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Abstract: In unmanned aerial vehicle (UAV)-based time difference of arrival (TDOA) positioning
technique, baselines are limited due to communication constraints. In this case, the accuracy is
highly sensitive to the TDOA measurements’ error. This article primarily addresses the problem
of short-baseline high-precision time synchronization and TDOA measurement. We conducted
a detailed analysis of error models in TDOA systems, considering both the time and phase
measurement. We utilize the frequency division wireless phase synchronization technique in
TDOA systems. Building upon this synchronization scheme, we propose a novel time delay
estimation method that relies on phase measurements based on the integer least squares method.
The performance of this method is demonstrated through Monte Carlo simulations and outdoor
experiments. The standard deviations of synchronization and TDOA measurements in experiments
are 1.12 ps and 1.66 ps, respectively. Furthermore, the circular error probable (CEP) accuracy is
improved from 0.33%R to 0.02%R, offering support for the practical application of distributed
short-baseline high-precision passive location techniques.

Keywords: time difference of arrival (TDOA); wireless phase synchronization; phase measurement;
unmanned aerial vehicle (UAV)

1. Introduction

Unmanned aerial vehicle (UAV)-based passive location has always been a research
hotspot in the academic and civil fields. Compared with the active location, it has the
advantages of low power consumption and longer positioning distance. With the increasing
maturity of low-cost commercial-off-the-shelf (COTS) software-defined radio (SDR), radio
frequency system-on-chip (RFSoC), and other products [1], the cost of distributed passive
location systems has reduced, making it highly valuable in search and rescue [2], intelligent
logistics [3], urban positioning [4], and other fields [5,6].

Time difference of arrival (TDOA) localization offers a higher positioning accuracy
compared to other localization techniques [7–11]. Passive localization systems capture the
same pulse signal and estimate the TDOA. When the baselines between nodes are long
in comparison to the distance to the emitter, current global navigation satellite system
(GNSS)-based time synchronization and position techniques meet the system requirements.
However, when the operational range of localization system is limited, the baselines
are constrained by the emitter beamwidth or UAV communication range. Under such
conditions, TDOA positioning accuracy is highly susceptible to TDOA measurements.
To maintain the same localization performance compared with long-baseline TDOA, the
requirements for TDOA measurements are more stringent [12,13]. To achieve high-precision
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TDOA positioning, three problems must be taken into consideration: high-precision relative
positioning, high-precision time synchronization, and high-precision time delay estimation
(TDE). In this article, we focus on high-precision time delay estimation and high-precision
time synchronization techniques.

The issue of achieving high-precision wireless time synchronization has always
been a significant challenge in various fields. In wireless sensor networks, time synchro-
nization is composed of centralized methods and distributed methods [14–16], where the
synchronization convergence speed of a large-scale network is the main concern. On the
other hand, in multi/bistatic radar, where the network scale is smaller, synchronization
accuracy takes precedence. To enhance accuracy, the bistatic SAR satellites [17–19] adopt
a time division and co-frequency method to exchange pulse signals, achieving time
and phase synchronization between two satellites. Building upon this, some studies in
the literature have designed multi-node wireless synchronization protocol [11,12,20],
improving the efficiency of a two-way time transfer for wireless nodes via time division
broadcasting. In active distributed radar, since the radar waveform and the transmission
time are known in advance, the radar mode and synchronous mode are avoided by the
time division design or orthogonal waveform design. However, in passive localization
applications, the waveform and launch time of the emitter are unknown; if the synchro-
nization link frequency band overlaps with the emitter frequency band, it may introduce
interference to the localization system.

Besides the time synchronization error, the accuracy of TDOA estimation also de-
termines the localization performance. When the signal-to-noise (SNR) ratio and the
bandwidth are fixed, the time delay estimation (TDE) method plays a crucial role in ap-
proaching the performance bounds in TDOA estimation. Most traditional methods use
the cross-correlation function (CCF) or general cross-correlation (GCC) function of peak
position estimation methods, such as the sinc interpolation method [21], the quadratic least
squares (QLS) method [22,23], the sinc nonlinear least squares (sinc-LS) method [24], and
the matched filter least squares (MFLS) method [25]. The pursuit of high-precision TDE
is essential not only in TDOA localization, but also in many other fields. For instance, in
real-time kinematic (RTK) technique, precise carrier phase measurements are introduced
to realize high positioning [26,27]. However, most current methods in TDOA only utilize
the peak position information, thereby underutilizing the full performance potential of the
localization system.

The contributions in the paper include the following:

(1) We conducted short-baseline TDOA experiments using a precise time and phase
wireless synchronization method based on frequency division.

(2) We propose a TDOA estimation using phase measurements based on the integer least
squares method.

(3) We verify the effect of frequency instability on peak position-based estimation through
model derivation and experiments.

This article is organized as follows. In Section 2, the error sources of the distributed
TDOA system link are modeled in detail from the two dimensions of time observation and
phase observation. In Section 3, error analysis is conducted on time observation and phase
observation for the synchronization system link, and a frequency division synchronization
scheme is designed for distributed passive localization systems. In Section 4, a high-
precision delay estimation method based on phase measurement is introduced. In Section 5,
we outline the principal tests and detail a three-sensor TDOA localization experiment. The
experimental results align closely with the signal models outlined in Sections 2 and 3. The
standard deviations of synchronization and TDOA measurements in the experiments are
1.12 ps and 1.66 ps, respectively. Furthermore, the CEP accuracy is improved from 0.33%R
to 0.02%R. Finally, Section 6 concludes the article.
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2. System Models

In the scenario described in Figure 1, after the disaster, N unmanned aerial vehicles
(UAVs) are settled to search survivors by locating their portable station. The distance
between UAVs is limited by communication and synchronization link as well as the portable
station antenna beamwidth. Synchronization errors between UAVs are compensated
through wireless synchronization links. In this section, we will analyze the error model of
the TDOA system to provide a foundation for high-precision TDOA estimation.
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2.1. Hardware Block Model

For simplicity, we consider the hardware model for two sensors as shown in Figure 2.
For each sensor, the transmitted signal is received by CH1. Since the TDOA system receives
the same pulse from the emitter, we ignore the effects of non-idealities and the initial phase
of the radiation signal. Then, sensor i receives the radiation signal after time delay, τi

to f , at

the antenna phase center as si
ant(t):

si
ant(t) = sBD

(
t − τi

to f

)
exp

(
j2π fc

(
t − τi

to f

))
(1)

where sBD(t) is the baseband signal and fc is the carrier frequency.

2.2. Signal Model with Different Oscillators

Considering the short-term instability of the crystal frequency of the TDOA system,
we assume that the instantaneous frequency remains constant within the pulse width of
the emitter, but varies in different pulses [19]. Define f i

LO(t0) as the instantaneous local
frequency of sensor i at time t0. We have

f i
LO(t0) = fLO + δ f i

LO(t0) (2)

where fLO is the nominal LO frequency and δ f i
LO is the time-variant frequency instability.

The phase noise of the LO signal θi
pn(t0) at time t0 can be calculated as follows [28]:

θi
pn(t0) =

∫ t0

0
2πδ f i

LO(η)dη. (3)
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So, when the radiation signal travels to the mixer at time ti
mix, the LO signal si

LO(t) is

si
LO(t) = exp

[
j2πδ f i

LO

(
ti
mix

)
· t + j2π fLOt

]
· exp

[
jθi

pn

(
ti
mix

)
+ jθi

ini

]
(4)

where θi
ini is the initial phase of the LO signal. The instrument delay and phase shift are

defined as τi
inst and θi

inst, respectively [29,30]. The intermediate frequency signal si
IF(t) is

down-converted with si
LO(t) as follows:

si
IF(t) = sBD

(
t − τi

to f − τi
inst

)
exp

[
−j2π fcτi

to f + jθi
inst

]
· exp

[
j2π f i

IF
(
ti
mix
)
t − jθi

pn
(
ti
mix
)
− jθi

ini

] (5)

where the intermediate frequency f i
IF (omit ti

mix for simplicity) is

f i
IF = fc − f i

LO

(
ti
mix

)
. (6)

After si
IF(t) is sampled by the realistic but unknown clock, we have to reconstruct the

continuous signal with the nominal clock. Under the assumption from Equation (2), we
ignore the rapid time jitter in a pulse as well as the quantization error. The sample point
maps to the ideal time stamps [31]. The time synchronization error is defined as positive
when the realistic clock lags the ideal clock. In this case, the reconstructed signal will be
ahead, which is equivalent to the translation and expansion transformation of the actual
sampled signal [32], as graphically depicted in Figure 3a. In contrast, for the DAC signal,
as we have no knowledge about the realistic clock, we have to calculate the signal sample
point value under the ideal clock. In this case, the generated signal will lag the wanted
signal, as shown in Figure 3b. Note that the difference between nominal frequency and
realistic frequency is exaggerated to shown the effect.

We assume that the frequency bias, when averaged over seconds and compared to the
nominal frequency, is negligible due to locking it to the GNSS one-pulse-per-second (1 PPS)
signal [33]. Consequently, we only concentrate on the time synchronization error. Define the
initial time synchronization error ∆τi

clk between the actual sampling clock and the nominal
sampling clock during ADC sampling. After ADC sampling and digital down-conversion,
we then obtain the baseband signal si(t):



Remote Sens. 2024, 16, 1197 5 of 23

si(t) = si
IF
(
t + ∆τi

clk
)
· exp(−j2π f IFt)

= sBD

(
t + ∆τi

clk − τi
to f − τi

inst

)
· exp

[
−j2π fcτi

to f

]
· exp

[
j2π f IF∆τi

clk
]
· exp

[
−j2πδ f i

LO

(
t + ∆τi

clk − τi
to f − τi

inst

)]
· exp

[
jθi

inst − jθi
pn
(
ti
mix
)
− jθi

ini

] . (7)
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Figure 3. Time errors in analog-to-digital converter (ADC) sampling and digital-to-analog converter
(DAC) operations due to a non-ideal clock.

If the clock generator and the frequency synthesizer are driven by the same oscillator,
the relationship between the time synchronization error and phase error can be expressed
as follows [28]:

d∆τi
clk

dt
= − 1

2π fLO
·
d f i

pn

dt
= −

δ f i
LO

fLO
, (8)

∆τi
clk = − 1

fLO

∫ t

0
δ f i

LO(η)dη + C0 = − 1
2π fLO

θi
pn + C0 (9)

where C0 is an unknown constant. Since we are interested in the time-variant element, the
phase error can be simplified as

2π f IF · ∆τi
clk(t0)− θi

pn(t0) = − fc

fLO
θi

pn(t0). (10)

Substitute Equation (10) with Equation (7), to obtain si(t):

si(t) = sBD

(
t + ∆τi

clk − τi
to f − τi

inst

)
· exp

(
−j2π fcτi

to f

)
· exp

[
−j · fc/ fLO · θi

pn
(
ti
mix
)]

· exp
[
−j2πδ f i

LO

(
t + ∆τi

clk − τi
to f − τi

inst

)]
· exp

[
jθi

inst − jθi
ini
] . (11)

Similarly, the data sj(t) received by sensor j are

sj(t) = sBD

(
t + ∆τ

j
clk − τi

to f − τi
inst

)
· exp

(
−j2π fcτ

j
to f

)
· exp

[
−j · fc/ fLO · θ

j
pn

(
tj
mix

)]
· exp

[
−j2πδ f j

LO

(
t + ∆τ

j
clk − τi

to f − τi
inst

)]
· exp

[
jθ j

inst − jθ j
ini

] . (12)
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The received signal experiences additional time delays and phase shifts caused by
the instruments and time synchronization error. Furthermore, there is an instantaneous
frequency bias over the pulse width due to the instability of oscillators.

2.3. The Effect of Different Oscillators on TDOA Estimation

In general, we estimate TDOA by measuring the peak position of the CCF. Rij(τ) is
defined as the CCF [34]:

Rij(τ) =
∫ ∞

−∞
si(t) · s∗j (t − τ)dt. (13)

The detailed derivation is shown in Appendix A. Here, we present the results directly.
The amplitude of Rij(τ) is

∣∣Rij(τ)
∣∣ = rect

(
τ − γ

2T

)
· (T − |τ − γ|) · sin c

(
π
[
k(τ − γ)− δ f ij

LO

(
ti
mix, tj

mix

)]
(T − |τ − γ|)

)
(14)

where γ = τi
to f − τ

j
to f + τi

inst − τ
j
inst − ∆τi

clk + ∆τ
j
clk is the time delay difference of the

received signals between sensor i and sensor j and δ f ij
LO

(
ti
mix, tj

mix

)
is the difference of the

instantaneous frequency at ti
mix and tj

mix, which will be simplified as δ f ij
LO in the following

sections. Denote (·)ij = (·)i − (·)i and (·)i+j = (·)i + (·)i. The position of the CCF peak is
the maximum likelihood estimation of the delay. The CCF peak position τ

ij
pk is

τ
ij
pk ≈ γ +

δ f ij
LO
k

. (15)

The CCF peak angle θ
ij
pk is

θ
ij
pk = Ang

{
Rij

(
τ

ij
pk

)}
= −2π fctij

mix + πδ f i+j
LO

(
−

δ f ij
LO
k

)
− fc

fLO
θ

ij
pn(t0) +

(
θ

ij
inst − θ

ij
ini

)
. (16)

Denote the time synchronization compensation as ∆τ
ij
clk,c. After the delay calibration

and time synchronization of the instruments are performed, the TDOA estimation, TDOAij
τ ,

derived from the CCF peak position is

TDOAij
τ = τ

ij
to f +

δ f ij
LO
k

−
(

∆τ
ij
clk − ∆τ

ij
clk,c

)
. (17)

Denote the phase synchronization compensation as θ
ij
pn,c(t0). After conducting the

phase shift calibration and time (phase) synchronization of the instruments, the TDOA
estimation, TDOAij

θ , derived from the CCF peak phase is

TDOAij
θ = 1

2π fc

{
−θ

ij
pk + 2Nijπ − fc

fLO
θ

ij
pn(t0) + θ

ij
pn,c(t0)

}
− δ f i+j

LO
2 fc

· δ f ij
LO
k

≈ 1
2π fc

{
−θ

ij
pk + 2Nijπ − fc

fLO
θ

ij
pn(t0) + θ

ij
pn,c(t0)

} (18)

where Nij ∈ Z is the integer ambiguity. From Equation (17), the term δ f ij
LO/k degrades the

performance of peak position-based methods because of the instability of oscillators or
even VCOs. Since the order of signal pulse widths is in µs, δ f ij

LO is corelated with the Allan
Deviation (ADEV) at the average time of µs levels. According to the relationship between
the ADEV σy(τ) and the phase noise spectrum L( f ) [35],

σ2
y (τ) =

4
π2 f 2

c

∫ fh

fl

L( f )H( f )d f (19)
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where H( f ) = sin4(π f τ)/τ2, τ is the average time to calculate the instantaneous frequency,
and fl and fh are the lower and upper cutoff frequencies respectively. Figure 4 shows H( f )
when τ = 10 µs, and the main error of δ f ij

LO is located in L( f ) at about 50 kHz, which is a

fast noise-like error. It means that δ f ij
LO changes rapidly and only a few coherences remain

among pulses, while in Equation (18), both the elements δ f i+j
LO /(2 fc) and δ f ij

LO/k are small
and can be ignored. In Section 5.3, we will show the experiment results.
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3. Time Synchronization Method

In this section, we take the advantage of the time-variant phase error measurement
from the synchronization link and compensate for the TDOA phase measurement.

3.1. Synchronization Scheme

The synchronous link is shown in Figure 2, and each sensor utilizes CH2 to exchange
the synchronization signal. To ensure that CH1 can continuously detect the emitter signal,
the synchronization link uses another frequency band to observe the synchronization
error between nodes. The timing diagram is shown in Figure 5. Each sensor periodically
transmits the synchronization pulse signal, and the launch time of each sensor is staggered
to ensure that only one sensor transmits the signal each time. At time t, sensor 1 transmits
a synchronization pulse with the pulse width of Tp, and sensor 2 and 3 receives it. After
waiting for a fixed delay τsys, sensor 2 transmits a synchronization signal with the pulse
width of Tp, and sensor 1 and 3 receives it. After another fixed delay τsys, sensor 3 transmits
the synchronization signal and sensor 1 and 2 receives it. The above process is repeated
with pulse repetition time (PRT). The synchronization process continues throughout the
entire working time.

3.2. Compensation Time and Phase

The process of the DAC transmitting the synchronization signal is similar to that of
ADC sampling. After transmitting, the actual wave is equivalent to a translation and scaling
transformation from the designed one, as shown in Figure 3b. The signal transmitted by
the DAC is
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si
DA(t) = sBD

(
t − ∆τi

clk

)
· exp

[
j2π f IF

(
t − ∆τi

clk

)]
. (20)
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The synchronization process is similar to the previous section. So, we present the
result directly. After receiving the signal and pulse compression processing, the CCF is

Ri→j(τ) = rect
(

τ
2T
)
(T − |τ|)sin c

[
π
(

kτ + δ f ij
LO2

)
(T − |τ|)

]
· exp

[
−j2π fLO2 · τ

i→j
to f

]
· exp

(
jπδ f ij

LO2τ
)

· exp
[

j fc
fLO2

(
θi,ch2

pn − θ
j,ch2
pn

)]
· exp

(
jθi,ch1

ini − jθ j,ch2
ini + jθi,ch2

inst,Tx + jθ j,ch2
inst,Rx

)
. (21)

The peak position estimation and the peak phase of sensor i are

τ
i→j
pk = τ

i→j
to f + ∆τ

ij
clk −

δ f ij
LO2
k

+ τi,ch2
inst,Tx + τ

j,ch2
inst,Rx, (22)

θ
i→j
pk = −j2π fLO2 · τ

i→j
to f + πδ f ij

LO2
δ f ij

LO2
k

+ fc
fLO2

(
θi,ch2

pn − θ
j,ch2
pn

)
+ θi,ch2

inst,Tx + θ
j,ch2
inst,Rx + θi,ch1

ini − θ
j,ch2
ini

. (23)

Similarly, when sensor j transmits a signal to sensor i, we obtain the peak position
estimation τ

j→i
pk and the peak phase θ

j→i
pk . Assuming the instrument time delay (phase shift)

as well as initial phase have been calibrated, finally, we obtain the time synchronization
compensation ∆τ

ij
clk,c and phase synchronization compensation θ

ij
pn,c(t0):

∆τ
ij
clk,c =

τ
i→j
pk − τ

j→i
pk

2
= ∆τ

ij
clk +

1
2k

∆δ f ij
LO2
(
t0, τsys

)
, (24)

θ
ij
pn,c =

θ
i→j
pk − θ

j→i
pk

2
=

fc

fLO
θ

ij
pn(t0) + ∆θ

ij
sycn
(
t0, τsys

)
(25)
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where ∆δ f ij
LO2
(
t0, τsys

)
=
[
δ f ij

LO2(t0)− δ f ji
LO2
(
t0 + τsys

)]
represents the instantaneous fre-

quency difference changes during the interval τsys, and ∆θ
ij
sycn
(
t0, τsys

)
= π fc/ fLO2 ·∫ t0+τsys

t0
δ f ij

LO2(η)dη is the phase noise change during the interval τsys of the time division
duplex at the time instant t0.

Substitute Equation (24) with Equation (17), and Equation (25) with Equation (18); we
then have the TDOA estimation after compensation by the synchronization link:

TDOAij
τ = τ

ij
to f +

δ f ij
LO
k

+
1
2k

∆δ f ij
LO2
(
t0, τsys

)
, (26)

TDOAij
θ =

1
2π fc

{
−θ

ij
pk + 2Nijπ + ∆θ

ij
sycn
(
t0, τsys

)}
. (27)

Comparing Equation (26) with Equation (27), Equation (26) has an extra error due
to the unequal instantaneous frequencies δ f ij

LO2 and δ f ji
LO2. According to Figure 5, the

exchange is a time division duplex and the residual error is affected by the coherence of
oscillators during τsys once the oscillator is determined.

4. High-Precision Time Delay Estimation

In this section, we concentrate on the time delay estimation using phase measurements.
Before we clarify the problem of TDOA measurements, we add some constraints to simplify
the problem. We assume that the phase can be correctly unwrapped, which means that the
carrier phase change between consecutive pulses is less than π. Furthermore, we assume
that the carrier frequency of the portable station is known. So, when the TDOA system can
capture the signal continuously, the integer ambiguity should be a constant value. Once the
integer ambiguity is solved, high-precision TDOA estimation can be calculated according
to Equation (27).

In the following, the proposed integer ambiguity solution as well as the Cramer–Rao
lower bound (CRLB) are present. In Section 4.3, we will analyze the performance and the
constraints through simulations.

4.1. Ambiguity Integer Solution

Denote M as the captured pulse number. Given M coarse estimations TDOAij
τ and M

ambiguous phase measurements θ
ij
pk, the integer ambiguity problem can be defined as

min
N

∥∥∥∥∥∥TDOAij
τ −

θ
ij
pk

2π fc
− N

fc

∥∥∥∥∥∥
2

, N ∈ Z. (28)

We use the integer least squares (LS) estimation to solve the problem; the estimation
consists of two steps:

(1) Obtain the float solution N̂ with a standard LS problem:

min
N

∥∥∥∥∥∥TDOAij
τ −

θ
ij
pk

2π fc
− N

fc

∥∥∥∥∥∥
2

, N ∈ R. (29)

By taking the first the derivative of the above equation and by setting it to zero, we
have the float LS solution:

N̂ =
fc

M
·

M

∑
i=1

TDOAij
τ (i)−

θ
ij
pk(i)

2π fc

. (30)
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(2) Integer ambiguity Ñ is calculated as

Ñ =
[
N̂
]

(31)

where [ ] means that the value is rounded to the nearest integer.

The solution can only be worked out after all M pulses are captured. We also present
a sequential LS solution:

N̂(1) = fc ·
[

TDOAij
τ (1)−

θ
ij
pk(1)
2π fc

]
, m = 1

N̂(m) = fc · m−1
m N̂(m − 1) + fc

m

[
TDOAij

τ (m)−
θ

ij
pk(m)

2π fc

]
, m ≥ 2

, (32)

N(m) =
[
N̂(m)

]
. (33)

Note that when the mth pulse arrives, N(m) might change, and all the first m TDOA
estimations τφ(m) will change.

In (28), the process is similar to the integer ambiguity resolution of double-difference
carrier phase in RTK technique [26,27]. We utilize the peak position-based measurement to
replace pseudorange measurements in RTK. However, there are a few differences between
the TDOA model and the double-difference model. The phase shift of satellites and
receivers can be eliminated through double-difference from the same epoch, leaving only
the integer phase ambiguity [30]. It is difficult for passive localization to have a collaborative
emitter all the time. Therefore, the system should be consistent in design and calibrated
before use.

4.2. Cramer–Rao Lower Bound

The peak position and phase of CCF are extracted from Equation (46). To simplify the
problem, we set the instantaneous frequency δ f ij

LO = 0. If the TDE is derived from the peak
position, the CRLB [19] is

σ2
pos ≥

3
2π2B2 · fs · Tp · SNR

. (34)

If the TDE is derived from the peak phase, the CCF can be simplified as

R[n] = |R[n]| · exp(jφ). (35)

When R[n] is superimposed with Gaussian white noise with a variance of σ2
N , the

CRLB of the phase measurement [36] is

σ2
φ ≥

σ2
N/2

∑N−1
n=0

∣∣∣ ∂s
∂φ

∣∣∣2 . (36)

Assuming that the sampling interval is sufficiently small, Equation (36) is approxi-
mated as

σ2
φ ≥

σ2
N/2

∑N−1
n=0

∣∣∣ ∂s
∂φ

∣∣∣2 ≈
σ2

N/2

1
∆t ·
∫ Tp

0

∣∣∣ ∂s
∂φ

∣∣∣2dt
. (37)

Denote
∫ Tp

0

∣∣∣ ∂s
∂φ

∣∣∣2dt =
∫ Tp

0 |s|2dt = Pav · Tp, fs = 1/∆t and signal-to-noise ratio as

SNR = Pav/σ2
N , we then have

σ2
φ ≥

σ2
N

2 fsPav · Tp
=

1
2 fs · Tp · SNR

. (38)
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If the integer ambiguity is solved correctly, then the CRLB of the time delay estimation is

σ2
pha =

(
1

2π fc

)2
σ2

φ ≥
(

1
2π fc

)2
· 1

2 fs · Tp · SNR
. (39)

Assume the signal bandwidth is 10 MHz and the carrier frequency is 3.6 GHz, the
ratio of the upper bound of the performance of the two methods is

10 log10

(
σpha

σpos

)
= 10 log10

(√
3

6
· B

fc

)
≈ −30.96 dB. (40)

4.3. Anaylsis and Simulations

The accuracy of the proposed method highly relies on the biased error of peak position-
based TDE TDOAij

τ . Apart from noises, the bias error is inevitable due to a finite number
of coefficients and discretization [21]. When the CCF peak locates between two adjacent
sample points, the bias error can be reduced by interpolation methods, such as the sinc
interpolation method [21], QLS [22,23], and sinc-LS [24]. QLS uses a parabola to fit the CCF
main lobe, for instance, the CCF peak and the two adjacent points, and calculates the peak
of the parabola as the TDE. Sinc-LS uses the sinc function to fit the CCF, but it requires
iteration. Details of those algorithms are described in the cited references.

Different from those peak position-based methods, Hatch filter [37,38] is a kind
of smooth algorithm combining the pseudorange and carrier phase in GNSS position,
which is

TDOAij
hatch(n) =

1
n TDOAij

τ (n) + n−1
n

[
TDOAij

hatch(n − 1) +
θ

ij
pk(m−1)−θ

ij
pk(m)

2π fc

]
, n < M

TDOAij
hatch(n) =

1
M TDOAij

τ (n) + M−1
M

[
TDOAij

hatch(n − 1) +
θ

ij
pk(m−1)−θ

ij
pk(m)

2π fc

]
, n ≥ M

. (41)

The Monte Carlo simulations are carried out to evaluate the performance of the
TDOA estimation. To this end, a radio signal is received by a two-node TDOA system
with different SNRs. The simulation parameters are shown in Table 1. To ensure that
the adjacent pulse phase difference is less than π, we set the TDOA change rate to be
−27.8 ns/s, which results in an adjacent pulse phase difference of −0.2π radians. The
simulation has 100 trials and each trial has 100 pulses. We choose the root mean square
(RMS) of the difference between TDOA estimations and TDOA true values, which is

RMS =

√√√√ 1
M

M

∑
n=1

∣∣∣∣ ̂TDOAij
n − TDOAij

n

∣∣∣∣2. (42)

According to Equations (34) and (39), the root mean square (RMS) of the phase method
is about two orders of magnitude smaller than that of the peak position method. Besides the
proposed method, we choose the peak position-based methods and Hatch filter mentioned
above. In the Hatch filter method, we use the sinc-LS results as the unambiguous TDE.
The general value of SNR in short-baseline TDOA systems [13,39] is within the range
from −9 dB to 25 dB. So, we set the SNR to begin from −10 dB. The relationship between
the performance of TDE algorithms and the SNR is depicted in Figure 6. When the SNR
is below 10 dB, the proposed algorithm performs similarly to QLS, sinc-LS, and Hatch
filter. The error of the proposed algorithm is primarily limited by the performance of
disambiguation. When the SNR is within the range of 10 dB to 14 dB, the RMS TDOA error
of the proposed method is much higher than peak phase CRLB, but the performance is still
better than the Hatch filter and peak position-based methods. As the SNR still increases,
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the performance of peak position-based methods gradually plateaus and does not further
improve, but the proposed algorithm approaches the CRLB.

Table 1. Monte Carlo simulation parameters.

Parameter Value

Waveform chirp
Signal Bandwidth 10 MHz
Center Frequency 3.6 GHz

Pulse Repetition Time 1 ms
Signal Pulse Width 3 µs

Receiving Pulse 5 µs
Sample Rate 2400 MHz

Pulse Num per Trial 100
TDOA Change Rate −27.8 ns/s
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After performing the digital down-conversion mentioned in Equation (7), the base-
band CCF has an advantage in extracting the peak phase. Using the same simulation
parameters in Table 1, we plot a CCF without noise in Figure 7a, where the phase in the
main lobe remains constant. This means that there is no need for CCF peak interpolation to
extract the peak phase. However, when the carrier frequency is unknown and needs to be
estimated, there is an estimation error ∆ festi. The phase varies in the main lobe, as shown
in Figure 7b. The CCF peak phase accuracy is related to the CCF peak position accuracy (or
TDE accuracy).

Once the emitter is noncooperative, it is meaningful to analyze the effect of ∆ festi.
Denote the peak position estimation error as ∆τpk. The formulation of phase error ∆θpk is
given in Equation (A2), which is the third exponential item, as

∆θpk = 2π∆ festi∆τpk. (43)
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Figure 7. The amplitude and angle of CCF when the carrier frequency is correctly or incorrectly
estimated. Simulation parameter is the same as Table 1. (a) Carrier frequency is estimated correctly.
(b) Carrier frequency estimation error is 1 MHz.

Denote the true peak phase as θpk. When using the proposed method, the TDOA error
∆ε is

∆ε =
θpk + ∆θpk

2π( fc + ∆ festi)
−

θpk

2π fc
. (44)

By substituting Equation (43) with Equation (44), we have

∆ε =
∆ festi

fc + ∆ festi

(
∆τpk + ε0

)
(45)

where ε0 = −θpk/(2π fc) is the true TDOA value. From Equation (45), the TDOA error ∆ε
is related to the carrier frequency fc, frequency error ∆ festi, peak position estimation error
∆τpk, and the true TDOA value ε0.

Notice that ε0 is related to the geometric configuration. In Figure 8, we label the emitter
as green points A and B and TDOA sensors as red points. According to Equation (45), the
relationship between ∆ε and ∆ festi is shown in Figure 9. When the emitter is at point A, ∆ε
is sensitive to ∆ festi. From Figure 6, the performance can reach sub-picosecond levels when
the SNR reaches 20 dB. However, when considering unknown carrier frequency estimation,
the frequency estimation accuracy would degrade the final TDOA measurements. When
the emitter is at point B, the TDOA error is less sensitive compared to point A. In general,
the proposed method is sensitive to the geometry.
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Figure 9. The relationship between TDOA estimation error and frequency estimation error.
(a) fc = 3.6 GHz with different ∆τpk when the emitter is at point A in Figure 8. (b) ∆τpk = 300 ps
with different fc when the emitter is at point A in Figure 8. (c) fc = 3.6 GHz with different ∆τpk when
the emitter is at point B in Figure 8. (d) ∆τpk = 300 ps with different fc when the emitter is at point B
in Figure 8.

5. Experiments

In this section, we present the results from selected experiments that demonstrate the
performance of synchronization and TDOA estimation.

5.1. Hardware Implementation

We utilize the system prototype to carry out the demonstration experiments, as
shown in Figure 2, including receiver, GNSS receiver, and antennas. The receiver
has two down-conversion receiving channels, with CH1 operating at f1 Hz and CH2
operating at f2 Hz. The GNSS receiver provides 1 PPS signal and 100 MHz frequency
reference signal, achieving coarse time synchronization on the order of nanoseconds.
Subsequently, fine synchronization is achieved through the synchronization link con-
sisting of CH2 and omnidirectional antennas. The synchronization error is observed
by periodically transmitting a chirp signal with a bandwidth of 50 MHz at a center
frequency of 2.5 GHz.

The signal source, acting as the “portable station” in Figure 2, generates a repeated
pulsed chirp signal modulated at a center frequency of 3.6 GHz every 10 ms. The receivers
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can detect the signal from CH1 and be able to collect the complete pulse every PRT. Detailed
parameters are presented in Table 2.

Table 2. System parameters of passive localization validation systems.

Parameter Value

Power 35 dBm
Center Frequency 3.6 GHz

Pulse Width 10 µs
Analog Bandwidth 1000 MHz

Sample Rate 4800 MHz

5.2. Performance of Synchronization

In this part, we concentrate on the performance of the synchronization link using the
proposed method. Figure 10a,b show the time error estimated by the peak position-based
method and peak phase-based method between sensor i and j. Both of the two kinds of
measurements share the same trend, but the peak phase-based method has less fluctuations.
To evaluate the performance of the synchronization approach, we first remove the slow
varying trend by calculating differences between adjacent data of time error estimation.
Then, we calculate the standard deviation (STD) of the residual error, which we assume
is independent with time. So, the performance should be divided by √2 . The STD of the
proposed method is 1.12 ps, as opposed to 8.52 ps by the QLS method.
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5.3. TDOA Measurements with Different Chirp Rates

In this experiment, we demonstrate the lower bound performance of the TDOA
measured by the GNSS receiver under different chirp rates. The sensor arrangement is the
same as in Section 5.2. The results are shown in Figure 11. For the QLS method [22,23], we
observed a decrease in STD with an increase in bandwidth. In contrast, for the peak phase
measurements, the STD remained stable. Using the QLS method and the proposed method
from Section 4, we perform Monte Carlo simulations under the same SNR in the experiment.
We find that the STD of the simulation results are much lower than the experiment. Since
we only consider the white Gaussian noise in simulation, there must be another main noise
source in the system. We hypothesize that the incoherence of oscillators might be the main
error source.
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To verify the hypothesis, we calculate the STD of instantaneous frequency. According
to Equation (15), the STD of instantaneous frequency at each signal pulse should be

σ
ij
LO = k·στ =

Bw
Tp

στ . (46)

It is worth noting that these results are achieved using the same oscillators, indicating
that they should be consistent across all trials. Therefore, σ

ij
LO should be consistent across

the same sensors. Table 3 displays the TDOA precision for different bandwidths with the
same pulse width. We observed a consistent trend in the product of the TDOA STD and
chirp rates.

Table 3. Estimated instantaneous frequency STD with different bandwidths in the same pulse width.

Result
Bandwidth

20 MHz 40 MHz 60 MHz 80 MHz 100 MHz

Instantaneous
frequency STD 141.49 Hz 133.232 Hz 147.48 Hz 137.294 Hz 144.88 Hz

5.4. Instantaneous Frequency Measurement

In this experiment, we measure the instantaneous frequency to further verify the main
error source assumption in Section 5.3. We configure the signal source to emit a sine wave
with a pulse width of 20 µs at 3.6 GHz. After performing the Hilbert Transform and digital
down-conversion, the phase angle difference between the two sensors is identified and
is shown in Figure 12a. We utilize the least squares method to compute the frequency
based on the angle data of each 10 µs interval with a step of 0.1 µs in every PRT, as shown
in Figure 12b,c. Although the GNSS receiver can provide a coarse time synchronization,
there remains non-coherence. From Figure 12b, even in the same pulse, the instantaneous
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frequency can change rapidly, which will cause extra errors in time division synchronization
using the peak position-based method. But from Figure 12a, the angle changes less due to
the integration operation, which remains coherent in the same pulse. The result is shown
in Figure 12d; the STD of the instantaneous frequency is about 140 Hz, which is consistent
with that presented in Section 5.3.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 25 
 

 

To verify the hypothesis, we calculate the STD of instantaneous frequency. According 
to Equation (15), the STD of instantaneous frequency at each signal pulse should be 

· τ
ij

O
p

L τσ k σ Bw σ
T

== . (46) 

It is worth noting that these results are achieved using the same oscillators, indicating 
that they should be consistent across all trials. Therefore, ij

LOσ  should be consistent across 
the same sensors. Table 3 displays the TDOA precision for different bandwidths with the 
same pulse width. We observed a consistent trend in the product of the TDOA STD and 
chirp rates. 

Table 3. Estimated instantaneous frequency STD with different bandwidths in the same pulse 
width. 

Result 
Bandwidth 

20 MHz 40 MHz 60 MHz 80 MHz 100 MHz 
Instantaneous frequency STD 141.49 Hz 133.232 Hz 147.48 Hz 137.294 Hz 144.88 Hz 

5.4. Instantaneous Frequency Measurement 
In this experiment, we measure the instantaneous frequency to further verify the 

main error source assumption in Section 5.3. We configure the signal source to emit a sine 
wave with a pulse width of 20 µs at 3.6 GHz. After performing the Hilbert Transform and 
digital down-conversion, the phase angle difference between the two sensors is identified 
and is shown in Figure 12a. We utilize the least squares method to compute the frequency 
based on the angle data of each 10 µs interval with a step of 0.1 µs in every PRT, as shown 
in Figure 12b and c. Although the GNSS receiver can provide a coarse time synchroniza-
tion, there remains non-coherence. From Figure 12b, even in the same pulse, the instanta-
neous frequency can change rapidly, which will cause extra errors in time division syn-
chronization using the peak position-based method. But from Figure 12a, the angle 
changes less due to the integration operation, which remains coherent in the same pulse. 
The result is shown in Figure 12d; the STD of the instantaneous frequency is about 140 
Hz, which is consistent with that presented in Section 5.3.  

  
(a) (b) 

Remote Sens. 2024, 16, x FOR PEER REVIEW 19 of 25 
 

 

  
(c) (d) 

Figure 12. The frequency instability due to oscillators’ instability. (a) The instantaneous angle meas-
ured in different pulses. (b) The instantaneous frequency measured in a 10 µs duration in different 
pulses. (c) The instantaneous frequency averaged in a 10 µs duration over 8 s. (d) The STD of instan-
taneous frequency (𝜎 ) measured in a 10 µs duration. 

5.5. Three-Sensor TDOA Localization 
In this experiment, we conducted a three-sensor TDOA localization in Hebei, China. 

The three sensors were arranged along a straight line at equal intervals of 30 m, as shown 
in Figure 13. We set up the emitter on a tower with a height of 45 m, which was 500 m 
away from sensor a. We used a differential GNSS technique to measure the accurate posi-
tions of the tower and the sensors.  

   
(a) sensor a (b) sensor b (c) sensor c 

Figure 12. The frequency instability due to oscillators’ instability. (a) The instantaneous angle
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5.5. Three-Sensor TDOA Localization

In this experiment, we conducted a three-sensor TDOA localization in Hebei, China.
The three sensors were arranged along a straight line at equal intervals of 30 m, as shown
in Figure 13. We set up the emitter on a tower with a height of 45 m, which was 500 m away
from sensor a. We used a differential GNSS technique to measure the accurate positions of
the tower and the sensors.
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Figure 13. Three-sensor TDOA localization test using a wireless synchronization algorithm and phase
measurement-based method. The yellow pentagram represents the emitter, which is set up on a
45 m high tower; the red circle represents the receiving station, with sensor a located in the center
and about 500 m away from the emitter. (a) Photograph of sensor a. (b) Photograph of sensor b.
(c) Photograph of sensor c. (d) Schematic of the three-sensor TDOA localization test layout.

We performed TDOA localization five times, and used the differential global posi-
tioning system (DGPS) positions technique to calibrate the first-trial TDOA measurement.
Then, we used the same calibration data to correct the mean error of the other three trials.
The corrected TDOA measurements are shown in Figure 14, and we found that there
remained a linear trend only in the GNSS synchronization. The STD is shown in Table 4.
The localization result is shown in Figure 15, where the accuracy is 0.02%R (circular error
probable 50%, CEP50%, proposed method), in comparison with 0.33%R (CEP50%, peak
position-based method) and 4%R (CEP50%m, GNSS synchronization only).
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Table 4. The STDs of 5 TDOA measurement trials.

Test Result 1st Trial 2nd Trial 3rd Trial 4th Trial 5th Trial

sensor a
and b

Pk-pos 18.05 ps 23.29 ps 18.19 ps 23.82 ps 17.05 ps
Pk-pha 1.94 ps 2.05 ps 1.75 ps 1.75 ps 1.66 ps

sensor a
and c

Pk-pos 43.56 ps 26.74 ps 34.64 ps 26.15 ps 37.90 ps
Pk-pha 1.34 ps 1.37 ps 1.22 ps 1.26 ps 1.20 ps
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Figure 14. Three-sensor TDOA measurements from the first trial after calibration, compared with 
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Figure 14. Three-sensor TDOA measurements from the first trial after calibration, compared with
GNSS-only method, peak position-based method, and the proposed method. (a) TDOA measure-
ment of sensor a and b. (b) Zoomed-in figure of (a). (c) TDOA measurement of sensor a and c.
(d) Zoomed-in figure of (c).
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Figure 15. Three-sensor TDOA localization test results, where the GNSS-only method, the peak
position-based method and the proposed method are compared. (a) Localization results of the
first trial. (b) Localization results of the second trial. (c) Localization results of the third trial.
(d) Localization results of the fourth trial.

6. Conclusions

This paper introduces a short-baseline TDOA location experiment using a wireless
phase synchronization method. We propose an integer LS-based time delay estimation
method that utilizes carrier phase measurements. The validity of the method is verified
by simulation and experiment. The experiment shows that compared with the traditional
correlation peak position-based method, the STD of synchronization error is reduced from
8.52 ps to 1.12 ps, and the STD of TDOA estimation accuracy is improved from 17.05 ps to
1.66 ps. In such a case, the CEP accuracy is improved from 0.33%R to 0.02%R.

Ambiguity resolution is the core problem of high-precision delay estimation. On mov-
ing platforms, such as UAVs, the difference of TDOA values between adjacent pulses may
exceed π. This can lead to phase unwrapping failure and requires thorough experimental
verification. To support the application of UAV-based distributed high-precision passive
positioning, the research work of high-precision positioning on moving platforms will be
further carried out by us and verified by experiments.
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Appendix A

To calculate the delay difference of two-node acquisition signals, we can perform CCF
between si(t) and sj(t):

Rij(τ) =
∫ ∞

−∞
si(t)·s∗j (t − τ)dt. (A1)

Substitute Equations (11) and (12) with Equation (38), and denote η = t + ∆τi
clk −

τi
to f − τi

inst and γ = τi
to f − τ

j
to f + τi

inst − τ
j
inst − ∆τi

clk + ∆τ
j
clk. We then have

Rij(τ) =
∫ ∞
−∞ sBD(η)s∗BD(η + γ − τ) exp

[
−j2πδ f ij

LOη
]
dη

· exp
(
−j2π fcτ

ij
to f

)
· exp

[
j2πδ f j

LO(γ − τ)
]

exp
[

j2π f IF∆τ
ij
clk

]
· exp

[
jθij

inst + jθ j
pn

(
tj
mix

)
− jθi

pn
(
ti
mix
)
− jθij

ini

] . (A2)

Denote A =
∫ ∞
−∞ sBD(η)·s∗BD(η + γ − τ)· exp

[
−j2πδ f ij

LOη
]
dη. For a chirp signal, we

have sBD(η) = rect(η/T) exp
(

jπkη2). So, integration formula A is

A =
∫ ∞
−∞ rect

( η
T
)

exp
(

jπkη2)rect
(

η+γ−τ
T

)
· exp

(
−jπk(η + γ − τ)2

)
exp

[
−j2πδ f ij

LOη
]
dη

= rect
(

τ−γ−T/2
T

)∫ T/2
τ−γ−T/2 exp

(
jπk
[
η2 − (η + γ − τ)2

])
exp

[
−j2πδ f ij

LOη
]
dη

+rect
(

τ−γ+T/2
T

)∫ τ−γ+T/2
−T/2 exp

(
jπk
[
η2 − (η + γ − τ)2

])
exp

[
−j2πδ f ij

LOη
]
dη

, (A3)

A = rect
(

τ−γ
2T

)
(T − |τ − γ|) · exp

(
−jπδ f ij

LO(τ − γ)
)

·sin c
(

π
[
k(τ − γ)− δ f ij

LO

]
(T − |τ − γ|)

) . (A4)

Thus, the CCF can be simplified as

Rij(τ) = rect
(

τ−γ
2T

)
(T − |τ − γ|)·sin c

(
π
[
k(τ − γ)− δ f ij

LO

]
(T − |τ − γ|)

)
· exp

(
−j2π fcτ

ij
to f

)
exp

[
−j · fc/ fLO · θ

ij
pn

(
tj
mix

)]
exp

[
jπδ f i+j

LO (γ − τ)
]

· exp
[

jθij
inst − jθij

ini

] . (A5)
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