementing storage pumping stations, was over triple that of Scheme 1. Despite
reduced effectiveness in Schemes 5 and 6, their peak outflow reduction rates remained
above 30%. Interestingly, Schemes 4 to 6 showed increasing impact with longer return
periods, except for a slight decrease in the 20-year period due to the scale limitations of the
storage pumping stations.

3.3. Peak Time of Outflow

The peak time of outflow under six schemes for different rainfall return periods is
listed in Table 2. It indicated that LIDs and storage pumping stations could delay the peak
time, although this time shifted earlier as the return periods increased. Schemes 2 and 3
showed better capacity to delay peak times than Scheme 1, but their impact on extending
waterlogging mitigation periods was not significantly greater. After implementing storage
pumping stations, the peak time could be delayed by 6 to 26 min, 28 to 51 min, and 16
to 32 min, respectively, for Schemes 4 to 6. Overall, storage pumping stations played a
more significant role in delaying the peak time of outflow, especially for Scheme 4, which
had the best effect. In addition, the performance in each scheme decreased as the return
periods increased.

Table 2. The occurrent time of peak outflow under no measures and six schemes in different
return periods.

Measures 2a 5a 10a 20a

no measures 52 min 52 min 52 min 52 min
Scheme 1 54 min 54 min 53 min 53 min
Scheme 2 57 min 56 min 55 min 54 min
Scheme 3 61 min 57 min 55 min 54 min
Scheme 4 75 min 79 min 66 min 57 min
Scheme 5 103 min 91 min 86 min 79 min
Scheme 6 84 min 75 min 77 min 67 min

3.4. Outflow Process

Figure 13 shows the outflow change process under different return periods, with each
scheme’s variation trend being relatively consistent across these periods. All schemes
contributed to reducing both outflow and drainage time. Regarding outflow reduction,
Scheme 3 was most effective in each return period. Scheme 2 outperformed Scheme 1
pre-rainfall but was less effective post-rainfall, with inflection points at 17.2, 21.3, 24.2,
and 27.1 h for 2, 5, 10, and 20-year return periods, respectively. From the drainage time
reduction perspective, it was longer with each scheme as the return periods increased.
Scheme 3 had the shortest drainage time, followed by Scheme 2, with a marginal difference
of only 3 h. Compared to Schemes 1 to 3, implementing storage pumping stations (Schemes
4 to 6) reduced the entire process’s outflow value to below 6500 L/s. It indicated that
storage pumping stations had the ability to stagger and reduce outflow. In addition, the
change frequency of outflow increased due to the increase in the frequency of storage
pumping stations opening and closing, but the drainage time was reduced significantly.

SWMM simulation results indicated that most pipelines were emptied within the
first six hours of drainage. Instances of pipeline overload and surface waterlogging were
rare. However, downstream pipelines with small diameters and gentle slopes retained
rainwater, leading to low outflow at the outlet and longer drainage times. Considering the
residual outflow and complex outflow changes could increase the risk of pipeline overload
within the first six hours, an in-depth analysis of the outflow process for Schemes 1 to 6 will
be conducted.
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The outflow trend with Scheme 1 was similar to that without any measures, but it
slightly reduced outflow. The outflow change under Scheme 3 occurred in three stages,
with a significant reduction effect, particularly in the second stage, reaching about 50%.
Scheme 3, compared to Scheme 2, had a similar outflow trend but was more effective in
reducing outflow. In addition, implementing LIDs and storage pumping stations could
stagger and reduce outflow, having a beneficial impact on controlling outflow below
6000 L/s and shortening the overload time of pipelines Scheme 5’s outflow curve was the
most regular, varying between 2200 and 2600 L/s for most of the time, with high-speed
duration not exceeding one hour. Although Scheme 5’s curve changes were complex, it
had lower outflow. Compared to Schemes 5 and 6, Scheme 4’s curve changes were more
complex. Overall, storage pumping stations significantly alleviated pipeline overload
pressure and reduced outflow in the first six hours of drainage.

3.5. Scheme Selection

Based on the above results, it was evident that different schemes had varying degrees
of impact on different indicators. To thoroughly evaluate each indicator, the performances
of the six schemes were initially ranked (Figure 14), followed by comparing their impacts
to select the optimal scheme.
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Optimization was performed using the exclusion method based on sorting results.
Given that peak outflow factors are more critical than runoff volume in urban flood warn-
ings, the primary focus was on reducing peak outflow and delaying peak time. Schemes
1 and 4 were first excluded due to their minimal impact on peak outflow reduction, with
rates less than 22%. Similarly, Schemes 2 and 3 were excluded for their limited ability
to delay peak times. Comparing Schemes 5 and 6, Scheme 5 showed significantly better
performance in peak runoff reduction, peak time delay, and outflow process, making it
more valuable for flood control and pipeline pressure relief. Although Scheme 5 had a
lower surface runoff reduction rate, it still reached about 30%. Meanwhile, the differ-
ences in drainage time between them were only 10 h. Moreover, the study area is part
of an old urban region where a drainage project was recently completed. Implement-
ing LIDs throughout the area posed greater challenges than installing storage pumping
stations along the river. After a rough comparison of economic costs, Scheme 5 was
eventually chosen.

4. Discussion

In this study, a source reduction–process control–end treatment framework was pro-
posed for reducing urban waterlogging and runoff pollution load in mountainous areas.
The water quantity in this framework is applied to Yi County in Hebei Province, China, com-
posed of storage pumping stations and LIDs. The runoff control effects of six schemes were
analyzed through various indicators, as illustrated in Figures 9–12 and Table 2. Schemes
combining LIDs with storage pumping stations modified the outflow process, resulting
in peak time delays of 3 to 51 min. Unlike LID-only schemes, these combinations notably
eased pipeline overload pressure, with similar effects on reducing surface runoff. In partic-
ular, Scheme 4, integrating storage pumping stations, tripled the peak outflow reduction
rate compared to Scheme 1. Conversely, the effectiveness of Schemes 5 and 6, attributed to
storage tanks, fell below that of Schemes 2 and 3. These findings underscore the signifi-
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cant effectiveness of storage pumping stations in reducing peak outflow. However, their
impact on reducing runoff volume was less pronounced according to established scientific
standards and observations. In contrast, LIDs primarily reduce both runoff volume and
peak outflow. The combined use of storage pumping stations and LIDs, as proposed, offers
a synergistic advantage for managing urban waterlogging. The results were consistent
with [53,54]. These studies have confirmed the feasibility of combination methods.

Six spatial layout schemes varied in their reduction of runoff volume and peak outflow.
In this study, the storage pumping stations were usually implemented near outfalls and
serious waterlogging points, and LIDs were implemented based on the upstream and
downstream relationships. The results show that the effect of runoff reduction is similar
when implementing the storing pumping stations. It means that LID measures play a
major role in reducing the runoff volume and the storage pumping stations have almost no
impact. The reason is that the working principles are completely different. LID measures
are small-scale and dispersed green infrastructures at the source, which can directly recycle
rainwater into groundwater by infiltration. But the storage pumping station stores rainwa-
ter first and then discharges it. Therefore, reducing runoff from the source mainly relies on
LID measures.

The research showed that LIDs in downstream areas significantly reduce peak outflow,
while LIDs’ effectiveness was limited when implemented upstream in this study. The
causes of these results were analyzed based on topography and existing drainage pipelines.
Although LIDs extend rainfall infiltration duration and increase overall infiltration, imple-
menting LIDs upstream is effective, but it does not extend downstream. The downstream
rainwater still exceeds the drainage capacity of the downstream pipeline network during
pre-rainfall. In contrast, downstream LID implementation results in rainwater retention
and infiltration, especially noticeable during pre-rainfall. This not only directly reduces
downstream runoff but also staggers upstream rainwater, significantly reducing peak out-
flow. Therefore, upstream LID implementation results in much less peak outflow reduction
at discharge points compared to downstream, similar to the effect of whole-area implemen-
tation. Thus, the results indicate that the spatial location of LIDs and topography should be
carefully considered.

Another result indicated that runoff reduction from LIDs, whether upstream or down-
stream, was similar despite the control area being the same. Implementing LIDs across
the entire area was roughly equal to the combined upstream and downstream effects, sug-
gesting that the area of implementation is more crucial than the spatial location. However,
the location of LID implementation impacts peak outflow reduction differently. Upstream
LIDs exhibit a reduction rate four times higher than their downstream counterparts. While
the limited capacity of LIDs may not have a significant impact on delaying peak time.
Implementing storage pumping stations significantly improved lag time effects and altered
the outflow process. The main reason for this result may be the storage tanks. Residual
rainwater stored in tanks compensates for the upstream LID shortage, reducing peak
outflow—a major advantage of Scheme 4 over Scheme 1. When the water in the tanks
reaches the design startup depth, pumping stations begin discharging rainwater, resulting
in a lag time. Storage pumping stations gradually discharge rainwater over staggered
low peak periods, altering the discharge process trend and significantly relieving pipeline
network pressure.

According to this study, it can be found that LIDs’ impact on runoff reduction in
mountainous areas with significant slope variations and frequent flash floods is limited,
necessitating the integration of storage pumping stations for efficient drainage. However,
comprehensive research on this topic is still lacking. In this study, A source reduction–
process control–end treatment framework is proposed for reducing urban waterlogging and
runoff pollution load, coupling storage pumping stations, and LIDs. The water quantity
in this framework is applied. Six schemes were designed based on regional upstream–
downstream relationships and waterlogging distribution to demonstrate and apply the
proposed framework. The study uniquely quantitatively analyzes the effect of different
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LID schemes and their combination with storage pumping stations on runoff control.
However, The study primarily focused on comparing and selecting the best scheme for
runoff control effectiveness. In the future, we can employ optimization algorithms for
a more thorough optimization, and refer to the optimization partitioning of the water
distribution network, to help improve water network management and consider water
loss [34–36]. Additionally, it is tentatively concluded that the vertical structure of up-
pumping stations and down tanks can save costs, though specific data simulations are not
yet available. Future research will broaden the scope of scheme optimization to include
comprehensive benefits. Additionally, with limited data for calibration and validation,
future efforts may involve using electronic water gauges, flow meters, and remote sensing
technology to enhance measurement accuracy and frequency, as well as integrating SWMM
with other two-dimensional hydrodynamic models for analyzing the overflow changes in
waterlogging points. Meanwhile, the water quality of this framework could be carried out.

5. Conclusions

This study proposes a framework that couples storage pumping stations with LIDs
to reduce urban waterlogging and runoff pollution, particularly in mountainous areas
prone to flash floods. This combination optimizes land use and tank design by considering
topography and regional upstream–downstream relationships. The water quantity of this
framework is carried out and the main conclusions of this study are as follows: (1) Single
LIDs are highly efficient for runoff reduction, with the implementation area being more
crucial than the location. But for peak outflow reduction, downstream LIDs implementation
exhibits a reduction rate four times higher than downstream counterparts. (2) Coupling
storage pumping stations with LIDs significantly reduces peak outflow and delays its
occurrence more than single LIDs, thanks to their rainwater storage and staggering ability.
(3) The combined scheme of downstream storage pumping stations and LIDs showed the
most effective outcomes in terms of runoff reduction, peak outflow reduction, occurrence
timing, drainage time, and outflow process. These findings have significant implications
for urban waterlogging control, taking into account regional upstream–downstream rela-
tionships and the topographical features of hilly urban areas. The framework is conducive
to achieving systematic management of urban waterlogging. For urban management
departments and professionals, it is possible to draw urban waterlogging risk maps for
different rainfall periods based on the research results, enhancing the early warning and
emergency management capabilities for responding to sudden urban waterlogging inci-
dents. Furthermore, it can attract public attention and plan travel routes and optimal times
for the public to escape.
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Appendix A

Table A1. Sources and utilization of data.

Data Source Content Usage

DEM Download from Geospatial
Data Cloud 30 m spatial resolution Sub-catchment division

Land use planning map Norendar International LTD. Impermeable rate, area,
slope, etc. Sub-catchment division

Pipe network data Norendar International LTD.
Pipeline network slope,

diameter, length,
direction, etc.

Digitization of
pipeline network

Precipitation
The Bureau of Hydrology and

Water Resources Survey
of Baoding

5 min/rainfall intensity
monitored by Tilting

rain gauge
Calibration and validation

Waterlogging data Site survey Waterlogging points,
maximumwaterlogging depth Calibration and validation

Table A2. The calibration results of SWMM parameters.

Parameter Type Parameter Value Range Value

Manning constant
N-imp 0.011~0.015 0.013
N-perv 0.05~0.8 0.17

Manning roughness coefficient 0~3 0.014

D-store
S-imp/mm 1.27~2.54 1.56
S-prev/mm 2.54~7.62 3.5

Horton constant

Max-rate/(mm·h−1) 0~100 43
Min-rate/(mm·h−1) 0~10 6

Decay/(1·h−1) 0~7 3
Dry time/d 1~7 7

the comprehensive runoff coefficient 0.692

Table A3. Parameters of LID layer.

LID Layer Parameter Permeable Pavements Sunken Greenbelts Rain Barrels

Surface layer

Berm Height/(mm) 2 200 -
Vegetative Volume Fraction 0 0.85 -

Surface Slope 1% 1% -
Surface Roughness 0.24 0.1 -

Pavement layer

Thickness/(mm) 150 - -
Void Ratio 0.15 - -

Impervious Surface Fraction 0 - -
Permeability/(mm/h) 200 - -

Clogging Factor 0 - -

Soil layer

Thickness/(mm) - 250 -
Porosity - 0.45 -

Field Capacity - 0.2 -
Wilting Point - 0.1 -

Conductivity/(mm/h) - 125 -
Conductivity Slope - 10 -
Suction Head/(mm) - 50 -
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Table A3. Cont.

LID Layer Parameter Permeable Pavements Sunken Greenbelts Rain Barrels

Storage layer

Barrel Height/(mm) 300 300 1500
Void Ratio 0.4 0.45 -

Seepage Rate/(mm/h) 3.19 125 -
Clogging Factor 0 - -
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