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Abstract: Road extraction is a crucial aspect of remote sensing imagery processing that plays a
significant role in various remote sensing applications, including automatic driving, urban planning,
and path navigation. However, accurate road extraction is a challenging task due to factors such
as high road density, building occlusion, and complex traffic environments. In this study, a Spatial
Attention Swin Transformer (SASwin Transformer) architecture is proposed to create a robust encoder
capable of extracting roads from remote sensing imagery. In this architecture, we have developed
a spatial self-attention (SSA) module that captures efficient and rich spatial information through
spatial self-attention to reconstruct the feature map. Following this, the module performs residual
connections with the input, which helps reduce interference from unrelated regions. Additionally,
we designed a Spatial MLP (SMLP) module to aggregate spatial feature information from multiple
branches while simultaneously reducing computational complexity. Two public road datasets, the
Massachusetts dataset and the DeepGlobe dataset, were used for extensive experiments. The results
show that our proposed model has an improved overall performance compared to several state-of-
the-art algorithms. In particular, on the two datasets, our model outperforms D-LinkNet with an
increase in Intersection over Union (IoU) metrics of 1.88% and 1.84%, respectively.

Keywords: remote sensing applications; road extraction; spatial self-attention; Spatial MLP

1. Introduction

Road extraction from remote sensing imagery is one of the important research top-
ics in remote sensing applications. It provides significant convenience for areas such as
autonomous driving, vehicle navigation [1], and urban planning [2]. With the rapid devel-
opment of urban and rural areas, detecting the latest road surface becomes an important
and challenging task. The manual labeling of roads is a time-consuming and labor-intensive
task, especially when dealing with large areas of road network coverage. Therefore, how
to use efficient algorithms to inversion road networks from remote sensing imagery is a
problem of great interest in the academic community.

The existing methods can be summarized into four categories: traditional methods,
convolutional neural network (CNN)-based methods, Transformer-based methods, and
graph-based methods. (1) Traditional research in this field has mainly focused on analyzing
low-resolution remote sensing images and Global Positioning System (GPS) data using
manually designed features and defining specific criteria to extract roads [3–5]. However,
these methods often perform inefficiently and may not achieve satisfactory results when
dealing with large-area, high-resolution satellite images. (2) Convolutional neural networks
(CNNs), especially networks with fully convolutional network [6] architectures, have been
proposed and proven effective in image semantic segmentation [7–12]. Neural networks
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based on encoder–decoder architectures [13–17] have achieved satisfactory results in image
segmentation. However, these CNN-based methods only focus on local feature information,
which can lead to difficulties in detecting roads that are obstructed by buildings and
vehicles, resulting in fragmented road segmentation. (3) In recent years, Transformer-based
methods [18–22] have made significant progress in image classification and segmentation.
Unlike previous CNN-based methods, Transformers are powerful in establishing long-
range dependencies and demonstrate excellent transferability in downstream tasks under
large-scale pre-training. However, roads have the characteristics of long spans, narrow
widths, and continuous distributions, and the number of pixels belonging to roads relative
to non-road pixels in a satellite image is relatively small. Therefore, Transformers may lead
to unnecessary computations and reduce segmentation accuracy when modeling in a global
context. (4) Graph-based methods [23–27] are capable of effectively capturing the spatial
relationships and topological structures among pixels in road images. However, they may
require a longer computation time and larger computing resources when dealing with
large-scale image data, particularly in complex scenarios such as high-resolution images or
images with a significant number of traffic objects.

In this paper, we propose a SASwin Transformer for extracting road information from
remote sensing imagery. We introduce an encoder architecture based on the joint learning
of Swin Transformer [28] and ResNet [29] to learn road features. To reduce unnecessary
computations that may result from modeling a global context with Swin Transformer and
considering the characteristics of roads with large spans, narrow widths, and continuous
distributions, we improve the multi-head self-attention (MSA) in the Swin Transformer
and design an SSA module to capture more efficient spatial information. We also enhance
the MLP in the Swin Transformer and develop an SMLP module to aggregate spatial
feature information from multiple branches while reducing computational complexity.
The contributions of this work can be summarized as follows:

• We propose a SASwin Transformer network that jointly learns global and local feature
information from satellite images to enhance road segmentation.

• We have developed an SMLP module that aggregates rich spatial context information
by performing linear transformations in three dimensions of the image. Compared to
the original MLP module, this SMLP module reduces computational complexity.

• We have designed an SSA module to extract effective spatial context information.
Compared to the original MSA module, it reduces unnecessary computations and
avoids interference from irrelevant regions.

• Compared to other advanced methods, our approach achieves significant improve-
ments in segmentation accuracy. On two publicly available datasets, our method
outperforms D-LinkNet by 1.88% and 1.84% in terms of the IoU metric.

The rest of this paper is organized as follows. Section 2 summarizes related work on
road extraction. In Section 3, we describe the details of our proposed SASWin Transformer.
Section 4 provides the dataset, evaluation metrics, and implementation details and conducts
extensive experiments to evaluate the performance of our proposed method. The conclusion
and discussion are presented in Section 5.

2. Related Work
2.1. Conventional Methods

Many studies have attempted to extract road information from remote sensing imagery.
Ref. [30] designed a road extraction algorithm based on a color model by combining
boundary information on grayscale images and road region extraction results on color
images. Ref. [31] extracted road regions by analyzing the texture features of the road
and extracting them based on different texture characteristics. Ref. [32] used a higher-
order conditional random field (CRF) model for road extraction. Ref. [33] also proposed
a two-stage model. First, the pixels are divided into road and non-road groups using a
support vector machine (SVM) algorithm based on road features. Second, the road group is
refined using segmentation algorithms to generate the final road regions. The advantages of
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these traditional methods are their simplicity and ease of implementation. However, these
methods often have low efficiency and may not perform well in complex road scenarios,
especially in situations where road extraction is difficult in complex scenes.

2.2. CNN-Based Methods

Since their remarkable success in the ImageNet Large Scale Visual Recognition Chal-
lenge [34] in 2012, CNNs have opened up a new era for deep learning-based image recog-
nition. With the development of deep learning, CNNs have also been widely applied in
the field of image segmentation. For example, Ref. [6] proposed the fully convolutional
network (FCN), which greatly improves segmentation performance compared to some of
the traditional methods that have been used in the past. Ref. [7] proposed a UNet based
on an encoder–decoder architecture, where the encoder part performs feature extraction
and downsampling via convolution layers and the decoder part performs upsampling via
transposed convolution layers, combined with skip connections for feature fusion. This
allows the high-resolution feature maps to be restored to the original image resolution and
perform pixel-level predictions. Ref. [35] proposed a SegNet model. Ref. [36] proposed
ResUnet, which combines residual learning with UNet for road extraction.

In the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Deep-
Globe 2018 Road Extraction Challenge [37], Ref. [9] proposed a D-LinkNet model. D-LinkNet
mainly addresses the limitations of traditional semantic segmentation models in handling
details and edge information. It employs a deep supervision mechanism to address the
feature fusion problem, thereby improving model performance. Additionally, D-LinkNet
utilizes a strategy of multi-scale feature fusion to capture semantic information from mul-
tiple scales. Inspired by the shape and connectivity of roads in grid networks, Ref. [38]
introduced a boosting strategy by applying multiple segmentation networks to enhance the
road segmentation results. The network learns progressively from previous segmentation
failure cases to connect disconnected road sections in the initial mask. To effectively com-
bine multi-scale information and extract global feature information, Ref. [39] proposed a
cross-scale, axial attention-based approach. However, these methods only focus on local
information. Due to the lack of establishment of long-range dependencies, this is likely to
lead to the neglect of some crucial information.

2.3. Transformer-Based Methods

Transformer was first proposed by [40] in 2017. It was initially used in natural lan-
guage processing tasks and achieved state-of-the-art performance in various benchmarks.
Unlike CNNs, Transformer relies entirely on self-attention mechanisms to process input
sequences, enabling the parallel processing of input tokens and the capture of long-range
relationships. Subsequently, many researchers have attempted to apply Transformer in
the field of computer vision but did not achieve satisfactory results compared to CNNs
until Ref. [41] introduced Vision Transformer (ViT) in 2020. ViT processes image data as
sequence data and utilizes self-attention mechanisms to capture contextual information
within the sequence. This sequential approach to image processing is different from CNNs,
which heavily rely on convolutional and pooling layers to capture image features. Swin
Transformer [28] is an architecture designed for processing image data. By processing
image data in blocks, Swin Transformer effectively solves the computational and memory
complexity problems of conventional Vision Transformers. The shifted window mecha-
nism is introduced in each block to increase the local receptive field. Swin Transformer
has been greatly improved in performance and efficiency compared to previous Vision
Transformers. Ref. [42] proposed a SwinUnet model, which is the first pure Transformer-
based encoder–decoder architecture without any convolution operation. In the encoder,
local-to-global self-attention is implemented to capture features. In the decoder, global
features are extracted and progressively upsampled, and then the corresponding pixel-level
segmentation is predicted. Ref. [43] proposed Pyramid Vision Transformer (PVT), which
can more effectively extract global contextual information and significantly improve the
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model’s segmentation performance. Research studies [44,45] show that ViT has the ability
to model global contextual interactions and the flexibility to adjust the modeling capabilities
of different regions. ViT has demonstrated comparable performance to traditional CNNs
in benchmark tests on the ImageNet dataset, indicating its effectiveness as a solution for
computer vision tasks such as image and video processing. The first application of masked
image modeling (MIM) to a remote sensing road extraction task was presented by [46].
MIM improves the region interaction by reconstructing masked regions from unmasked
regions. This is comparable to the process of deducing masked road regions from remotely
sensed images in a road extraction task.

2.4. Combining CNN with Transformer

Although the ability of Transformer models to capture long-range dependencies has
led to improvements in segmentation performance in image segmentation tasks, convo-
lutional neural networks still have a natural advantage in capturing local feature infor-
mation. Recently, in the field of road extraction research, attempts have been made to
combine Transformers and CNNs. These methods have both the ability of Transformers
to capture long-range dependencies and the ability of CNNs to capture local feature in-
formation. To combine the advantages of both the CNN and Transformer architectures,
Ref. [47] proposed a Conformer, which designs a dual-path structure that allows them to
interactively learn features. The experiments showed that the performance of the mixed
CNN–Transformer encoder is better than that of using Transformer alone as the encoder.
Ref. [48] proposed a TransUNet model, which combines the characteristics of Transformer
and UNet. It first uses CNNs to extract features from images to obtain feature maps,
which are then transformed and input to the Transformer encoder module. Finally, it uses
a decoder module similar to that of U-Net to perform layer-wise upsampling and skip
connections to generate segmentation maps. This model has achieved good results on mul-
tiple image segmentation tasks. Ref. [49] extended Swin Transformer and added decoder
structures to improve the road segmentation performance of the model. Ref. [50] proposed
the Seg-Road model to enhance road connectivity. The model utilizes a Transformer to
establish long-distance dependencies and global contextual information to enhance the
fragmentation of road segmentation. Additionally, it employs a CNN structure to extract
local context information to improve the segmentation of road details.

3. The Proposed SASwin Transformer Method

In this section, the Spatial Attention Swin Transformer (SASWin Transformer) network
for road extraction from remote sensing imagery is detailed, as shown in Figure 1. In order
to extract features more comprehensively and improve segmentation performance, we
have developed an SMLP module to aggregate rich spatial contextual information and
designed an SSA module to reduce unnecessary computations and avoid interference from
irrelevant regions.

3.1. Overall Network Structure

The framework of SASWin includes three modules: encoder, bridge, and decoder.

3.1.1. Encoder Module

In the encoder module, we introduce a Spatial Swin Transformer and ResNet as dual
encoders to extract feature information. Since ResNet mainly focuses on local information
during the process of feature encoding, which can lead to the loss of a significant amount
of critical information as the network depth deepens and the image resolution gradually
decreases, we will incorporate the Swin Transformer into the encoder, which excels in its
ability to establish long-range dependency relationships. Considering that roads have fea-
tures of long spans, narrowness, and continuous distribution and that the pixels belonging
to roads in a satellite image are relatively few compared to the non-road pixels, we have
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improved the MLP and MSA architectures in the Swin Transformer to enable more effective
feature extraction.

Figure 1. The overall architecture of the proposed Spatial Attention Swin Transformer (SASwin
Transformer) is as follows. The encoder module consists of five convolutional blocks. The bridge
module learns multi-scale features by applying multi-scale dilated convolutions. The decoder module
includes five convolutional blocks.

3.1.2. Bridge Module

We introduce the bridge module to conduct multi-scale feature learning and increase
the range of local feature perception. The bridge module is shown in Figure 2. Considering
the long span and narrow characteristics of the road, we used 3 × 3, 1 × 3, and 3 × 1 convo-
lutions to more effectively extract local feature information. Then, each output feature is
adjusted through 3 × 3 convolution, and finally, the final feature map is outputted through
1 × 1 convolution. To increase the range of local feature perception, we used dilated con-
volutions with dilation rates of 8, 4, and 2, respectively, to extract feature information step
by step.

Figure 2. Previous layer refers to the encoder network portion in Figure 1, which finally outputs a
data tensor of the same dimension as the input after being activated by the Relu activation function.

3.1.3. Decoder Module

We introduce the decoder module to generate segmentation results. Due to the ability
of dilated convolutions to increase the receptive field size of the convolutional kernel
while maintaining the spatial dimensions of the input and output, neural networks can
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better capture global information and contextual relationships in the input feature maps.
Therefore, we applied dilated convolutions with dilation rates of 7, 5, 3, and 1 to the four
convolutional blocks in the decoder, enabling more dense feature extraction. The output
of the model is a raster with a number of channels of 1 and a size of 512 × 512. These
512 × 512 pixels are classified as road pixels and non-road pixels, respectively.

3.2. SASwin Transformer Blocks

Let z0 ∈ RH×W×C be the input of the network, where H, W, and C represent the height,
width, and number of channels, respectively. z2, z4, z6, and z8 are the outputs of every
two successive SASwin Transformer blocks. As shown in Figure 3, continuous SASwin
Transformer blocks are computed using the shift window partition method as follows:

ẑl = W-SSA(LN(zl−1)) + zl−1, (1)

zl = SMLP(LN(ẑl)) + ẑl , (2)

ẑl+1 = SW-SSA(LN(zl)) + zl , (3)

zl+1 = SMLP(LN(ẑl+1)) + ẑl+1, (4)

where ẑl and zl , respectively, represent the output features of the (S)W-SSA module and
SMLP module in block l. W-SSA and SW-SSA are both window-based spatial self-attention
modules. W-SSA uses the window partitioning rules from Swin Transformer, while SW-SSA
uses the shifting window rules from Swin Transformer.

Figure 3. Two successive SASwin Transformer blocks.

3.3. Spatial MLP Module

We have designed a Spatial MLP (SMLP) to alleviate the two main drawbacks of the
original MLP. Firstly, by reducing the number of parameters, we can avoid the overfitting
problem, especially when dealing with large-scale datasets. Secondly, by reducing com-
putational complexity, particularly when dealing with a large number of tokens, we can
achieve multi-stage processing in the pyramid structure.

In the SMLP module, the tokens of the SMLP only interact directly with the tokens on
the same row, same column, or same channel, instead of interacting with all other tokens.
Additionally, all rows and columns and all channels can share the same projection weights.
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As shown in Figure 4, the SMLP module is composed of three branches, which mix the
tokens along the row and column directions as well as the channel direction separately.

Figure 4. The Spatial MLP (SMLP) module is composed of three branches, which mix the tokens
along the row and column directions as well as the channel direction separately.

Let ẑl ∈ RH×W×C denote the input tensor of the SMLP module. In the horizontal path,
the data tensor is reshaped into HC × W, and a linear layer with weights WW ∈ RW×W

is applied to each HC row to mix information. Similar operations are performed in the
vertical and channel paths, with weights WH ∈ RH×H and WC ∈ RC×C, respectively.
Finally, the data tensors from the three paths are fused together to obtain a data tensor with
the same dimensions as the input.

The number of parameters in an SMLP module can be calculated to be H2 +W2 + 4C2

through computation. The H2, W2, and C2 parameters are used for the three branches of the
SMLP module, while the 3C2 parameters are used for the fusion step. However, the number
of parameters in the original MLP module is 2α(HW)2, where α is the expansion ratio of
the MLP layer, which is typically set to 4 in most cases. The decrease in computational
complexity is also quite noticeable. The complexity of the SMLP module is

Ω(SMLP) = HWC(H + W + 4C), (5)

and the complexity of the MLP module is

Ω(MLP) = 2α(HW)2C, (6)

If we use N to represent the product of H and W, it is easy to see that the computational
complexity of the MLP module is O(N2), while the complexity of the SMLP module is
O(N

√
N). This, to some extent, reduces the computational complexity.

3.4. Spatial Self-Attention Module

Multi-head self-attention (MSA) is a variant of the attention mechanism that is com-
monly used in neural networks such as Transformer. It replaces the single attention head
in the original self-attention mechanism with multiple heads, each of which can attend to
a different information subspace in the input sequence, thereby improving the model’s
accuracy and interpretability.

Overall, multi-head self-attention is an effective attention mechanism, but in practical
use, we need to consider its impact on computational complexity and parameterization.
On a satellite image, the number of pixels that belong to roads is relatively small compared
to those that do not belong to roads, and roads are long-span, narrow, and continuously
distributed. Therefore, using multi-head self-attention to calculate the spatial relation-
ship information in the data tensor is unnecessary. In addition, most of the calculation
in multi-head self-attention comes from invalid interference information in the feature
space. Therefore, we designed a spatial self-attention (SSA) module, as shown in Figure 5,
to replace the MSA module in Transformer to alleviate the two drawbacks of computational
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complexity and parameterization while ensuring attention to richer and more effective
spatial information. The input tensor is passed through 1 × 1 convolutions to obtain three
branches of feature maps, which then undergo global average pooling (GAP) across three
dimensions to obtain data tensors of sizes 1 × H, 1 × W, and 1 × C. These tensors are then
multiplied with each other to reconstruct a data tensor of the same dimension as the input
tensor, which is finally fused with the input tensor and output.

Figure 5. The spatial self-attention (SSA) module captures long-range road feature information by
performing global average pooling (GAP) across three different dimensions.

3.5. Loss Function

In the decoder part, we used dilated convolutions with dilation rates of 7, 5, 3, and 1
for upsampling, and finally, the feature map with a size of 512 × 512 × 1 was outputted
through a sigmoid function. The loss function is defined as follows:

LSeg = LBCE + β(1 − LDice), (7)

where LBCE stands for binary cross entropy and LDice stands for the Dice coefficient, which
is defined as

LBCE = − 1
N

N

∑
i=1

[yi · log (ŷi) + (1 − yi) · log (1 − ŷi)], (8)

LDice =
2∑N

i=1(yi ŷi)

∑N
i=1y2

i + ∑N
i=1ŷ2

i
, (9)

where β is a constant, N represents the number of elements in the H ×W slice, yi represents
the ground truth for the given pixel at position i as either road or background, and ŷi
represents the corresponding predicted probability of the segmentation branch.

4. Experimental Results and Analysis
4.1. Datasets

In our experiment, we chose two open-source remote sensing datasets for road extrac-
tion, namely the DeepGlobe dataset and the Massachusetts Road Dataset.

4.1.1. Massachusetts Dataset

The Massachusetts Road Dataset, established by [51], is an aerial imagery dataset
that consists of urban and rural road data with complex and diverse features. It includes
1108 images for training, 14 images for validation, and 49 images for testing. The coverage
area exceeds 2600 km2, and the size of each image is 1500 × 1500 pixels, covering an area
of 2.25 km2. As the training set contains some noisy images, we selected 733 images
with minimal noise for training. Each image consists of 1500 × 1500 pixels, and in the
experiment, we divided the images into slices of size 512 × 512. The example image
from the Massachusetts Roads Dataset is shown in Figure 6. The dataset is available at
https://www.cs.toronto.edu/ṽmnih/data/ (accessed on 25 March 2024).

https://www.cs.toronto.edu/~vmnih/data/
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. The Massachusetts Road Dataset. Among them, the five images from (a–e) in the first row
have significant noise, so we have removed these images from the dataset. However, the five images
from (f–j) in the second row do not have noise, so we have chosen to keep these images.

4.1.2. DeepGlobe Dataset

The DeepGlobe dataset, established by [37], is an aerial imagery dataset covering
regions in Thailand, Indonesia, and India. The dataset has high resolution and mul-
tispectral information, enabling the capture of fine details and features on the Earth’s
surface. It is primarily used for tasks related to Earth observation, such as object clas-
sification and detection. The DeepGlobe dataset consists of 6226 images with a size of
1024 × 1024 pixels and a resolution of 0.5 m. For experimentation purposes, the dataset
is divided into 20,904 images with a size of 512 × 512 pixels. This includes 18,676 im-
ages for training, 1557 images for validation, and 4671 images for testing. The example
image from the DeepGlobe dataset is shown in Figure 7. The dataset is available at
https://competitions.codalab.org/competitions/18467 (accessed on 25 March 2024).

(a) (b) (c) (d) (e)

Figure 7. The DeepGlobe dataset. The images from (a–e) are five randomly selected example images
from the dataset. The images are sourced from Thailand, India, and Indonesia. The image scenes in-
clude various settings, such as cities, rural areas, barren lands, coastal regions, and tropical rainforests.

4.2. Evaluation Metrics

To fully evaluate all experimental methods, in our experiments, we used precision
(P), recall (R), F1 score (F1), and Intersection over Union (IOU). These evaluation metrics
are frequently used in binary semantic segmentation tasks and are calculated from TP,
FP, TN, and FN. TP denotes correctly identified positive samples, FP denotes incorrectly
identified positive samples, TN denotes correctly identified negative samples, and FN
denotes incorrectly identified negative samples. These assessment metrics were calculated
as follows:

P =
TP

TP + FP
, (10)

R =
TP

TP + FN
, (11)

https://competitions.codalab.org/competitions/18467
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F1 = 2 × P × R
P + R

, (12)

IoU =
TP

TP + FN + FP
(13)

4.3. Implementation Setting

In all models, the stochastic gradient descent (SGD) [52] optimizer is used for a
batch size of eight. SGD is a commonly used optimization algorithm in machine learning,
and is mainly used in the model training process. It is a variant of the gradient descent
algorithm and is particularly suitable for processing large datasets. Compared with the
traditional gradient descent method, it only randomly selects the gradient of one sample to
update the model parameters in each iteration instead of calculating the gradients of all
samples. The momentum decay coefficient and weight decay coefficient are set to 0.9 and
5× 10−4, respectively. The initial learning rate is set to 0.01, and after each training iteration,
the learning rate decays by 0.98 times the previous value. Our method is executed using the
deep learning framework PyTorch, and the experiments are conducted on an NVIDIA RTX
3090 GPU with 24 GB memory. During the training process, we apply random horizontal
rotation, random vertical rotation, and random scaling as data augmentations to improve
the model’s generalization ability.

4.4. Experimental Results and Analysis

In order to demonstrate the effectiveness of the proposed SASwin Transformer archi-
tecture, we conducted experiments to evaluate the model using two publicly available road
datasets. As a comparative evaluation, ten well-known methods were used as baselines,
including FCN [6], UNet [7], ResUnet [36], SegNet [35], DeepLabV3 [8], LinkNet [53],
D-LinkNet [9], CFPNet [54], TransUNet [48], SwinUNet [42], RoadExNet and Remain-
Net [55]. We compared all these methods in this experimental setting. Some multi-class
segmentation methods were compared in the experiment. For example, TransUnet and
SwinUNet use Softmax activation. However, road extraction is a second-class partitioning
task using the Sigmoid activation function. Therefore, in the experiment, we replaced the
Softmax activation function with Sigmoid. In order to better compare the performance of
road extraction, we evaluated all methods using test samples from two publicly available
datasets. For quantitative analysis, we used four evaluation metrics, precision (P), recall
(R), F1 score (F1), and Intersection over Union (IoU), to assess all methods. To showcase the
qualitative analysis results, we selected example images generated by some of the methods.

4.4.1. The Results of the Massachusetts Dataset

Table 1 displays the quantitative evaluation results of all methods in terms of P, R,
F1, and IoU. In the table, the best performance is indicated in bold. Firstly, compared to
FCN, UNet, ResUnet, SegNet, DeepLabV3, D-LinkNet, CFPNet, TransUNet, and SwinUnet,
LinkNet achieves the best performance in terms of IoU. Secondly, our proposed SASwin
Transformer significantly outperforms LinkNet. Compared to LinkNet, SASwin Trans-
former achieves the best performance in terms of R, F1, and IoU values, with an IoU of
65.04, which is 1.72 higher than that of LinkNet. This indicates that SASwin Transformer
exhibits more foreground-awareness and robust performance, as its results are either the
best or second best in all four metrics. The results demonstrate that the joint utilization
of local and global features in our model encoder can reduce the number of misclassified
pixels and improve the integrity and connectivity of road data.

From Figure 8, it can be seen that the proposed SASwin Transformer model achieves
the best performance. For D-LinkNet, TransUNet, and SwinUnet, we observe that they
miss road areas in many places, resulting in large false negatives (highlighted in red),
especially at road intersections, corners, or regions obstructed by trees and buildings.
Moreover, there are instances of disconnections in longer road segments. This can be
attributed to the following reasons: (a) In the D-LinkNet architecture, D-LinkNet performs
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relatively well compared to CNN-based methods such as FCN, UNet, ResUnet, SegNet,
DeepLabV3, LinkNet, and CFPNet. This is because D-LinkNet’s symmetric “U”-shaped
structure effectively constructs segmentation maps from low-resolution feature maps
and leverages multi-scale low-resolution feature maps to capture spatial context better.
However, D-LinkNet solely focuses on local feature information and lacks the ability to
establish long-range dependencies, which makes it challenging to detect obstructed regions
caused by trees and buildings in the image. (b) In the SwinUnet architecture, SwinUnet
is a pure Transformer-based encoder–decoder structure utilizing skip connections to fuse
high-resolution features from different scales of the encoder to alleviate spatial information
loss caused by downsampling. However, SwinUnet does not employ convolutions to fully
extract local features, making it difficult to learn local semantic information. This results
in the failure to detect road intersections and corners in the image. (c) In the TransUNet
architecture, TransUNet employs three consecutive convolutions to extract three different-
scale feature maps, which are then fed into a linear projection before being passed through
a Transformer, and finally, a segmentation image is generated using skip connections and
upsampling. Although TransUNet combines CNN and Transformer, it only performs
global semantic information interaction in low-level feature maps, which is insufficient
to establish long-range dependency relationships. In contrast, our proposed SASwin
Transformer model effectively combines local and global semantic information at different
feature scales. This is the reason why the SASwin Transformer method outperforms
the other methods. The visual results align with the quantitative analysis results. Our
model can better detect roads obstructed by trees, while other methods struggle to identify
uncertain pixels. Additionally, our model is capable of generating more continuous results
and reducing misclassifications of non-road pixels, resulting in fewer fragmented road
segments and clearer results in the ground area.

(a) (b) (c) (d) (e) (f)

Figure 8. The qualitative analysis results of different road segmentation methods on the Massachusetts
dataset. False negatives are marked in red, and false positives are marked in blue. (a) Image. (b) Ground
truth. (c) D-LinkNet. (d) TransUNet. (e) SwinUnet. (f) SASwin Transformer.

4.4.2. The Results of the DeepGlobe Dataset

Here, we report the road extraction results of the DeepGlobe dataset. Table 2 displays
the quantitative results of our proposed SASwin Transformer compared to other methods
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on the DeepGlobe dataset. Our SASwin Transformer achieves an IoU score of 65.60,
outperforming other methods and improving upon the second-best method, D-LinkNet,
by 1.84. This can be attributed to the SMLP and SSA modules we designed, which both
contribute to better capturing spatial features for road extraction.

Table 1. The comparison results of the Massachusetts dataset are as follows. Higher values indicate
better performance, and the best result is highlighted in bold. Among all the listed methods, our
proposed approach achieved the highest IoU score.

Methods P (%) R (%) F1 (%) IoU (%)

FCN 67.92 73.21 70.46 54.40
UNet 77.92 74.59 76.22 61.57

ResUnet 78.47 75.49 76.95 62.54
SegNet 78.17 76.16 77.15 62.80

DeepLabV3 71.80 76.92 74.27 59.08
LinkNet 80.18 75.07 77.54 63.32

D-LinkNet 78.18 76.67 77.42 63.16
CFPNet 74.32 77.02 75.64 60.83

TransUNet 76.88 70.29 73.44 58.02
SwinUnet 75.27 73.40 74.32 59.14

RoadExNet 80.38 75.98 78.12 64.09
RemainNet 80.80 76.75 78.72 64.91

SASwin Transformer 80.02 77.65 78.82 65.04

Table 2. The comparison results of the DeepGlobe dataset are as follows. Higher values indicate
better performance, and the best result is highlighted in bold. Among all the listed methods, our
proposed approach achieved the highest IoU score.

Methods P (%) R (%) F1 (%) IoU (%)

FCN 78.29 70.92 74.42 59.26
UNet 80.16 73.82 76.86 62.14

ResUnet 76.94 76.42 76.68 62.18
SegNet 77.01 76.27 76.64 62.12

DeepLabV3 74.72 77.75 76.11 61.43
LinkNet 77.80 77.02 77.41 63.14

D-LinkNet 78.44 77.30 77.87 63.76
CFPNet 74.61 74.92 74.77 59.70

TransUNet 79.30 73.81 76.46 61.89
SwinUnet 75.62 73.75 74.67 59.85

RoadExNet 74.31 78.09 76.16 61.49
RemainNet 76.94 79.42 78.16 64.15

SASwin Transformer 80.97 77.56 79.23 65.60

Figure 9 shows the example image results of four methods: D-LinkNet, TransUNet,
SwinUnet, and SASwin Transformer. It can be observed that SwinUnet performs the worst,
missing many fundamental road segments and resulting in some erroneous detections.
Among the CNN-based encoder–decoder methods, D-LinkNet provides better results than
SwinUnet and TransUNet. Among all the methods, the proposed SASwin Transformer
generates the best results. This can be attributed to our effective fusion of local and global
features, allowing for the generation of a powerful encoder for road extraction that captures
rich spatial features more efficiently. Our proposed SASwin Transformer performs the
best, consistent with our quantitative evaluation. The DeepGlobe road dataset consists
mainly of remote sensing images from rural areas. It contains a large number of rural roads
that exhibit various widths, indicating that a road may have different widths along its
length. Additionally, a significant number of trees and shadows causes severe occlusions.
The experimental results demonstrate the effectiveness of our SASwin Transformer in
detecting rural roads. Combined with the results on the Massachusetts dataset, three out of
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the four quantitative evaluation metrics achieved the best performance on both datasets,
indicating the robustness of our proposed method across different regions and road types.

(a) (b) (c) (d) (e) (f)

Figure 9. The qualitative analysis results of different road segmentation methods on the DeepGlobe
dataset. False negatives are marked in red, and false positives are marked in blue. (a) Image. (b) Ground
truth. (c) D-LinkNet. (d) TransUNet. (e) SwinUnet. (f) SASwin Transformer.

4.5. Ablation Studies

Through ablation experiments and quantitative analysis, we can verify the effective-
ness of the two modules proposed, namely SSA and SMLP. The experiments are typically
conducted by gradually adding one module or a module combination to comprehensively
evaluate the effectiveness of each module in the SASwin Transformer. Ablation experiments
are performed on both the Massachusetts Road Dataset and the DeepGlobe dataset. General
metrics are used to validate the overall prediction accuracy of the modules, while P, R, F1,
and IoU are specifically used to validate road completeness after different modules are
added. The training strategy and experimental environment used are the same as described
in Section 4.3.

To better validate the effectiveness of each module, we replaced the SSA and SMLP
modules in the SASwin Transformer with the MSA and MLP modules from the Swim
Transformer as baselines. As shown in Table 3, SSA and SMLP further optimize the
performance of the baseline. When SSA and SMLP are added individually to the baseline,
the IoU increases by 0.77 and 0.32, respectively, compared to the baseline. When SSA
and SMLP are combined and added to the baseline, the IoU improves by 2.14. As shown
in Table 4, the combination of SSA and SMLP also improves the IoU scores. When SSA
and SMLP are added individually to the baseline, the IoU increases by 0.83 and 1.00,
respectively, compared to the baseline. When SSA and SMLP are combined and added to
the baseline, the IoU improves by 1.57. This finding indicates that the combination of SSA
and SMLP further enhances road extraction efficiency.

As shown in Figure 10, the SASwin Transformer performs the best in the qualitative
analysis, which is consistent with the results of the quantitative analysis. From the predicted
sample images in the third row to the fifth row, it can be observed that some longer road
segments are difficult to detect, resulting in fragmented road segments. Additionally, many
road intersections and corners are also not recognized. The main reason for these issues
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is occlusion caused by dense vegetation and buildings. The combination of the SSA and
SMLP modules can effectively alleviate such problems. The images demonstrate that after
combining SSA and SMLP modules, the disconnected roads decrease and the missing road
segments are inferred. Additionally, as shown in Table 3, we observe that adding SSA
or SMLP individually can improve the precision (P) accuracy, while combining SSA and
SMLP reduces the P value. This finding can be explained as follows: (a) adding a single
module can improve network performance, (b) the combination of SSA and SMLP modules
may introduce redundant information that affects the performance of different metrics,
and (c) the Massachusetts Road Dataset does not annotate each pixel in the image, only
marking the centerline information of the roads without road width information. Therefore,
the issue of incorrect labeling may contribute to unstable predictions. Further research and
continuous investigation are needed to address this problem.

Table 3. The ablation experiments were conducted on the Massachusetts dataset, with the best results
highlighted in bold.

Methods P (%) R (%) F1 (%) IoU (%)

Baseline 78.86 76.48 77.65 63.47
BaseLine + SMLP 79.46 77.35 78.39 64.47

Baseline + SSA 79.87 76.73 78.27 64.30
Baseline + SMLP + SSA 80.02 77.65 78.82 65.04

Table 4. The ablation experiments were conducted on the DeepGlobe dataset, with the best results
highlighted in bold.

Methods P (%) R (%) F1 (%) IoU (%)

Baseline 81.09 74.48 77.64 63.46
BaseLine + SMLP 81.59 74.50 77.88 63.78

Baseline + SSA 79.69 76.81 78.22 64.23
Baseline + SMLP + SSA 80.97 77.56 79.23 65.60

To verify the efficiency of the proposed model, we compare it with the baseline.
As shown in Table 5, the model parameter size is reduced from 84.94 M to 79.91 M, and the
FLOPs are reduced from 130.61 G to 127.53 G. This clearly shows that SASwin Transformer
is a more efficient modeling method.

Table 5. The results of the comparison of the number of parameters and efficiency of the models.

Methods Param (M) FLOPs (G)

FCN 45.5 83.7
UNet 34.2 124.4

ResUnet 14.1 324.1
SegNet 29.4 160.7

DeepLabV3 39.6 164.1
LinkNet 11.5 12.1

D-LinkNet 31.1 33.6
CFPNet 0.5 4.0

TransUNet 106.2 31.2
SwinUnet 6.8 7.8

RoadExNet 31.1 33.87
RemainNet 33.6 60.9

Baseline 84.9 130.6
SASwin Transformer 79.9 127.5
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Figure 10. The qualitative analysis results of the ablation experiments conducted on the DeepGlobe
dataset are as follows, with differences highlighted in yellow circles. SSA improved the completeness
of the results. SMLP improved the connectivity of the results. The proposed SASwin Transformer
achieved the best performance.

4.6. Student’s T-Test

We conducted five Student’s t-test between the proposed method and the compared
method. We used SASwin Transformer and other comparison methods to collect IoU
results from five randomized experiments conducted on the Massachusetts and DeepGlobe
datasets. Using the Student’s t-test method to calculate the p-value between our proposed
method and the existing methods. When the p-value is greater than 0.05, there is no
significant difference between the two models. When the p-value is less than 0.05, there is a
significant difference in the results between the two models.

For the convenience of observing the differences in data, our experimental data are
represented by scientific notation. As shown in Table 6, on two datasets, the p-values
between the SASwin Transformer method and all comparative methods are less than 0.05,
indicating that our SASwin Transformer method has a significant advantage over other
methods. For example, on the Massachusetts dataset, the p-values between the SASwin
Transformer method and the RoadExNet and RemainNet methods are 3.49 × 10−4 and
3.03 × 10−2, respectively, both of which are less than 0.05, indicating a significant difference
between the methods.



Remote Sens. 2024, 16, 1183 16 of 19

Table 6. Student’s t-test results between SASwin Transformer and the compared methods.

Methods Massachusetts DeepGlobe

FCN 1.30 × 10−13 4.28 × 10−10

UNet 9.48 × 10−9 6.74 × 10−5

ResUnet 1.82 × 10−6 7.33 × 10−4

SegNet 6.29 × 10−6 6.44 × 10−7

DeepLabV3 2.59 × 10−7 1.69 × 10−4

LinkNet 6.25 × 10−6 1.07 × 10−5

D-LinkNet 6.03 × 10−4 6.50 × 10−3

CFPNet 3.09 × 10−7 9.85 × 10−9

TransUNet 3.10 × 10−8 6.18 × 10−7

SwinUnet 8.85 × 10−10 4.36 × 10−8

RoadExNet 3.49 × 10−4 1.72 × 10−9

RemainNet 3.03 × 10−2 3.99 × 10−2

Baseline 1.41 × 10−5 4.15 × 10−6

Baseline + SMLP 1.25 × 10−3 2.29 × 10−2

Baseline + SSA 2.36 × 10−2 9.58 × 10−3

5. Conclusions

This paper introduces the Spatial Attention Swin Transformer (SASwin Transformer)
for road extraction. Our contribution is mainly to improve the Swin Transformer model
to make it more suitable for extracting long-distance dependencies of road features. Com-
pared with the original Swin Transformer model, this model has the advantages of higher
precision, fewer parameters, and higher efficiency. The road has the characteristics of a large
span and a narrow and continuous distribution. In order to extract road feature information
more effectively, we replaced the MSA and MLP modules in Swin Transformer with SSA
and SMLP modules to extract road feature information more adaptively. We also combine
feature aggregation with ResNet to enhance multi-scale local spatial information, resulting
in a stronger encoder to extract more efficient spatial features. The whole network structure
follows the encoder–decoder architecture. In order to increase the acceptance domain of
local features, we designed a bridge module for multi-scale feature learning. We tested our
approach on the Massachusetts Road dataset and the DeepGlobe dataset. The experimental
results show that the proposed method has better performance. Moreover, the proposed
module can be easily integrated into any Swin Transformer-based architecture, indicating
that our model has the potential for a wide range of applications.

In addition, the model proposed in this paper pays more attention to combining the
CNN and Transformer from another perspective. Most of the existing methods use a serial
approach to combine the CNN and Transformer. For example, Chen et al. proposed a
TransUNet model that combines the features of Transformer and UNet. It first extracts
features from the image using a CNN, obtains a feature map, and then converts the
feature map and feeds it into the Transformer encoder module. Finally, it uses a decoder
module similar to U-Net for on-layer sampling and jump connections, and finally generates
segmentation results. Tao et al. proposed a Seg-Road model. In the encoder section, Seg-
Road reduces the number of parameters by improving Transformer. In the decoder part, Seg-
Road proposes a pixel connectivity structure (PCS) based on prior knowledge to improve
road segmentation performance. Both the Seg-Road and TransUNet methods combine the
CNN and Transformer in a way that resembles a “serial structure”. In our proposed model,
a dual encoder method is used to extract local features through convolution in the CNN
encoder part. In the Transformer encoder, Swin Transformer is improved to extract road
characteristic information more adaptively. Our proposed model combines the CNN and
Transformer in a way that resembles a “parallel architecture”. In general, our proposed
model and methods like Seg-Road explore how to better combine CNN and Transformer
from two different perspectives.
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There is still some room for improvement in this paper. The process of inferring road
could be extended to obtain vector outputs in practical applications of autonomous driving
or path navigation, as claimed in the abstract. This would require applying knowledge of
graph theory. Road node and edge information is generated during the inference process,
and by combining this information, a final road topology can be generated. In addition,
this paper can further investigate the sensitivity of the procedure to data quality. This is
because studying the effect of procedures on data quality can help enhance the reliability
and robustness of research results. Therefore, in future research, we will focus on this issue
to further improve the research results in this area.
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