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Abstract: Recently, with the remarkable advancements of deep learning in the field of image process-
ing, convolutional neural networks (CNNs) have garnered widespread attention from researchers
in the domain of hyperspectral image (HSI) classification. Moreover, due to the high performance
demonstrated by the transformer architecture in classification tasks, there has been a proliferation of
neural networks combining CNNs and transformers for HSI classification. However, the majority of
the current methods focus on extracting spatial–spectral features from the HSI data of a single size
for a pixel, overlooking the rich multi-scale feature information inherent to the data. To address this
problem, we designed a novel transformer network with a CNN-enhanced cross-attention (TNCCA)
mechanism for HSI classification. It is a dual-branch network that utilizes different scales of HSI input
data to extract shallow spatial–spectral features using a multi-scale 3D and 2D hybrid convolutional
neural network. After converting the feature maps into tokens, a series of 2D convolutions and
dilated convolutions are employed to generate two sets of Q (queries), K (keys), and V (values) at
different scales in a cross-attention module. This transformer with CNN-enhanced cross-attention
explores multi-scale CNN-enhanced features and fuses them from both branches. Experimental
evaluations conducted on three widely used hyperspectral image (HSI) datasets, under the constraint
of limited sample size, demonstrate excellent classification performance of the proposed network.

Keywords: convolutional neural network (CNN); hyperspectral image classification; transformer;
multi-scale feature

1. Introduction

Hyperspectral imaging (HSI) has emerged as a powerful technique for remote sensing
and the analysis of the Earth’s surface [1,2]. By capturing and analyzing a large number of
narrow and contiguous spectral bands, HSI data provides rich and detailed information
about the composition and properties of observed objects [3,4]. The ability to differentiate
between different land cover types and detect subtle variations in materials has made
HSI classification a crucial task in various fields, including agriculture [5], environmental
monitoring [6], mineral exploration [7], and military reconnaissance [8]. HSI classification
has become a hot research topic [9–13].

Currently, several HSI classification methods based on traditional machine learn-
ing algorithms have been proposed. These methods include Support Vector Machines
(SVMs) [14,15] and Random Forest (RF) [16]. In addition, the k-Nearest Neighbors (k-
NN) [17] algorithm is a non-parametric classification method that is based on the assump-
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tion of similar feature values. It assigns the class of an unlabeled pixel as the most frequent
class among its k-nearest-neighboring pixels in the feature space. Linear Discriminant
Analysis (LDA) [18] is a supervised dimensionality reduction and classification algorithm.
It aims to find a linear transformation that maximizes the differences between different
classes and minimizes the within-class scatter, resulting in discriminative features used for
pixel classification. The Endmember Extraction and Classification Algorithm (EMAP) [19]
is a comprehensive algorithm that combines endmember extraction and classification in
hyperspectral image analysis. It involves extracting endmembers, which are pure spectral
signatures, and using a linear mixing model to classify pixels based on their linear combi-
nations of endmembers. EMAP enables the accurate characterization of materials present
in hyperspectral data.

Traditional machine learning methods for hyperspectral classification have limitations
in feature extraction, high-dimensional data, and modeling nonlinear relationships [20].
In contrast, deep learning offers advantages such as automatic feature learning, strong
nonlinear modeling capabilities, compact data representation, and data augmentation
for improved generalization [21]. These benefits make deep learning well-suited to han-
dling high-dimensional, nonlinear, and complex hyperspectral data, leading to enhanced
classification accuracy and robustness.

Due to the popularity of deep learning research, deep learning methods have also
been applied to HSI classification tasks. Initially, researchers only used convolutional
layers to solve classification tasks, such as 1D-CNN [22], 2D-CNN [23], and 3D-CNN [24].
However, more complex and deeper networks have been designed. He et al. [25] discov-
ered that HSI differed significantly from 3D object images due to its combination of 2D
spatial and 1D spectral features. Existing deep neural networks cannot be directly applied
to HSI classification tasks. To address this issue, they proposed a Multiscale 3D Deep
Convolutional Neural Network (M3D-CNN), which jointly learned both two-dimensional
multiscale spatial features and one-dimensional spectral features from HSI data in an
end-to-end manner. To achieve better classification performance by combining two types
of convolutions, Roy et al. [26] effectively combined 3D-CNN with 2D-CNN. Zhu et al. [27]
discovered the remarkable capabilities of Generative Adversarial Networks (GANs) in
various applications. As a result, they explored the application of GANs in the field of
HSI classification and designed a CNN for discriminating samples and another CNN
for generating synthetic input samples. Their approach achieved superior classification
accuracy compared to previous methods. Due to the sequential nature of hyperspectral
pixels, Mou et al. [28] applied Recurrent Neural Networks (RNNs) to HSI classification
tasks. Then, they proposed a novel RNN model that effectively analyzed HSI pixels as
sequential data. Their research demonstrated the significant potential of RNNs in HSI
classification tasks. Traditional CNN models can only capture fixed receptive fields for HSI,
making it challenging to extract feature information with different object distributions. To
address this issue, Wan et al. [29] applied Graph Convolutional Networks (GCNs) to HSI
classification tasks. They designed a multi-scale dynamic GCN (MDGCN) that updated the
graph dynamically during the convolution process, leveraging multiscale features in HSI.

With the introduction of attention mechanisms, Haut et al. [30] combined CNNs and
Residual Networks (ResNets) with visual attention. Visual attention effectively assisted in
identifying the most representative parts of the data. Experimental results demonstrated
that deep attention models had a strong competitive advantage. Sun et al. [31] discovered
that CNN-based methods, due to the presence of interfering pixels, weaken the discrimina-
tive power of spatial–spectral features. Hence, they proposed a Spectral–Spatial Attention
Network (SSAN) that captured discriminative spatial–spectral features from attention areas
in HSI. To leverage the diverse spatial–spectral features inherent in different regions of
the training data, Hang et al. [32] proposed a novel attention-aided CNN. It consisted
of two subnetworks responsible for extracting spatial and spectral features, respectively.
Both subnetworks incorporated attention modules to assist in constructing a discrimina-
tive network. To mitigate the interference between spatial and spectral features during
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the extraction process, Ma et al. [33] designed a Double-Branch Multi-Attention mech-
anism network (DBMA). It employed two branches, each focusing on extracting spatial
and spectral features, respectively, thereby reducing mutual interference. Subsequently,
Zhu et al. [34] discovered that the equal treatment of all spectral bands using deep neural
networks restricted feature learning and was not conducive to classification performance
in HSI. Therefore, they proposed a Residual Spectral–Spatial Attention Network (RSSAN)
to address this issue. The RSSAN took raw 3D cubes as input data and employed spectral
attention and spatial attention to suppress irrelevant components and emphasize relevant
components, achieving adaptive feature refinement.

Recently, with the introduction of Vision Transformer [35] into image processing,
which originated from the transformer model in natural language processing, more and
more efficient transformer structures have been designed [36]. To fully exploit the sequen-
tial properties inherent in the spectral feature of HSI, Hong et al. [37] proposed a new
classification network called SpectralFormer. It can learn the spectral sequence information.
Similarly, He et al. [38] also addressed this issue and designed a classification framework
called Spatial–Spectral Transformer to capture the sequential spectral relationships in HSI.
Due to the limited ability of CNN to capture deep semantic features, Sun et al. [39] discov-
ered that transformer structures can effectively complement this drawback. They proposed
a method called Spectral–Spatial Feature Tokenization Transformer (SSFTT). It combined
CNNs and transformers to extract abundant spectral–spatial features. Mei et al. [40] found
that the features extracted using the current transformer structures exhibited excessive
discretization and, thus, proposed a Group-Aware Hierarchical Transformer (GAHT) based
on group perception. This network used a hierarchical structure and achieved a significant
improvement in classification performance. Fang et al. [41] introduced a Multi-Attention
Joint Representation with Lightweight Transformer (MAR-LWFormer) for scenarios with
extremely limited samples. They employed a three-branch structure to extract multi-scale
features and demonstrated excellent classification performance. To utilize morphological
features, Roy et al. [42] proposed a novel transformer (morphFormer) that combined
morphological convolutional operations with attention mechanisms.

In the current research, most models are capable of effectively extracting spatial–
spectral information from HSI. However, training on fixed-size sample cubes constrained
the model’s ability to extract multi-scale features. Additionally, in practical applications,
there is often a scarcity of labeled samples in HSI datasets [43]. Therefore, it is crucial to
develop a network model that can adequately extract spatial–spectral features from HSI
even in scenarios with limited samples.

The TNCCA model proposed by us offers the following three main contributions:

• Taking blocks of different sizes from HSI, we employ a mixed fusion multi-scale
extraction shallow spatial–spectral feature module to process shallow features. This
module primarily consists of two multi-scale convolutional neural networks designed
for different-sized data. The network utilizes convolutional kernels of varying sizes to
extract shallow feature information at different scales.

• An efficient transformer encoder was designed in which we apply 2D convolution
and dilated convolution to tokens to obtain two sets of Q, K, and V with different
scale information. This enables the transformer architecture with cross-attention to not
only learn deeper feature information and promote the interaction of deep semantic
information but also effectively fuse feature information of different sizes from the
two branches.

• We designed an innovative dual-branch network specifically for classification tasks in
small-sample scenarios. This network efficiently integrates a multi-scale CNN with a
transformer encoder to fully exploit the multi-scale spatial–spectral features of HSI.
We validated this network on three datasets, and the experimental results indicated
that our proposed network was competitive compared to state-of-the-art methods.
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2. Materials and Methods

In Figure 1, we illustrate an overview diagram of the proposed TNCCA model, which
is an efficient dual-branch deep learning network for HSI classification. The network
consists of the following sub-modules: the data preprocessing module for HSI, the shallow
feature extraction module that utilizes different fusion methods to combine multi-scale
spatial–spectral features, the module that converts the shallow features into tokens with
different quantities assigned to different sizes, and the transformer module with CNN-
enhanced cross-attention. Finally, there is the classifier head, which takes the input pixels
and outputs the corresponding classification labels.
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Figure 1. Overview diagram of the proposed TNCCA model.

In summary, the TNCCA model consists of the following five components: HSI data
preprocessing, a dual-branch multi-scale shallow feature extraction module, a feature-
maps-to-tokens conversion module, a transformer with a CNN-enhanced cross-attention
module, and a classifier head.

2.1. HSI Data Preprocessing

The processing of the original HSI (X ∈ Ra×b×l) is described in this section, where a
and b represent different spatial sizes, and l represents the spectral dimension. Due to the
typically large number of spectral dimensions in HSI, it increases computational complexity
and consumes significant computational resources. Therefore, we use the PCA operation to
solve this problem by reducing the dimensionality of the original image from l to r.

To obtain information at different scales, we extract two square patches of different
sizes, X p

1 ∈ Rs1×s1×r and X p
2 ∈ Rs2×s2×r (s1 > s2), centered at each pixel. We combine

these two variables into a dataset and feed it into the network together. Finally, the set
of data generated via each pixel is placed into a collection, A, and the training and test
sets are randomly partitioned from A based on the sampling rate. Each group of training
and testing data contains the corresponding ground truth labels. The labels, denoted as
Y ∈ Ra×b, are obtained from the set of ground truth labels.

2.2. Dual-Branch Multi-Scale Shallow Feature Extraction Module

As shown in Figure 2, a group of cubes, denoted as X p
1 and X p

2 , with different sizes
are fed into the network. Firstly, they pass through a 3D convolutional layer. In the first
branch, a larger-sized cube is processed, and 8 convolutional kernels are allocated. The
size of each kernel is (3 × 5 × 5). In the second branch, a cube with smaller dimensions is
processed, and 4 convolutional kernels are allocated. The size of each kernel is (1 × 3 × 3).
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To maintain the original size of the cubes, padding is applied. The above process can be
represented in the following equation:

X3d
1 = Conv3D(3×5×5)(X p

1 ) X3d
2 = Conv3D(1×3×3)(X p

2 ) (1)

where Conv3D and Conv2D represent 3D convolutional layers and 2D convolutional layers
with different kernel sizes, respectively.
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Figure 2. Dual-branch multi-scale shallow feature extraction module.

After passing through a 3D convolutional layer, we extract shallow spatial features
at different scales using multi-scale 2D convolutional layers. Similarly, we use different
numbers of convolutional kernels and different kernel sizes in different branches. In the
first branch, we use 32 2D convolutional kernels of size (7 × 7), 16 kernels of size (5 × 5),
and 16 kernels of size (1 × 1). The information from these three different scales is fused
through the Concatenation operation. In the second branch, smaller kernel sizes are used
to extract shallow spatial features. Specifically, we use 64 2D convolutional kernels of size
(3 × 3), 64 2D dilated convolutional kernels with a dilation rate of 2 and size (3 × 3), and 64
2D convolutional kernels of size (1 × 1). The information from these three different scales
is fused through element-wise addition.

Finally, we obtain two sets of 2D features, F1 and F2, respectively. This process can be
represented in the following equations:

F1 = Conv2D(7×7)(X3d
1 )⊙ Conv2D(5×5)(X3d

1 )⊙ Conv2D(1×1)(X3d
1 )

F2 = Conv2D(3×3)(X3d
2 )⊕ Dilated Conv2D(3×3)(X3d

2 )⊕ Conv2D(1×1)(X3d
2 )

(2)

2.3. Feature-Maps-to-Tokens Conversion Module

After obtaining the multi-scale 2D feature information from the dual-branch shallow
feature extraction module, in order to better adapt to the structure of the Transformer, these
features need to be tokenized.

The flattened feature maps are denoted as F f lat
1 and F f lat

2 , respectively. These two
variables can be represented in the following equation:

F f lat
1 = T S(Flatten(F1)) F f lat

2 = T S(Flatten(F2)) (3)
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where T S(·) is a transpose function. Next, F f lat
1 is multiplied by a learnable weight matrix

W1 using a 1 × 1 operation, and similarly, F f lat
2 is multiplied by a learnable weight matrix

W2 using a 1 × 1 operation. We use weight matrices of different shapes to achieve the
purpose of assigning a different number of tokens. Then, the feature maps are transformed
into feature tokens multiplied by themselves. The above process can be achieved using the
following equation:

T f
1 = (so f tmax(T S(F f lat

1 W1)))F f lat
1 T f

2 = (so f tmax(T S(F f lat
2 W2)))F f lat

2 (4)

To accomplish the classification task, we also embed a learnable classification token
consisting of all zeros. Then, to preserve the original positional information, positional
information is embedded into the tokens. The tokens of the two branches can be obtained
from the following equation:

T1 = (T f
1 ⊙ Tcls

1 )⊕ T f
1 T2 = (T f

2 ⊙ Tcls
2 )⊕ T f

2 (5)

2.4. Transformer with CNN-Enhanced Cross-Attention Module

The transformer possesses powerful feature-information-mining capabilities, as it can
capture long-range dependencies and acquire global contextual information. To further
explore the deep feature information contained in the data and fully integrate the multi-
scale feature information extracted via the two branches, we embed a cross-attention in the
transformer structure.

As shown in Figure 3, We utilize different convolutional layers to obtain the attention
mechanism’s Q, K, and V tensors from one of the outputs T1 obtained from the previous
module. Firstly, we apply a 2D convolutional layer with kernel sizes of (3 × 3) and padding
of 1 to obtain Q1. Next, a 2D convolutional layer with kernel sizes of (5 × 5) and padding
of 2 is used to obtain K1. Finally, we employ a dilated convolutional layer with kernel sizes
of (3 × 3), padding of 2, and a dilation rate of 2 to obtain V1.
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Figure 3. Transformer with CNN-enhanced cross-attention module.

Next, we apply similar multi-scale convolutions to another output, T2, to obtain Q2,
K2, and V2. Firstly, we use a 2D convolutional layer with a kernel size of (3 × 3) and
padding of 1 to obtain Q2. Then, we employ a dilated convolutional layer with a kernel
size of (3 × 3), padding of 2, and a dilation rate of 2 to obtain K2. Finally, we utilize a
2D convolutional layer with a kernel size of (5 × 5) and padding of 2 to obtain V2. Once
we have obtained these tensors, we perform element-wise multiplication among them to
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obtain deep features A1 and A2 that have undergone the attention mechanism. The process
can be represented in the following formula:

A1 = so f tmax

(
Q1(T S(K1))√

dK1

)
V2 (6)

A2 = so f tmax

(
Q2(T S(K2))√

dK2

)
V1 (7)

where dK1 is the dimension of K1, and dK2 is the dimension of K2. We obtain the deep
features from two branches and sum them pixel-wise. Then, we pass the summed features
through a multi-layer perceptron block using a residual structure to obtain the final deep
feature, DF. This can be obtained using the following equation:

DF = LN[MLP[A1 ⊕ A2]]⊕ (A1 ⊕ A2) (8)

where MLP[·] is the multi-layer perceptron, and LN is the abbreviation for layer normal-
ization. The MLP mainly includes two linear layers, with the addition of the Gaussian
Error Linear Unit (GELU) activation function in between.

2.5. Classifier Head

We extract the learnable classification token, TDF
cls , from the output tokens, DF, of the

transformer encoder. Then, we pass it through a linear layer to obtain a one-dimensional
vector, denoted as I ∈ R1×c, where c represents the number of classes. The softmax
function is used to ensure that the total activation of each output unit is 1. By selecting the
corresponding maximum value, we obtain the class label for that pixel. The entire process
can be represented in the following equation:

Label = max(So f tmax(Linear(TDF
cls ))︸ ︷︷ ︸

I

) (9)

The complete procedure of the TNCCA method, as proposed, is outlined in Algorithm 1.

Algorithm 1 Multi-scale Feature Transformer with CNN-Enhanced Cross-Attention Model
Input: Input HSI data X ∈ Ra×b×l and ground truth labels Y ∈ Ra×b; the original data are reduced in spectral

dimension to r = 30 using PCA operation. A set of small cubes with sizes s1 = 13 and s2 = 7 is then extracted.
Subsequently, the training set of the model is randomly sampled at a sampling rate of 1%.
Output: Predicted labels for the test dataset.
1: Set the batch size of the training data to 64, and use the Adam optimizer with a learning rate of lr = 5 × 10−4.

Decay the learning rate to lr * 0.9 every 50 steps. Set the total number of training epochs to ϵ = 500.
2: After the dimensionality reduction of the original HSI using PCA, cubes corresponding to each pixel are

extracted with the pixel as the center. Subsequently, each extracted set of data, X p
1 and X p

2 , is placed into a
collection. Then, the collection is divided into a training set and a testing set according to Table 1.

3: Create training and test data loaders. Each group of training and testing data will obtain corresponding
ground truth labels from Y .

4: for i = 1 to ϵ do
5: The dual-branch, multi-scale shallow feature extraction module is used to extract the multi-scale shallow

spatial–spectral features F1 and F2.
6: The outputs of the feature maps to the token conversion module are used as inputs for the next module,

denoted as T1 and T2.
7: Passing tokens through a transformer encoder with cross-attention yields deep semantic features, referred

to as deep semantic features, DF.
8: Extracting a learnable classification token, TDF

cls , from DF and feeding it into a classification head yields the
predicted class for the current pixel.

9: end for
10: Apply the trained model to the test dataset to generate predicted labels.
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Table 1. Explanation of the division of training samples and test samples in the Houston2013 dataset,
the Trento dataset, and the Pavia University dataset.

NO.
Houston2013 Dataset Trento Dataset Pavia University Dataset

Class Training
(1%). Test. Class Training

(1%). Test. Class Training
(1%). Test.

#1 Healthy Grass 13 1238 Apple Trees 40 3994 Asphalt 66 6565
#2 Stressed Grass 13 1241 Buildings 29 2874 Meadows 186 18,463
#3 Synthetic Grass 7 690 Ground 5 474 Gravel 21 2078
#4 Tree 12 1232 Woods 91 9032 Trees 31 3033
#5 Soil 12 1230 Vineyard 105 10,396 Metal Sheets 13 1332
#6 Water 3 322 Roads 31 3143 Bare Soil 50 4979
#7 Residential 13 1255 Bitumen 13 1317
#8 Commercial 12 1232 Bricks 37 3645
#9 Road 13 1239 Shadows 9 938

#10 Highway 12 1215
#11 Railway 12 1223
#12 Parking Lot 1 12 1221
#13 Parking Lot 2 5 464
#14 Tennis Court 4 424
#15 Running Track 7 653

Total 150 14,879 Total 301 29,913 Total 426 42,350

3. Results
3.1. Data Description

The proposed TNCCA model was tested on three widely used datasets. Below, we
introduce these three datasets one by one.

Houston2013 dataset: The Houston2013 dataset was jointly provided by the research
group at the University of Houston and the National Mapping Center of the United States.
It contained a wide range of categories and has been widely used by researchers. The
dataset consisted of 144 bands and contained 349 × 1905 classified pixels. There were
15 different classification categories. Figure 4 displayed the pseudocolored image and
ground truth map of the Houston2013 dataset.

(a)

(b)

Healthy Grass

Stressed Grass

Synthetis Grass 

Tree

Soil

Water

Residential

Commercial

Road

Highway

Railway

Parking Lot 1

Parking Lot 2

Tennis Court

Running Track

Figure 4. Presentation of the Houston2013 dataset. (a) Pseudo-color image composed of three spectral
bands. (b) Ground truth map.

Trento dataset: The Trento dataset was captured in the southern region of Trento,
Italy. It was an HSI obtained using the Airborne lmaging Spectrometer for Application
(AISA) Eagle sensor. The dataset consisted of 63 spectral bands and had dimensions of
600 × 166 pixels for classification. It included six different categories of ground objects.
Figure 5a,b respectively display the pseudocolored image and ground truth map.
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(a)

(b)

Apple TreesApple Trees

WoodsWoods

BuildingsBuildings

VineyardVineyard

GroundGround

RoadsRoads

Figure 5. Presentation of the Trento dataset. (a) Pseudo-color image composed of three spectral bands.
(b) Ground truth map.

Pavia University dataset: The Pavia University dataset was a collection of HSI taken
in 2001, specifically at Pavia University in Italy. The dataset was an HSI obtained using
a Reflective Optics System Imaging Spectrometer (ROSIS) sensor. The image comprised
115 bands and had dimensions of 610× 340 classified pixels. There were a total of nine land
cover classification categories. To reduce the interference of noise, we removed 12 bands
that contained noise. Figure 6 displays the pseudocolored image and ground truth map of
the dataset.

(a) (b)

Asphalt

Meadows

Gravel

Trees

Painted Metal Sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadow

Figure 6. Presentation of the Pavia University dataset. (a) Pseudo-color image composed of three
spectral bands. (b) Ground truth map.

We present the division of training and test samples for the three datasets in Table 1,
which includes the specific data for each category. For each category, we used 1% of the
total number of samples as the training set.

3.2. Parameter Analysis

In the model we proposed, there was a set of hyperparameters, such as batch size,
the size of the first cubic patch, and the size of the second cubic patch. We conducted
experimental analysis on these parameters to ensure that their values were optimal. The
analysis results are shown in Figures 7–9.
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Batch Size

(a)

Patch Size_s1 Patch Size_s2

(b) (c)

Figure 7. Validation of the optimal hyperparameters with different classification metrics for the
Houston2013 dataset. (a) Batch size. (b) Size of the cubic patch in the first branch. (c) Size of the cubic
patch in the second branch.

Batch Size

(a)

Patch Size_s1 Patch Size_s2

(b) (c)

Figure 8. Validation of the optimal hyperparameters with different classification metrics for the
Trento dataset. (a) Batch size. (b) Size of the cubic patch in the first branch. (c) Size of the cubic patch
in the second branch.
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Figure 9. Validation of the optimal hyperparameters with different classification metrics for the Pavia
University dataset. (a) Batch size. (b) Size of the cubic patch in the first branch. (c) Size of the cubic
patch in the second branch.

(1) Batch Size: Due to our observation that the performance of the transformer architec-
ture was highly sensitive to the batch size, different sizes resulted in varying classification
performance. We set the batch size to the following candidate values: {16, 32, 64, 128, 256}.
Additionally, we experimentally determined the batch size that yielded the best perfor-
mance for our proposed model.

(2) Patch Size: Since the cubic patch served as the input to the model, selecting a
patch size that was too small could limit the model’s receptive field, while choosing a
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size that was too large could result in excessive data volume and increased computational
complexity. Our proposed TNCCA selected two different sizes of cubic patches to extract
multi-scale features, for which the size of the cubic patch in the first branch was slightly
larger than that in the second branch. These two cubic patches served as inputs to the
model, and their sizes significantly impacted the classification accuracy. Therefore, we
conducted experiments on these two hyperparameters.

We first selected the parameter for the first branch from the set {9, 11, 13, 15, 17}, and
the experimental results showed that the model achieved the best classification performance
when its value was 13. Then, for the second branch, we selected the parameter from the set
{3, 5, 7, 9, 11}. From Figures 7–9, it can be observed that the model achieved the highest
classification metrics when its value was 7.

3.3. Classification Results and Analysis

We explored eight advanced classification models, and in this section, we describe
the conducted experiments and analyze them to compare the classification performance
of our proposed model with these models. They comprised SVM [14], 1D-CNN [22], 3D-
CNN [24], M3D-CNN [25], 3D-DLA [44], Hybrid [26], SSFTT [39], and morphFormer [42].
To maintain the original performance of the comparative models, we used the training
strategies described in their respective papers. The number of training and testing samples
for each model was the same as the numbers listed in Table 1, and random sampling was
employed. If you wish to reproduce our experiments, you can download the code from the
following link: https://github.com/cupid6868/TNCCA.git (accessed on 25 March 2024).

(1) Quantitative results and analysis: We present the results in Tables 2–4, where we
demonstrate the superior performance of our proposed model. We highlight the best
results for each metric. We conducted experiments on three datasets: the Houston2013
dataset, the Trento dataset, and the Pavia University dataset. The comparative classification
metrics included overall accuracy (OA), average accuracy (AA), the Kappa coefficient
(κ), and class-wise accuracy. The data in the tables clearly indicate that our proposed
TNCCA outperformed the other seven models on the experimental datasets. Let us take the
Houston2013 dataset as an example. The proposed TNCCA exhibited the best classification
performance for classes such as ‘Synthetic Grass’, ‘Soil’, ’Water’, ‘Commercial’, ‘Parking
Lot 2’, ‘Tennis Court’, and ‘Running Track’. Additionally, for classes like ‘Healthy Grass’,
‘Stressed Grass’, and ‘Parking Lot 1’, although our model’s performance was not the best,
it still ranked among that of the top methods. In contrast, SVM and 1D-CNN showed
extremely low classification performance for certain classes. This clearly demonstrated that,
in the context of small sample sizes, our proposed model effectively utilized multi-scale
feature information and fully exploited the spatial–spectral characteristics in HSI.

(2) Visual evaluation and analysis: We present the aforementioned experimental results in
the form of classification maps, shown in Figures 10–12. By comparing the spatial contours
of the classification maps with the noise contained in the images, we can clearly observe the
superior classification performance of the proposed TNCCA compared to other models.

In the classification maps, it is obvious that the classification map of TNCCA exhibited
the clearest spatial contours and contained the least amount of noise. Conversely, the
classification maps of the other models showed more instances of misclassifications and
interfering noise. Let us take the classification map of the Houston2013 dataset as an
example. The classification map of our proposed model closely resembles the ground truth
map. On the other hand, the classification maps of SVM, 1D-CNN, 3D-CNN, M3D-CNN,
and 3D-DLA exhibited more misclassifications and noise. In the zoomed-in window, we
can clearly observe the high classification performance of our proposed model for classes
such as ‘Parking Lot 2’, ‘Road’, and ‘Synthetic Grass’.

https://github.com/cupid6868/TNCCA.git
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Table 2. Comparison of classification performance using the Houston2013 dataset with different
methods (The optimal results are shown in bold, and the names of land-covers are shown in italics).

Instances SVM [14] 1D-CNN
[22]

3D-CNN
[24]

M3D-CNN
[25] 3D-DLA [44] Hybrid [26] SSFTT [39] morphFormer

[42] TNCCA

HealthyGrass 85.78 ± 0.00 85.70 ± 0.00 73.99 ± 6.96 94.74 ± 5.10 85.11 ± 0.28 89.68 ± 2.88 85.78 ± 6.71 96.66 ± 1.79 94.82 ± 2.49
StressedGrass 1.39 ± 2.41 0.00 ± 0.00 41.94 ± 0.17 81.35 ± 5.60 75.10 ± 7.70 83.42 ± 2.56 89.79 ± 6.94 96.21 ± 1.69 96.13 ± 1.78
SyntheticGrass 0.00 ± 0.00 0.00 ± 0.00 47.89 ± 4.20 90.33 ± 3.02 92.89 ± 1.01 73.04 ± 11.29 92.41 ± 10.15 98.26 ± 0.72 99.34 ± 0.32

Tree 42.77 ± 28.19 37.85 ± 8.81 48.98 ± 16.58 84.68 ± 3.12 93.37 ± 3.11 72.64 ± 21.09 90.99 ± 3.37 93.15 ± 1.05 90.85 ± 2.58
Soil 61.76 ± 52.71 95.09 ± 0.92 78.78 ± 2.06 87.66 ± 8.48 96.61 ± 1.74 99.72 ± 0.46 99.75 ± 0.21 92.62 ± 5.57 100 ± 0.00

Water 0.00 ± 0.00 0.00 ± 0.00 16.77 ± 2.63 38.61 ± 7.19 38.81 ± 16.97 78.98 ± 11.47 82.60 ± 1.35 79.60 ± 3.43 91.55 ± 3.31
Residential 87.94 ± 1.98 95.75 ± 0.04 48.96 ± 2.08 53.30 ± 6.21 49.61 ± 3.50 53.01 ± 3.43 74.42 ± 3.87 77.71 ± 4.59 82.54 ± 2.94
Commercial 30.65 ± 12.64 0.00 ± 0.00 29.54 ± 3.55 54.49 ± 7.91 45.83 ± 2.60 70.94 ± 2.03 69.23 ± 2.59 67.28 ± 1.78 82.88 ± 3.53

Road 7.02 ± 6.74 86.54 ± 2.98 39.87 ± 16.20 58.59 ± 6.57 68.44 ± 0.42 55.82 ± 0.80 87.27 ± 3.51 88.86 ± 3.91 84.57 ± 4.02
Highway 17.55 ± 30.41 0.21 ± 0.38 45.59 ± 7.91 60.90 ± 4.45 57.17 ± 33.02 77.91 ± 3.03 95.08 ± 1.07 87.57 ± 9.54 91.59 ± 3.60
Railway 23.73 ± 28.90 0.00 ± 0.00 39.98 ± 10.29 38.37 ± 8.64 55.79 ± 30.36 72.03 ± 5.33 92.58 ± 5.11 87.18 ± 1.06 81.26 ± 5.85

ParkingLot1 7.88 ± 13.66 2.48 ± 3.55 39.68 ± 13.03 73.16 ± 9.21 73.32 ± 16.06 89.62 ± 2.33 83.48 ± 5.40 74.50 ± 3.30 89.46 ± 2.26
ParkingLot2 0.50 ± 0.69 0.00 ± 0.00 41.48 ± 4.72 39.87 ± 10.37 29.45 ± 8.02 52.94 ± 7.05 84.69 ± 5.40 84.77 ± 3.14 90.77 ± 3.21
TennisCourt 0.00 ± 0.00 0.00 ± 0.00 40.33 ± 26.68 51.02 ± 6.60 74.92 ± 11.14 100 ± 0.00 99.76 ± 0.23 90.09 ± 3.42 100 ± 0.00
RunningTrack 62.68 ± 54.52 0.00 ± 0.00 67.99 ± 15.59 85.96 ± 7.39 97.54 ± 1.86 100 ± 0.00 100 ± 0.00 97.65 ± 0.57 100 ± 0.00

OA (%) 33.24 ± 5.37 33.63 ± 0.67 48.39 ± 2.48 68.44 ± 1.81 70.49 ± 1.27 77.29 ± 1.19 87.85 ± 1.20 87.17 ± 0.80 90.72 ± 0.89
AA (%) 28.64 ± 4.57 26.91 ± 0.54 46.78 ± 1.52 66.20 ± 1.54 68.93 ± 0.42 77.98 ± 1.21 88.52 ± 0.82 87.47 ± 0.79 91.72 ± 0.74
κ × 100 27.46 ± 5.69 27.58 ± 0.73 44.12 ± 2.63 65.82 ± 1.95 68.06 ± 1.37 75.44 ± 1.29 86.87 ± 1.29 86.13 ± 0.87 89.97 ± 0.97

Table 3. Comparison of classification performance using the Trento dataset with different methods
(The optimal results are shown in bold, and the names of land-covers are shown in italics).

Instances SVM [14] 1D-CNN
[22]

3D-CNN
[24]

M3D-CNN
[25] 3D-DLA [44] Hybrid [26] SSFTT [39] morphFormer

[42] TNCCA

AppleTrees 0.37 ± 0.32 0.00 ± 0.00 78.58 ± 34.28 97.72 ± 0.55 86.28 ± 4.62 99.04 ± 0.56 99.64 ± 0.23 99.49 ± 0.23 99.58 ± 0.25
Buildings 66.96 ± 5.56 73.56 ± 0.67 75.59 ± 11.99 80.15 ± 3.32 82.65 ± 1.42 67.16 ± 12.93 98.08 ± 0.38 91.66 ± 1.63 98.32 ± 0.31
Ground 0.00 ± 0.00 0.00 ± 0.00 45.44 ± 16.43 71.49 ± 13.08 57.63 ± 18.06 35.43 ± 14.97 51.26 ± 2.53 91.20 ± 5.05 97.79 ± 1.90
Woods 92.87 ± 0.93 89.39 ± 0.53 98.11 ± 2.59 98.82 ± 0.55 97.75 ± 0.40 100 ± 0.00 100 ± 0.00 99.97 ± 0.01 100 ± 0.00

Vineyard 75.15 ± 1.61 84.40 ± 1.00 99.54 ± 0.13 99.49 ± 0.45 99.49 ± 0.07 100 ± 0.00 99.91 ± 0.09 99.92 ± 0.11 100 ± 0.00
Roads 67.53 ± 2.70 70.08 ± 1.67 81.61 ± 8.08 82.04 ± 4.15 80.40 ± 2.62 66.89 ± 2.86 89.71 ± 2.49 92.84 ± 1.33 93.17 ± 1.48

OA (%) 67.74 ± 0.52 70.75 ± 0.22 91.27 ± 6.45 94.91 ± 0.56 92.91 ± 0.65 92.21 ± 1.19 97.88 ± 0.25 98.20 ± 0.12 98.98 ± 0.22
AA (%) 50.48 ± 1.17 52.90 ± 0.01 79.81 ± 10.23 88.28 ± 3.10 84.03 ± 2.45 78.09 ± 0.34 89.77 ± 0.61 95.85 ± 0.93 97.64 ± 0.62
κ × 100 55.45 ± 0.80 59.46 ± 0.29 88.22 ± 8.81 93.21 ± 0.76 90.49 ± 0.88 89.54 ± 1.59 97.17 ± 0.33 97.60 ± 0.16 98.64 ± 0.30

Table 4. Comparison of classification performance using the Pavia University dataset with different
methods (The optimal results are shown in bold, and the names of land-covers are shown in italics).

Instances SVM [14] 1D-CNN
[22]

3D-CNN
[24]

M3D-CNN
[25] 3D-DLA [44] Hybrid [26] SSFTT [39] morphFormer

[42] TNCCA

Asphalt 94.76 ± 0.61 91.32 ± 0.27 83.24 ± 3.03 94.44 ± 1.69 88.32 ± 5.04 92.46 ± 0.93 97.91 ± 0.66 96.75 ± 0.98 98.61 ± 0.57
Meadows 92.45 ± 1.20 95.58 ± 1.22 93.89 ± 4.27 98.14 ± 1.35 96.42 ± 1.06 99.95 ± 0.07 98.39 ± 0.33 99.75 ± 0.20 99.98 ± 0.02

Gravel 0.00 ± 0.00 0.00 ± 0.00 54.52 ± 20.93 68.65 ± 5.04 80.95 ± 1.39 94.80 ± 0.50 82.53 ± 1.10 82.17 ± 1.63 87.11 ± 0.87
Trees 15.81 ± 2.28 60.44 ± 4.77 66.00 ± 21.73 95.57 ± 1.52 91.10 ± 1.73 76.81 ± 4.40 95.73 ± 1.67 96.03 ± 1.11 98.48 ± 0.55

MetalSheets 99.07 ± 0.18 99.44 ± 0.17 90.29 ± 15.20 99.62 ± 0.52 97.99 ± 1.36 86.76 ± 19.29 100 ± 0.00 99.82 ± 0.30 100 ± 0.00
Baresoil 18.51 ± 6.58 9.58 ± 1.72 78.17 ± 8.13 77.51 ± 11.15 74.37 ± 2.27 99.43 ± 0.87 99.66 ± 0.42 99.16 ± 1.18 99.69 ± 0.14
Bitumen 0.00 ± 0.00 0.00 ± 0.00 57.27 ± 5.24 81.87 ± 7.21 81.67 ± 6.23 81.67 ± 21.37 99.16 ± 0.62 79.87 ± 4.37 99.56 ± 0.31

Bricks 86.91 ± 2.98 92.42 ± 1.27 73.79 ± 8.03 92.83 ± 2.12 77.66 ± 10.19 72.84 ± 7.42 95.40 ± 1.81 95.70 ± 1.19 95.93 ± 1.50
Shadows 0.00 ± 0.00 98.36 ± 0.53 57.78 ± 21.11 96.97 ± 1.61 94.34 ± 2.30 64.81 ± 14.40 82.37 ± 7.04 93.85 ± 1.60 98.11 ± 0.70

OA (%) 68.90 ± 0.76 74.54 ± 0.28 82.68 ± 1.84 92.56 ± 1.48 89.36 ± 1.32 92.72 ± 1.96 96.96 ± 0.41 96.99 ± 0.47 98.59 ± 0.12
AA (%) 45.28 ± 0.61 60.79 ± 0.23 72.77 ± 1.63 89.51 ± 2.76 86.98 ± 2.04 85.50 ± 6.27 94.57 ± 0.84 93.68 ± 0.97 97.50 ± 0.17
κ × 100 56.26 ± 0.98 64.42 ± 0.24 76.85 ± 2.48 90.04 ± 2.07 85.81 ± 1.77 90.29 ± 2.63 95.98 ± 0.54 96.01 ± 0.63 98.14 ± 0.16

In conclusion, our proposed model outperformed the compared models and demon-
strated the best classification performance. It highlighted the model’s capability of extract-
ing features effectively in small sample scenarios.
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Figure 10. Visualization of classification results using different classification methods with the
Houston2013 dataset. (a) Ground truth map, (b) SVM (OA = 33.24%), (c) 1D-CNN (OA = 33.63%),
(d) 3D-CNN (OA = 48.39%), (e) M3D-CNN (OA = 68.44%), (f) 3D-DLA (OA = 70.49%), (g) hybrid
(OA = 77.29%), (h) SSFTT (OA = 87.85%), (i) morphFormer (OA = 87.17%), and (j) the proposed
method (OA = 90.72%).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 11. Visualization of classification results using different classification methods with the
Trento dataset. (a) Ground truth map, (b) SVM (OA = 67.74%), (c) 1D-CNN (OA = 70.75%),
(d) 3D-CNN (OA = 91.27%), (e) M3D-CNN (OA = 94.91%), (f) 3D-DLA (OA = 92.91%), (g) hy-
brid (OA = 92.21%), (h) SSFTT (OA = 97.88%), (i) morphFormer (OA = 98.20%), and (j) the proposed
method (OA = 98.98%).
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Figure 12. Visualization of classification results using different classification methods with the Pavia
University dataset. (a) Ground truth map, (b) SVM (OA = 33.24%), (c) 1D-CNN (OA = 33.63%),
(d) 3D-CNN (OA = 48.39%), (e) M3D-CNN (OA = 68.44%), (f) 3D-DLA (OA = 70.49%), (g) hybrid
(OA = 77.29%), (h) SSFTT (OA = 87.85%), (i) morphFormer (OA = 87.17%), and (j) the proposed
method (OA = 90.72%).

3.4. Analysis of Inference Speed

To demonstrate the inference speed of our proposed model, TNCCA, we present the
training time and testing time of the model with different datasets in Table 5. The data
show that our training speed is fast, as the model can complete 500 epochs in a very short
period. To facilitate the observation of model performance during the training process,
we adopted a training strategy of conducting a test after each epoch. This resulted in a
significantly longer testing time compared to the training time. Additionally, we employed
dynamic learning rates to accelerate the convergence speed.

Table 5. The inference speed of TNCCA on different datasets (epoch = 500).

Dataset Houston2013 Trento Pavia University
Train. Test. Train. Test. Train. Test.

Time (min) 0.58 13.85 0.91 23.47 1.26 33.39

Among the three tested datasets, the Pavia University dataset, which had larger
spatial dimensions and higher spectral dimensions, took the longest time, with 1.26 min for
training and only 0.153 s per epoch. The training times for the other datasets were shorter.
From this table, it is easy to conclude that our proposed model not only achieved high
classification accuracy but also trained at a fast speed, demonstrating high efficiency.
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3.5. Ablation Analysis

To validate the effectiveness of each module in our proposed model, we conducted
ablation experiments on the four modules using the Houston2013 dataset. These four
modules comprised a 3D convolutional layer (3D-Conv), a multi-scale 2D convolutional
module (Ms2D-Conv), a feature map tokenization module (Tokenizer), and a transformer
encoder module (TE). We evaluated their performance in terms of OA, AA, and κ by
considering five different combinations of these modules. The results are listed in Table 6.

Specifically, we first kept only the 3D convolutional layer, and it was evident that the
performance was extremely poor. In the next step, we removed the transformer encoder
with the CNN-enhanced cross-attention mechanism, which was one of the main innovations
of this paper. The results showed a significant decrease in classification performance. The
OA, AA, and κ values of the model decreased by 4.71%, 5.89%, and 5.32%, respectively,
compared to TNCCA. Next, we removed the 3D convolutional layer and replaced the multi-
scale 2D convolutional module with a regular 2D convolutional layer. In this configuration,
the model’s OA decreased by 1.14%, and its AA decreased by 1.66%, compared to TNCCA.
Then, we removed the 3D convolutional layer, which resulted in the loss of rich spectral
information in the HSI. We observed that the model’s OA decreased by 0.64%, and its AA
decreased by 1.8%, compared to TNCCA. Finally, we replaced only the multi-scale 2D
convolutional module with a regular 2D convolutional layer. In this case, the model’s OA
decreased by 0.17%, and its AA decreased by 0.20%, compared to TNCCA. This clearly
demonstrated the positive contributions of these four modules in enhancing the accuracy
of network classification.

Table 6. Conducting ablation experiments on different modules (using the Houston2013 dataset).

Cases
Components Indicators

3D-Conv Ms2D-Conv Tokenizer TE OA (%) AA (%) κ × 100

1
√

× × × 48.39 46.78 44.12
2

√ √ √
× 85.81 85.63 84.65

3 × 2D-Conv
√ √

89.58 90.06 88.73
4

√
2D-Conv

√ √
90.55 91.52 89.56

5
√ √ √ √

90.72 91.72 89.97

4. Conclusions

The paper has introduced a novel dual-branch deep learning classification model
that effectively captures spatial–spectral feature information from HSI and achieves high
classification performance in small sample scenarios. The two branches of the model utilize
cubic patches of different sizes as inputs to fully exploit the limited samples and extract
features at different scales. First, we employed a 3D convolutional layer and a multi-scale
2D convolutional module to extract shallow-level features. Then, the obtained feature
maps were transformed into tokens, assigning a larger number of tokens to the larger cubic
patches. Next, we utilized a transformer with CNN-enhanced cross-attention to delve
into the deep-level feature information and fuse the different-scale information from the
two branches. Finally, through extensive experiments, we demonstrated that the proposed
TNCCA model exhibits superior classification performance.

In our future work, we aim to explore the rich multi-scale spatial–spectral features
in HSI from different perspectives to improve classification accuracy. However, as the
classification accuracy improves, there is an increasing demand for lightweight operations
and reducing the computational complexity of the models. We will utilize more novel
lightweight operations to design more efficient classification models.
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The following abbreviations are used in this manuscript:

HSI Hyperspectral image
RF Random Forest
SVM Support Vector Machine
LDA Linear Discriminant Analysis
PCA Principal Component Analysis
CNN Convolutional Neural Network
GAN Generative Adversarial Network
GCN Graph Convolutional Network
RNN Recurrent Neural Network
ResNet Residual Network
TE Transformer encoder
Q Queries
K Keys
V Values
MLP Multi-layer perceptron
LN Normalization layers
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