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Abstract: The incomplete construction of optical image time series caused by cloud contamination
is one of the major limitations facing the application of optical satellite images in crop monitoring.
Thus, the construction of a complete optical image time series via image reconstruction of cloud-
contaminated regions is essential for thematic mapping in croplands. This study investigates the
potential of multi-temporal conditional generative adversarial networks (MTcGANs) that use a single
synthetic aperture radar (SAR) image acquired on a prediction date and a pair of SAR and optical
images acquired on a reference date in the context of early-stage crop monitoring. MTcGAN has
an advantage over conventional SAR-to-optical image translation methods as it allows input data
of various compositions. As the prediction performance of MTcGAN depends on the input data
composition, the variations in the prediction performance should be assessed for different input
data combination cases. Such an assessment was performed through experiments using Sentinel-
1 and -2 images acquired in the US Corn Belt. MTcGAN outperformed existing SAR-to-optical
image translation methods, including Pix2Pix and supervised CycleGAN (S-CycleGAN), in cases
representing various input compositions. In particular, MTcGAN was substantially superior when
there was little change in crop vitality between the reference and prediction dates. For the SWIR1
band, the root mean square error of MTcGAN (0.021) for corn was significantly improved by 54.4%
and 50.0% compared to Pix2Pix (0.046) and S-CycleGAN (0.042), respectively. Even when there were
large changes in crop vitality, the prediction accuracy of MTcGAN was more than twice that of Pix2Pix
and S-CycleGAN. Without considering the temporal intervals between input image acquisition dates,
MTcGAN was found to be beneficial when crops were visually distinct in both SAR and optical
images. These experimental results demonstrate the potential of MTcGAN in SAR-to-optical image
translation for crop monitoring during the early growth stage and can serve as a guideline for
selecting appropriate input images for MTcGAN.

Keywords: conditional generative adversarial networks; crop monitoring; image time series; image
reconstruction

1. Introduction

Effective management of food production is crucial for ensuring food security, in con-
sideration of the increasing global population and changing grain consumption habits [1,2].
However, the vulnerability of agricultural systems is significantly increasing due to droughts,
heavy rains, and heat waves caused by extreme weather [3]. Thus, continuous crop monitor-
ing is required to optimize food production by mitigating factors that hinder crop growth
and to support decision-making processes such as grain supply regulation and agricultural
policy establishment [4,5].

Since each crop has different phenological stages from sowing to harvesting, the
target monitoring period varies depending on the cultivation regions and crop types. In
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particular, crops in their early growth stages (comprising sowing and transplanting periods)
are vulnerable to pest infestation, nutrient deficiencies, and environmental stressors, among
others [6,7]. Crop progress in the early period of the growing season directly affects crop
yield estimation and crop type identification before harvesting. Therefore, early-stage crop
monitoring is essential for timely crop yield forecasting as it facilitates rapid responses to
grain supply regulation and agricultural disasters [8–10].

Unlike other types of land cover, crops usually exhibit variability in physical and
chemical characteristics according to their growth cycles. Therefore, periodic observations
are necessary to fully account for their growth stages. Remote sensing is regarded as
an effective tool for crop monitoring, particularly early-stage monitoring because it can
provide periodic thematic information at various spatial scales [9–13]. Since the spectral
and scattering responses of crops depend on their specific growth stage, multi-temporal
images are required to fully account for their phenological changes [10,12]. However,
optical images are often obscured by clouds and shadows. Thus, the occlusion caused by
clouds is a major obstacle to constructing a complete optical image time series for crop
monitoring [14]. Furthermore, as few images as possible should be obtained before the end
of the entire crop growth cycle for early-stage crop monitoring and thematic mapping [10].
Therefore, if any images that provide essential information are contaminated by clouds,
they cannot be utilized for further analyses, and the use of an incomplete image time
series usually results in performance degradation. Therefore, additional data processing
is required to increase the number of available optical images, particularly for early-stage
crop monitoring and thematic mapping.

To mitigate the issue of incomplete optical image time series due to cloud contamina-
tion, previous studies have focused on reconstructing missing values in cloud regions using
cloud-free images typically acquired on earlier dates [15,16]. The predictive performance
of this approach may be degraded when rapid land cover changes occur between the
data acquisition and prediction dates [17]. An alternative optical image reconstruction
method is to utilize synthetic aperture radar (SAR) images that can be acquired regardless
of the weather conditions. However, SAR images provide physical information using
imaging mechanisms that differ from optical images [18,19]. Furthermore, imaging by
side-looking and the speckle noises inherent in SAR images often cause difficulties in visual
interpretation, making it challenging to identify objects during crop monitoring.

To fully utilize the advantage of SAR images for optical image reconstruction in terms
of data availability, advanced image fusion approaches to translate SAR image-based
features to optical imagery have been developed. Central to such SAR-to-optical image
translation is the quantification of the relationships between SAR and optical images [20]. To
this end, the effective representative learning capability of deep learning can provide great
benefits for multi-sensor image fusion. In particular, adversarial learning specialized for
image-to-image translation of conditional generative adversarial networks (cGANs) [20–25]
and cycle-consistency generative adversarial networks (CycleGANs) [26–30] has shown
promise in hypothetical optical image generation. State-of-the-art variants of cGAN for
SAR-to-optical image translation can be found in [18,25,27].

As mentioned, the performance of SAR-to-optical image translation depends on the
effective extraction of key features containing critical information for mapping between the
SAR and optical images. From this perspective, several key issues caused by the different
imaging mechanisms of SAR and optical images must be resolved for hypothetical optical
image generation by SAR-to-optical image translation. The first issue is how to effectively
restore objects in the hypothetical optical image. Some objects in the prediction results of
cGAN are often indistinguishable due to blurring and distorted textures [17,26]. CycleGAN
based on cycle consistency in adversarial learning can be used to effectively preserve texture
information [31]. However, the preservation of texture formation may lead to a distortion
in reflectance, resulting in a loss of land cover information. Supervised CycleGAN (S-
CycleGAN) was proposed as a model in which the complementary aspects of both models
are combined to preserve land cover and structural information. However, S-CycleGAN
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does not always exhibit significant improvements in predictive performance [26]. Other
approaches to generate hypothetical optical images that closely resemble real optical images
include the consideration of new loss functions representing structural similarity [32] and
the modification of the U-Net model structure to alleviate the loss of information for small
objects [33–37].

Despite the efforts to improve performance, noticeable visual differences (a loss of
textures and spectral distortion) from actual optical images are still observed in the hypo-
thetical optical images. In addition to the discrepancy between SAR and optical images,
information deficiency in SAR-based features may result in the generation of a hypothet-
ical optical image that significantly differs from the actual optical image. Therefore, it is
necessary to utilize useful information to restore objects and features in the optical im-
age in addition to improving the model structure. A promising approach to improve the
performance of SAR-to-optical translation is to extract useful information from various
input images. Periodic image acquisition over the area of interest can facilitate the uti-
lization of additional temporal information for SAR-to-optical translation. For example,
multi-temporal cGAN (MTcGAN) utilizes SAR and optical image pairs acquired on the
same or a similar date (hereafter referred to as a reference date) as well as a single SAR
image acquired on a prediction date for extracting temporal change information from multi-
temporal images [17,38]. Due to its ability to integrate additional information from an
optical image on the reference date, it performed better than conventional SAR-to-optical
image translation methods. In particular, the performance of MTcGAN can be further
improved by utilizing different input data combinations that can provide rich information
for SAR-to-optical image translation. However, such dependency on the input data of
MTcGAN implies a need for extensive evaluation. To address this, most previous studies
have aimed to utilize an optical image taken on a reference date that is as close as possible
to the prediction date to ensure satisfactory prediction performance [17,38]. As the physical
conditions of crops change rapidly during the crop growth period, it is essential to analyze
the impact of various input cases, such as by considering different image acquisition dates
and crop growth stages. However, to the best of our knowledge, the impact of varying
input data combinations on the performance of MTcGAN in the context of early-stage crop
monitoring has not yet been assessed so far.

The purpose of this study is to assess the potential of MTcGAN for generating hy-
pothetical optical images during the early growth stages of crops. Specifically, this study
comprehensively explores (1) the impact of the crop growth status on the prediction date,
(2) the impact of temporal intervals between reference and prediction dates, and (3) com-
parisons with existing representative SAR-to-optical image translation methods, such as
Pix2Pix and S-CycleGAN, as shown in Figure 1. Experiments are conducted using Sentinel-
1 and -2 images acquired from croplands in Illinois to illustrate the assessment of results
and to discuss further research directions.
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2. Methodology

The SAR-to-optical image translation method primarily evaluated in this study is
MTcGAN. For comparison with MTcGAN in this study, the two existing methods, Pix2Pix
and S-CycleGAN, are selected because they have been widely applied to SAR-to-optical
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image translation and provide a basic model structure for developing GAN variants. The
main principles of these three methods are briefly described in this section.

2.1. Pix2Pix

Unlike conventional GANs that generate only uncontrolled random images, cGAN can
control the image to be generated using conditional information. The representative model
within the cGAN framework is Pix2Pix [39]. The basic architecture of Pix2Pix consists of
two subnetworks: a generator network G and a discriminator network D. Both networks
are simultaneously trained in an adversarial manner. G takes a random noise z and the
conditional variable y as input and is trained to generate a fake image G(z, y) that is as
similar as possible to the real image x by reflecting the characteristics of y. On the other
hand, D receives x, G(z, y) and y as input and is trained to distinguish G(z, y) from x. The
goal of the overall training process can be detailed as

LcGAN(G, D) = Ex, y[logD(x, y)] + Ez,y[log (1 − D(G(z, y ), y))], (1)

where E[·] is an expectation operator.
The objective of training G is not only to trick the D but also to generate a fake image

similar to x using the L1 loss function. The L1 loss function is employed in training G to
alleviate blurring of the generated image. The L1 loss function is defined as

LL1 = Ex,y,z[∥x − G(z, y)∥1]. (2)

Both the objective function and the L1 loss function are optimized as

min
G

max
D

LcGAN(G, D) + λLL1, (3)

where λ is the hyperparameter controlling the trade-off between LcGAN(G, D) and LL1.

2.2. S-CycleGAN

In image-to-image translation, the collection of paired training data is a difficult and
expensive task. To solve this issue, CycleGAN was proposed as it does not require spatially
paired images as input [40]. Although CycleGAN is trained in an unsupervised manner, its
prediction performance in SAR-to-optical image translation was reported to be similar to
that of Pix2Pix [29].

CycleGAN is designed to learn the translation between two images, x and y, belonging
to different domains. It comprises two generators and two discriminators. The generator
G is trained to generate a fake image G(x) as similar as possible to the real image y. The
aim of the discriminator Dy corresponding to G is to distinguish G(x) from y. Another
generator F and discriminator Dx are trained in the same way after exchanging input and
output. The goal of the overall training process in an adversarial way can be detailed as

LGAN
(
G, Dy, x, y

)
= E y

[
logDy(y)

]
+ Ex

[
1 − Dy(G(x))

]
, (4)

LGAN(F, Dx, x, y) = E x[log Dx(x)] + Ey[1 − Dx(F(y))]. (5)

While training CycleGAN in an unsupervised manner, there is no guarantee that the
translation between x and y is meaningfully paired. Thus, cycle consistency loss is of
particular consideration due to the correct mapping between the two images. The cycle
consistency loss is defined as

Lcyc(G, F) = E x[||F(G(x))− x||1 ] + Ey[||G(F(y))− y||1 ]. (6)

The final objective function to be optimized is as follows:

LCycleGAN = min
G

max
Dy

LGAN
(
G, Dy, x, y

)
+ min

F
max

Dx
LGAN(F, Dx, x, y) + λLcyc(G, F), (7)
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where λ is the hyperparameter controlling the importance of Lcyc(G, F).
With regard to SAR-to-optical image translation, hypothetical optical images generated

by CycleGAN tend to resemble SAR images with some of the colors appearing in the optical
images. This is mainly because CycleGAN transfers the key features from one domain to
another in an unsupervised manner [22,26]. Considering that the goal of image-to-image
translation in this study is to accurately reproduce the reflectance of optical images, it is
necessary to modify CycleGAN in a supervised manner. To address this, Wang et al. [26]
proposed S-CycleGAN, which adopts the core principle of Pix2Pix for supervised learning.
S-CycleGAN utilizes SAR and optical image pairs as input and employs L1 loss to achieve
similarity between the generated and real images. The L1 loss function in S-CycleGAN is
defined as

Lp = Ex,y[∥G(x)− y∥1] + [∥F(y)− x∥1], (8)

The final objective function of S-CycleGAN is as follows:

LCycleGAN + βLp(G, F), (9)

where the hyperparameter β controls the importance of Lp(G, F).

2.3. MTcGAN

MTcGAN is a modified cGAN that uses additional SAR and optical image pairs
acquired on the reference date (hereafter referred to as tr) as conditional variables along
with the SAR image acquired on the prediction date (hereafter referred to as tp) [17,38].

MTcGAN does not require a new loss function to be incorporated or a change in the
model structure. Instead, its emphasis lies in ensuring the diversity of input data to extract
temporal information. This simplicity enables MTcGAN’s applicability across various
SAR-to-optical image translation tasks with different input data.

The overall training process for MTcGAN can be defined as

LMTcGAN(G, D) = Ex, y[logD(x, yt)] + Ez,y[log (1 − D(G(z, yt ), yt))], (10)

where yt is the conditional variable consisting of multi-temporal SAR and single optical images.
The L1 loss function is defined as

LL1 = Ex,y,z[∥x − G(z, yt)∥1]. (11)

The final objective function of MTcGAN is as follows:

min
G

max
D

LMTcGAN(G, D) + λLL1, (12)

where λ is the hyperparameter controlling the trade-off between LMTcGAN(G, D) and LL1.
Figure 2 illustrates that MTcGAN utilizes additional image pairs as conditional input

for hypothetical image generation compared to Pix2Pix and S-CycleGAN. The use of
additional input data in MTcGAN has several advantages over cGAN, resulting in the
generated hypothetical optical image being more similar to the real image. The optical
image acquired at tr can contribute to compensating for the loss of textures, resulting in
visually improved hypothetical optical imagery. This is because the optical image at tr is
still more similar to the optical image at tp than the SAR image at tp in terms of texture,
even though it was acquired on a different date. Abrupt changes in land cover cannot be
captured when only using the optical image at tr. The multi-temporal SAR images at both
tr and tp can be effectively utilized to account for the difference in information between tr
and tp. Overall, MTcGAN has great potential to generate high-quality hypothetical optical
imagery by relying on the optical image at tr while inferring possible changes that occurred
between tr and tp. However, it should be noted that the prediction performance of MTcGAN
depends not only on its capability to explain the quantitative relationships between optical
and SAR images but also on the correlation between optical images acquired at tr and tp.
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3. Experiments
3.1. Study Area

Experiments for hypothetical optical image generation were conducted in the subarea
of Illinois within the US Corn Belt, where mostly corn and soybean are cultivated [41]. As
Korea imports large amounts of corn and soybean from foreign countries, including the US,
early season crop monitoring in Illinois is crucial for assessing crop yield forecasting.

In this study, the subarea in the southwest agricultural statistics district was selected as
the experimental study area (Figure 3). The predominant crop types in the study area are corn
and soybean. The minor land cover types include other crops, grass, and built-up classes.
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3.2. Data

Sentinel-1 and -2 images were used as input for SAR-to-optical image translation
experiments. The Sentinel-1 level-1 ground range detected (GRD) product in the interfero-
metric wide swath mode and the Sentinel-2 level-2A bottom-of-atmosphere (BOA) product
were downloaded from the Copernicus Data Space Ecosystem [42]. After employing sev-
eral preprocessing steps using Sentinel Application Platform (SNAP) software (version
8.0.0) [43,44], the calibrated backscattering coefficients for VV and VH polarizations were
finally obtained at pixels with a spatial resolution of 10 m. In addition to the dual polariza-
tion backscattering coefficients, the dual-polarization-based radar vegetation index (RVI)
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was utilized as an additional SAR-based input. The RVI, which is useful for describing the
crop growth dynamics [20,45], is defined as

RVI = 4σ0
VH/(σ 0

VV + σ0
VH

)
, (13)

where σ0
VV and σ0

VH are the backscattering coefficients for VV and VH polarizations, respectively.
The red-edge (RE) and the short-wave infrared (SWIR) bands available from Sentinel-2

images are known to provide useful information for the identification of complex crop
types [11]. In addition to the commonly available spectral bands, including the blue, green,
red, and near-infrared (NIR) bands, reflectance values from three RE and two SWIR bands
in the Sentinel-2 optical images were also considered in this study. Five bands (RE 1–3 and
SWIR 1–2 bands) with a spatial resolution of 20 m were resampled to 10 m using bilinear
resampling to match the spatial resolution of the nine spectral bands.

A total of 10 Sentinel-1 and -2 images acquired from June to August 2022 were utilized
for further analyses by considering the growth stages of corn and soybean in the study
area (Table 1). The main objective of this study is to assess the predictive performance of
MTcGAN for hypothetical optical image generation in cropland where substantial changes
in land cover occur. To ensure the satisfactory performance of SAR-to-optical image
translation, major crops should be visually discerned in the Sentinel-2 image. Sentinel-2
images acquired from June to July, corresponding to the early growing stages of corn and
soybean, were utilized based on our previous study [20]. MTcGAN requires SAR and
optical image pairs to be acquired on the same or a similar date. The temporal differences
between the acquisition dates of Sentinel-1 and -2 images may result in changes in the
physical conditions of land cover types, distorting the quantitative relationships between
SAR and optical images. Hence, the temporal difference between the acquisition dates of
Sentinel-1 and -2 images was limited to a maximum of 5 days, assuming no changes in crop
condition. Sentinel-1 and -2 image pairs acquired approximately two weeks apart were
utilized for analysis because a significant change in crop vitality could be observed in that
time interval, as shown in Figure 4a. Moreover, corn and soybean can be visually discerned
in the Sentinel-1 image after early July, when the crop vitality of the two major crops is very
high (Figure 4b). These datasets were utilized to evaluate the performance of MTcGAN
according to inputs acquired on different dates.

Table 1. Summary of Sentinel-1 and -2 images used for SAR-to-optical image translation (GRD:
ground range detected; BOA: bottom-of-atmosphere; NIR: near-infrared; RE: red-edge; SWIR: short-
wave infrared).

Specification Sentinel-1 Sentinel-2

Product type Level-1 GRD Level-2A BOA
Polarization or
spectral bands

(central wavelength)
VV and VH

Blue (490 nm), green (560 nm), red (665 nm),
RE1–3 (705, 740, and 783 nm), NIR (842 nm),

SWIR1–2 (1610 and 2190 nm)

Spatial resolution 10 m 10 m (blue, green, red, and NIR)
20 m (RE1–3 and SWIR1–2)

Acquisition dates

t1 19 June 2022 14 June 2022
t2 1 July 2022 29 June 2022
t3 13 July 2022 12 July 2022
t4 25 July 2022 22 July 2022
t5 18 August 2022 13 August 2022
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Figure 4. Multi-temporal Sentinel images in the test region: (a) Sentinel-2 images (NIR–SWIR1–RE2
as RGB); (b) Sentinel-1 images (VV–VH–radar vegetation index as RGB). The reclassified cropland
data layer in (c) is used as auxiliary information for interpretations. Image acquisition dates indicated
as t can be found in Table 1.

To use multi-temporal Sentinel-1 and -2 images with different pixel value ranges
as input for SAR-to-optical image translation, the normalization procedure presented in
Enomoto et al. [46], defined in Equation (14), was adopted in this study:

In =


1 if Ir > M
−1 if Ir < m

2(Ir−m)
(M−m)

− 1 otherwise
, (14)

where In and Ir represent the pixel values before and after normalization, respectively. m
and M are the minimum and maximum values of individual images, respectively.

For Sentinel-2 images, m and M are defined as 0 and 1, respectively, since they have
values between 0 and 1 after applying the scale factor. Unlike Sentinel-2 images, which
have fixed minimum and maximum values, the backscattering coefficients in the dB unit
of Sentinel-1 images are highly variable. Therefore, m and M for Sentinel-1 images were
determined using mean (µ) and standard deviation (σ) values calculated from multi-
temporal Sentinel-1 images as follows:

M = µ − 3σ, (15)

m = µ + 3σ, (16)

The cropland data layer (CDL), provided by the National Agricultural Statistics Service
(NASS) of the United States Department of Agriculture (USDA) [47], was used as auxiliary
information to interpret the prediction results and evaluate the prediction performance in
the corn and soybean cultivation areas (Figure 4c). The CDL data with a spatial resolution
of 30 m were resampled to 10 m using nearest neighbor resampling to match the spatial
resolution of input images.

3.3. Experimental Design
3.3.1. Optimization of Model Hyperparameters

The basic architecture of the three SAR-to-optical image translation methods applied
in this study is the same as that of Pix2Pix, which utilizes U-Net and PatchGAN as the
generator and the discriminator, respectively. U-Net consists of a specific encoder–decoder
architecture designed to generate a hypothetical image from input images. The encoder



Remote Sens. 2024, 16, 1199 9 of 20

and decoder have distinct roles: the encoder extracts key features from the input images
through down-sampling, while the decoder reconstructs the hypothetical image from
features extracted through up-sampling. A notable feature of U-Net lies in the use of skip
connections which connect corresponding layers of the encoder and decoder to prevent the
loss of initial information during the down-sampling process.

The dimensions of the input and output images were set to 256 × 256 × N and
256 × 256 × 9, respectively, where N is the total number of input spectral bands (3 for
Pix2Pix and S-CycleGAN, and 15 for MTcGAN). All hyperparameters of U-Net except for
the image size were determined based on the specifications of Pix2Pix [39]. The number
of features in the encoder gradually increased from 64 to 512 during up-sampling, while
the number of features in the decoder gradually decreased from 1024 to N during down-
sampling. There are twice the number of features for the decoder than the encoder, since
the decoder is combined with skip connections (refer to Table 2). Eight convolution and
eight deconvolution blocks were used for up-sampling and down-sampling, respectively.
The convolution block includes a convolution operation, batch normalization, and a leaky
ReLU activation function. The deconvolution block includes a deconvolution operation,
batch normalization, and a ReLU activation function. To adjust the number of features
without applying pooling layers, the kernel and stride sizes were set to predefined values
for convolution and deconvolution layers: 4 and 2, respectively. The dropout applied from
the top three blocks of up-sampling replaces input noise z in Equations (1) and (2) [39]. The
structures and hyperparameters of U-Net and PatchGAN are listed in Table 2.

Table 2. Details of the U-Net-based generator and PatchGAN-based discriminator used in the three
SAR-to-optical image translation models. The numbers in parentheses represent the patch size,
number of features, and kernel and stride sizes (C: convolution operation; B: batch normalization;
L: leaky ReLU activation function; Dc: deconvolution operation; D: dropout; R: ReLU activation
function; T: hyperbolic tangent; Z: zero-padding; S: sigmoid activation function; N: the number of
input bands).

Generator
Discriminator

Encoder Decoder

CL (128, 64, 4, 2) DcBDR (2, 1024, 4, 2) CL (128, 64, 4, 2)
CBL (64, 128, 4, 2) DcBDR (4, 1024, 4, 2) CBL (64, 128, 4, 2)
CBL (32, 256, 4, 2) DcBDR (8, 1024, 4, 2) CBL (32, 256, 4, 2)
CBL (16, 512, 4, 2) DcBR (16, 1024, 4, 2) ZCBL (31, 512, 4, 1)
CBL (8, 512, 4, 2) DcBR (32, 512, 4, 2) ZCS (30, 1, 4, 1)
CBL (4, 512, 4, 2) DcBR (64, 256, 4, 2) -
CBL (2, 512, 4, 2) DcBR (128, 128, 4, 2) -
CBL (1, 512, 4, 2) DcT (256, N, 4, 2) -

PatchGAN, employed as a discriminator architecture, is used to evaluate whether the
generated image is real or fake in a predefined patch unit of a specific size rather than
considering the entire image. Considering that spatial autocorrelation between neighboring
pixels tends to decrease as the distance between pixels increases, the quality of the output
image can be improved by using an appropriate patch size in the discriminator.

The input size of PatchGAN was set to the sum of the input and output dimensions of
U-Net, 256 × 256 × 12 for Pix2Pix and S-CycleGAN, and 256 × 256 × 24 for MTcGAN. The
architecture of PatchGAN involves a specific number of the abovementioned convolution
blocks and one convolution layer with a sigmoid activation function for distinguishing the
real image (1) from the fake image (0). Unlike U-Net, hyperparameter tuning for PatchGAN
was performed through a trial-and-error procedure due to the divergence issue observed
in the loss of PatchGAN when using the same structure and hyperparameters as Pix2Pix.
After adjusting the number of convolution blocks and the patch size, the convolution block
and the patch size were finally determined to be 4 and 30 × 30, respectively. The values of
λ in Equations (3) and (7) and β in Equation (9) were set to 100 in all cases.
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3.3.2. Training and Test Setup

The training and test regions, for model construction and evaluation, respectively,
were determined using the CDL in the study area. To ensure valid evaluation, spatially
independent training and test regions were used, as shown in Figure 3. The training region
was set to be larger than the test region so that sufficient training data could be used to
effectively train deep learning models with complex structures. In addition, training and
testing regions that did not contain clouds and shadows were selected from multi-temporal
Sentinel-1 and -2 images to ensure the collection of sufficient data.

Both the training and test data were first extracted from Sentinel-1 and -2 image pairs
in the region. The three SAR-to-optical image translation methods built using the training
data were applied to the test data to evaluate their prediction performance. The patch size
for training and test data was set to 256 × 256, with individual patches overlapping by 50%
and adjacent patches for data augmentation. There were a total of 1085 and 49 pairs of
patches extracted for the training and test data, respectively.

3.3.3. Experiment Setup

To evaluate the prediction performance of MTcGAN for various input cases, ten
experimental cases were designed for the experiments (Table 3). The ten experimental cases
were categorized into three classes (A, B, and C). The A and B classes were used to explore
the impact of image acquisition and prediction dates on the performance of MTcGAN.
More specifically, the four A cases were designed to evaluate the performance of MTcGAN
for changes in tp reflecting different crop growing stages. For these four cases, tr as close
as possible to tp was selected to analyze the impact of tp. The aim of the two B cases was
to explore the impact of the temporal distance between tp and tr, particularly considering
cases where the acquisition of cloud-free optical images is limited for long periods due to
prolonged inclement weather conditions. In these two cases, tp was fixed to t4 (22 July),
since this period (around the end of July) was reported to be the optimal date for early crop
classification [20]. Finally, the performance of MTcGAN was compared with Pix2Pix and
S-CycleGAN in the four C cases to highlight the superiority of MTcGAN.

Table 3. Experiment cases considered in this study. t indicates the acquisition date shown in
Table 1. S1 and S2 denote the Sentinel-1 and -2 images, respectively.

Cases Model
Training and Test

Input Images Output Image

A-1

MTcGAN

S1 (t1, t2) and S2 (t1) S2 ( t2)
A-2 S1 (t2, t3) and S2 (t2) S2 ( t3)
A-3 S1 (t3, t4) and S2 (t3) S2 ( t4)
A-4 S1 (t4, t5) and S2 (t4) S2 ( t5)

B-1
MTcGAN

S1 (t1, t4) and S2 (t1) S2 ( t4)
B-2 S1 (t2, t4) and S2 (t2) S2 ( t4)

C-1 Pix2Pix S1 ( t2) S2 ( t2)C-2 S-CycleGAN
C-3 Pix2Pix S1 ( t4) S2 ( t4)C-4 S-CycleGAN

3.4. Evaluation

Prior to the evaluation of prediction performance, the 49 image patches predicted in
the test region (each with 50% overlap) were post-processed by replacing predictions near
the boundary with the average value to minimize boundary artifacts between individual
patches [27].

To quantitatively evaluate the prediction performance for ten cases in Table 3, the
predicted values were first compared with actual values in the test region. Some metrics,
including root mean square error (RMSE), relative RMSE (rRMSE), correlation coefficients
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(CCs), and structural similarity measure (SSIM), were then calculated as quantitative
evaluation measures. rRMSE was calculated for a relative comparison of reflectance values
for individual spectral bands with different ranges. SSIM was also calculated to measure
spatial similarity between the real and hypothetical images, where higher SSIM values
indicate higher spatial similarity.

3.5. Implementation

Three SAR-to-optical image translation methods were implemented using the Ten-
sorFlow [48] and Keras [49] libraries in Python 3.7.1. In addition, training and test image
patch preparation, image normalization, and evaluation metrics computation were also
implemented using Python coding. All procedures were run on the CentOS 7.0 operation
system with an Intel XEON E5-2630 v4 @ 2.2 GHz CPU and two NVIDIA RTX 3090 GPUs
with 24 GB memory.

4. Results
4.1. Analysis of Temporal Characteristics of Corn and Soybean

The temporal characteristics of corn and soybean in the Sentinel-1 and -2 images were
analyzed before performing the SAR-to-optical image translation experiments due to the
specific growing stages of each crop.

Figure 5 shows the temporal variation in the normalized difference vegetation index
(NDVI) and VH backscattering coefficient distributions for corn and soybean in the training
region. The NDVI was higher for corn than soybean, indicating that corn was sown earlier
than soybean in the study area (Figure 5a). The vegetation vitality of corn reached its peak
in mid-July and gradually decreased after the end of July. Meanwhile, the vegetation vitality
of soybean increased rapidly until mid-July and peaked in mid-August. Consequently,
the corn and soybean in the study area have distinct growth cycles and exhibit significant
differences in vegetation vitality across the image acquisition dates.
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Figure 5. Boxplots of spectral and scattering distributions of corn and soybean calculated from indi-
vidual Sentinel-1 and -2 images for the indicated image acquisition dates: (a) normalized difference
vegetation index (NDVI); (b) VH backscattering coefficient. S1 and S2 denote the Sentinel-1 and -2
images, respectively.

The VV backscattering coefficient and RVI provided useful information to reflect
crop growth characteristics in a previous study [20]. However, the VH backscattering
coefficient was selected in this study to compare the scattering characteristics of corn and
soybean, since the differences in temporal variations between corn and soybean were the
most pronounced for VH polarization when compared with VV polarization and RVI
(Figure 5b). Some significant differences were observed between the two crops. First, the
VH backscattering coefficient for corn was highest in mid-June and then decreased signifi-
cantly thereafter. In contrast, an increase in the VH backscattering coefficient for soybean
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was observed in the early part of this period. This variation is caused by crop growth
and leaf development [50]. Therefore, the differences in NDVI and VH backscattering
coefficients over time affect the prediction performance of MTcGAN when using different
input data.

Table 4 lists the CCs of NDVI values between different tp and tr for ten experimental
cases. The CCs of NDVI values were slightly higher for corn than soybean on almost all
dates except between t1 and t2, but this difference was not substantial. For both crops, the
CCs decreased significantly as the temporal distance between tp and tr increased. These
results are mainly attributed to differences in spectral reflectance caused by rapid changes in
physical conditions during the early growth stage. The above information was later utilized
to evaluate and interpret the prediction results of MTcGAN for different combinations of
input data.

Table 4. Correlation coefficients between NDVI values calculated from Sentinel-2 images acquired on
different dates.

Crop t2 t3 t4 t5

Corn

t1 0.739 - 0.317 -
t2 - 0.789 0.647 -
t3 - - 0.907 -
t4 - - - 0.842

Soybean

t1 0.883 - 0.236 -
t2 - 0.784 0.489 -
t3 - - 0.866 -
t4 - - - 0.755

4.2. Impact of Different Prediction Dates in MTcGAN (Case A)

Figure 6 shows the results of hypothetical Sentinel-2 image generation using MTcGAN
for different tp. Visual inspections of false color composite images using NIR, SWIR1, and
RE2 bands, which are effective in crop identification, showed that all hypothetical images
were very similar to the real Sentinel-2 images. Corn and soybean could be visually well
distinguished in the hypothetical images. These results demonstrate that the performance
of MTcGAN is less affected by the choice of tp as long as the image pairs acquired at
tr, in close proximity to tp, are utilized as input. In particular, reflectance patterns were
reproduced well within some soybean parcels where substantial changes occurred on
individual prediction dates (see red boxes in Figure 6), indicating the ability of MTcGAN to
effectively reflect rapid changes in land cover.

Figure 7 presents four accuracy statistics for corn and soybean in the four A cases of
MTcGAN. Lower RMSE values were observed for the A-1 and A-2 cases, corresponding
to the early growth stages, than the other two cases. As shown in Figure 5, substantial
differences in NDVI were observed between t2 and t3 when comparing soybean to corn. As
a result, the RMSE values of corn and soybean differed by about twofold in the case of A-2.
These results may also be due to the consistently lower variation in NDVI for corn than for
soybean. On the other hand, the A-3 case exhibited superior prediction performance as it
had the highest CC of NDVI between tr and tp (see Table 4). During the early growth stages
(A-1 and A-2), the rRMSE values for red, NIR, RE3, and SWIR2 were higher than other
bands. Consistently high values of SSIM and CC were obtained for most bands except
NIR and RE2. A high variation in NDVI due to rapid crop growth affected the prediction
performance, but the magnitude of errors was small, with RMSE up to 0.06.
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4.3. Impact of Temporal Distance between Reference and Prediction Dates in MTcGAN (Case B)

Figure 8 presents the prediction results of MTcGAN for the Sentinel-2 image at t4 (25
July) using image pairs acquired at different tr.

The hypothetical images generated in B-1 and B-2 show significant differences com-
pared to the results of A-3 with the same tp. The spectral patterns of corn parcels were
reproduced well in both cases. While the reflectance values of soybean parcels generally
appeared to be reproduced well, the pixels within most soybean parcels exhibited similar
spectral patterns to the built-up class. Based on visual inspection, these results appear to be
due to several factors, such as residual speckle noise in Sentinel-1 images, high variability
in VH backscattering coefficients and NDVI, and low correlation of NDVI between tr and tp.
In particular, spectral distortion was observed in some soybean parcels, as highlighted in
the red boxes in Figure 8. Despite the relatively low predictive performance of B-1 and B-2,
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the predicted images still contain visually useful information for distinguishing between
corn and soybean.
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Figure 8. Hypothetical Sentinel-2 images generated by MTcGAN and the real Sentinel-2 images
(NIR–SWIR1–RE2 as RGB) for the two B cases with the CDL. Red boxes indicate soybean parcels
where rapid changes occurred. Image acquisition dates indicated as t can be found in Table 1.

When analyzing accuracy statistics for the two B cases of MTcGAN (Figure 9), the
RMSE values of corn and soybean for the NIR band were 0.042 and 0.066, respectively,
for B-1, with significant increases in RMSE compared to case A-3 using image pairs at t3
(0.021 and 0.028 for corn and soybean, respectively). Such an increase in RMSE was also
obtained for the RE3 band. The predictive performance of B-1 was inferior to that of A-1
which had the lowest predictive performance of all the A cases. Lower SSIM and CC were
also achieved for B-1 and B-2 compared to A-1. For example, the CCs of corn and soybean
for the RE3 band of B-1 were 0.662 and 0.438, respectively, which are significantly lower
than the CCs of A-1 (0.857 and 0.816 for corn and soybean, respectively). In particular, the
difference in CC between A-1 and B-1 is substantial, likely due to the influence of some
pixels in the soybean parcels that showed spectral patterns similar to those in the built-up
class, as shown in the red boxes in Figure 8.
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In summary, it is evident when evaluating both A and B cases that the prediction
performance of MTcGAN was mainly affected by the correlation of NDVI between tr and
tp rather than the vegetation vitality of the crops at tp. To achieve satisfactory prediction
performance using MTcGAN in the study area, it is recommended that the temporal interval
between tr and tp should not exceed one month.

4.4. Comparison of Different SAR-to-Optical Image Translation Methods (Case C)

The prediction results of Pix2Pix and S-CycleGAN for the four C cases are presented
in Figure 10. The prediction results of all C cases differed significantly from those for cases
A and B. Most small structures, such as buildings and roads located at the boundary of
crop parcels, were poorly represented due to blurring. Pix2Pix and S-CycleGAN are likely
to fail to restore these structures if they are difficult to visually identify in SAR images.
Furthermore, it was not feasible to distinguish corn from soybean in the prediction results
for t2 (1 July) using either Pix2Pix (C-1) or S-CycleGAN (C-2). These results indicate the
limited applicability of conventional SAR-to-optical image translation methods when using
only SAR images at tp, particularly when the crops have low vegetation vitality. In contrast,
the visual identification of corn and soybean was possible in the results of C-3 and C-4,
which is attributed to distinctive differences in the structural and spectral patterns of SAR
and optical images due to the increased vegetation vitality of the crops. Therefore, the
use of Pix2Pix and S-CycleGAN in hypothetical optical image generation could only yield
benefits when applied to croplands under a limited range of conditions, for example, when
corn and soybean can be clearly distinguished in both SAR and optical images. When
comparing the two methods, S-CycleGAN yielded slightly better visual results than Pix2Pix.
However, in contrast to MTcGAN, both methods failed to reproduce the spectral variations
in reflectance within crop parcels due to spectral distortions.
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soybean parcels whose spectral reflectance values differ from surrounding parcels. Image acquisition
dates indicated as t can be found in Table 1.

Figure 11 illustrates the quantitative assessment results for different SAR-to-optical
image translation methods. As expected from the visual comparison results, MTcGAN
showed the best prediction performance in all cases (A and B cases) compared to Pix2Pix
and S-CycleGAN (C case). The improvement in the prediction accuracy of MTcGAN was
more pronounced for the SWIR1 and SWIR2 bands. For example, MTcGAN improved the
RMSE in corn from 0.120 (C-1) and 0.096 (C-2) to 0.022 (A-1) for the SWIR1 band and from
0.117 (C-1) and 0.097 (C-2) to 0.02 (A-1) for the SWIR2 band. The prediction accuracy of
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Pix2Pix and S-CycleGAN was significantly improved for C-3 and C-4. However, MTcGAN
(A-4) still had better predictive performance than Pix2Pix and S-CycleGAN, regardless of
the acquisition dates of the image pairs. The results of both the qualitative and quantitative
comparisons demonstrate the advantage of MTcGAN in SAR-to-optical image translation,
particularly when the vegetation vitality of crops is low.
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5. Discussion
5.1. Applicability of MTcGAN

Most previous studies on SAR-to-optical translation [26,35,37] have focused on gener-
ating hypothetical optical images that are closer to real images rather than their application
in specific fields. The main contribution of this study is the evaluation of the applicability
of MTcGAN in terms of different input data combinations, by considering rapid changes
in the vegetation vitality of crops. To this end, performance evaluation experiments were
conducted by comprehensively considering both the crop growth status on the prediction
date and the availability of image pairs according to weather conditions. A consider-
ation of these two conditions is essential when utilizing optical images for early-stage
crop monitoring.

The experiments using multi-temporal Sentinel-1 and -2 images showed that a low cor-
relation between NDVI values for prediction and reference dates significantly degraded the
prediction performance of MTcGAN. As the temporal distance between the prediction and
reference dates increased, the correlation of NDVI rapidly decreased. The variations in the
growth rates of individual crops indicated by the low correlation were reflected differently
in the SAR and optical images. For example, some soybean parcels appeared dark green in
the false color composite (VV–VH–RVI as RGB) of the Sentinel-1 images acquired when
crops had the lowest vegetation vitality (as shown in Figure 4b). The scattering properties
of these parcels became similar to those of the surrounding soybean parcels in just 10 days
(see SAR images acquired at t1 and t2 in Figure 3). However, such changes were not evident
in the Sentinel-2 images acquired on the same date. This difference between the SAR and
optical images was a primary factor hindering the appropriate learning of MTcGAN.

In terms of predictive performance, MTcGAN achieved a lower RMSE and higher SSIM
and CC compared to existing methods, as shown in Figures 7 and 11. Although the temporal
distance between the prediction and reference dates was limited to less than one month,
the advantage of MTcGAN was particularly pronounced in crop parcels with significant
changes in vegetation vitality (see red boxes in Figures 6 and 10). It is worth emphasizing
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that MTcGAN is simple to implement and provides superior prediction performance
compared to existing methods as it only requires additional input data. Moreover, the
prediction results from different combinations of input data can be used as a guide for
selecting input data when applying MTcGAN to generate hypothetical optical images for
early-stage crop monitoring.

5.2. Future Research Directions

Previous studies [20,21] reported that hypothetical optical images can be effectively
applied in crop classification. In addition to crop classification [8,11], optical images
can also be utilized for various monitoring and thematic mapping applications, such as
tree detection and observation of growing status [51,52], crop yield prediction [53], and
plant stress detection [13,54]. In real applications, hypothetical optical image generation
is not the ultimate goal per se; instead, it is a preliminary step in constructing a cloud-
free optical image time series for monitoring tasks. In this study, hypothetical Sentinel-
2 images were generated to be used for early-stage crop monitoring. Several spectral
indices, such as normalized difference vegetation index (NDVI), can be computed from the
hypothetical Sentinel-2 images and used for crop monitoring. Despite its broad applicability
for vegetation monitoring, NDVI has a saturation issue during periods of peak biomass.
This limitation of NDVI can be alleviated using other spectral indices, such as normalized
difference water index (NDWI) based on SWIR and NIR bands [55]. In this study, MTcGAN
achieved satisfactory prediction accuracy for the two SWIR bands of Sentinel-2 imagery.
Thus, the NDWI computed from the hypothetical Sentinel-2 image can be utilized to
analyze the temporal responses of corn and soybean. As USDA provides information on
crop progress on a weekly basis for each state and some specific agricultural districts [56], it
is feasible to analyze the variability in vegetation indices according to different crop growth
stages. Thus, it is worthwhile to compare the multi-year behaviors of NDVI and NDWI for
corn and soybean under different weather conditions in order to highlight the benefit of
hypothetical optical image generation for crop monitoring.

However, it should be noted that there are inherent problems with the direct applica-
tion of hypothetical optical images predicted by SAR-to-optical image translation due to
intrinsic errors present in the images, which result in error propagation issues in further
analyses. This issue implies that the complete replacement of optical images with SAR
images is impossible or at least difficult. However, this difficulty can be alleviated if SAR-
to-optical image translation is focused on the removal of clouds from optical imagery. The
benefit of SAR-to-optical image translation has been demonstrated in both cloud removal
and missing value reconstruction [26,37]. The typical approach to improving prediction
performance in cloud removal is to utilize cloud-free pixels as additional information
for predicting the reflectance values of pixels contaminated by clouds and shadows. For
example, pixels contaminated by clouds can be restored through SAR-to-optical image
translation, and calibration procedures, such as regression modeling [24] and Poisson
blending [14], can then be applied to correct the restored pixels.

From a methodological viewpoint, implementing SAR-to-optical image translation in
MTcGAN by adding multi-temporal image pairs to the Pix2Pix architecture indicates that
MTcGAN can be applied to other SAR-to-optical image translation methods. As mentioned
in the Introduction, various SAR-to-optical image translation methods have been proposed
that can consider new loss functions or modify the U-Net model architecture to mitigate
information loss for small objects [32–37]. The combination of the advanced method and the
simple but efficient nature of MTcGAN has the potential to improve predictive performance
for hypothetical optical image generation.

In this study, the potential of MTcGAN for SAR-to-optical image translation was
evaluated using a set of five pairs of Sentinel-1 and -2 images acquired in the specific subarea
of Illinois State in 2022. The US Corn Belt covers an extensive area where information in
optical images is inevitably lost due to cloud contamination. Thus, the hypothetical Sentinel-
2 images can be utilized as input for early crop classification. However, from a practical
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point of view, additional tasks should be considered in SAR-to-optical image translation,
such as the extension of spatial and temporal scales. Deep learning has great potential due
to its scalability when it comes to extending the study area over the years. MTcGAN may
use images acquired under different conditions (e.g., differences in crop growth stages)
as input when extending the spatial and temporal scales. Domain adaptation, which
transforms images with different characteristics to have similar characteristics [17,34], can
be applied as a preprocessing step for MTcGAN. Evaluating these promising tasks to
enhance the practicality of hypothetical optical image generation in croplands should be
considered in future work.

6. Conclusions

This study evaluated the potential of MTcGAN for generating hypothetical optical
images during the early crop growth stages, considering the availability of optical images.
In the SAR-to-optical image translation experiments using Sentinel-1 and -2 in Illinois, the
advantages of MTcGAN were demonstrated by exploring different input image combina-
tions and comparing the predictive performance with that of existing methods. Two crucial
factors must be considered when selecting input images for the application of MTcGAN to
SAR-to-optical image translation, namely (1) the degree of change in the vegetation vitality
of crops between prediction and reference dates and (2) the ability to identify crops from
optical and SAR images. MTcGAN consistently outperformed Pix2Pix and S-CycleGAN
regardless of the combination of input data and exhibited notable superiority in the early
crop growth stages. These findings thus indicate the benefit of MTcGAN in SAR-to-optical
image translation during the early crop growth stages, and the results can serve as a guide
for selecting optimal input images for hypothetical optical image generation in croplands.
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