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Abstract: The apex-shifted hyperbolic Radon transform (ASHRT) based on the Stolt-stretch operator
can be implemented in the frequency domain, which accelerates the computation efficiency of ASHRT.
However, the Stolt-stretch operator has limitations when it comes to velocity variations. Therefore,
this paper introduces a new ASHRT approach based on post-stack phase shift plus interpolation
(PSPI) imaging and modeling operators. This new approach is designed to better adapt to changes
in medium velocity and enhance the quality of data reconstruction. When combining this novel
transformation with sparsity constraints for model testing and real data applications, the experimental
results indicate that it is an effective data reconstruction tool, with superior data reconstruction results
compared to traditional ASHRT based on the Stolt-stretch operator.

Keywords: apex-shifted hyperbolic Radon transform; post-stack phase shift plus interpolation; data
reconstruction; sparsity constraints

1. Introduction

During the seismic data acquisition process, it is often challenging to obtain regular,
complete, and high-quality seismic data directly. Various factors, such as obstacles and
weathered zones in the survey area, can lead to the presence of bad traces. Additionally,
due to cost considerations, especially in offshore exploration, the sampling frequency is
often insufficient to meet the Nyquist theorem [1]. All of these factors contribute to the
irregularity of observed seismic data. The irregular abundance of seismic data, on the other
hand, generates a large number of false frequencies and noise, which adversely affects the
subsequent processing sessions, such as seismic imaging quality and 3D surface-related
multiple elimination (SRME) processing sessions [2]. Therefore, pre-stack seismic data
interpolation has become an essential step in the seismic data preprocessing stage.

The widely used category of seismic data reconstruction methods is based on sparse
transform techniques. These methods transform data into a sparse domain and perform
data reconstruction through constrained conditions. Some commonly used sparse trans-
forms include the Fourier transform [3], non-uniform Fourier transform [4], Radon trans-
form [5–8], Curvelet transform [9,10] and Seislet transform [11–13]. Among them, RT-based
reconstruction approaches are very popular as they have two main advantages. Firstly,
basis functions of Radon transform resemble the seismic data, and the interpolator based on
Radon transform recover the data effectively, especially for the pre-stack seismic gather [14].
Secondly, when combined with sparse constraint inversion and advanced anisotropic inver-
sion algorithms, interpolation based on Radon transform can maintain high fidelity while
recovering data [6].

The traditional hyperbolic Radon transform, which traces the reflection events on
common midpoint gathers, is based on the Dix formula [15]. However, the hyperbolic
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events from Dix formula are zero-offset data, and this method fails when the hyperbolic
events have apexes located at nonzero offset positions, leading to suboptimal results in the
processing of seismic data, especially in the presence of diffractions. Trad [16] introduced
the Apex Shifted Hyperbolic Radon Transform (ASHRT) as a method for seismic data
reconstruction. ASHRT extends the traditional hyperbolic Radon transform by scanning
the horizontal positions of the hyperbolic apex. The mathematical description of this
operator is similar to the kinematic post-stack time migration equation, with the horizontal
coordinates being offset rather than midpoint. ASHRT has found applications in various
areas, including deblending [17], micro-seismic data denoising [18], the separation of
diffractions and reflections [19,20], and attenuation of multiples [21,22].

The computation efficiency of ASHRT in the t− x domain is typically low because it
involves scanning seismic data based on three parameters (zero-offset time, apex location,
and velocity), leading to the computational matrix for ASHRT is much larger compared to
traditional hyperbolic Radon transforms. To improve the efficiency of ASHRT, Trad [16]
proposed the use of the Stolt post-stack time migration operator in place of the time
domain integration operator in ASHRT. This change accelerates the ASHRT process and
has applications in deblending [23] and interpolation [24,25], and so on. Additionally, by
stretching the time axis of the data [25], it is possible to mitigate the limitation of constant
velocity in the Stolt operator. The essence of this method involves converting time segments
into approximately constant velocity segments and then applying the constant velocity
Stolt algorithm for migration.

This article introduces a novel ASHRT algorithm in which we incorporate phase shift
phase interpolation (PSPI) imaging and modeling operators in the f − kx domain to replace
traditional forward and inverse transform operators. In contrast to the limitations imposed
by the traditional Stolt-stretch operator concerning medium velocity, the PSPI operator
exhibits superior adaptability to velocity variations. It provides exceptional precision in
accommodating vertical velocity changes and also demonstrates a reasonable degree of
adaptability to lateral velocity variations. These attributes enhance the accuracy of ASHRT
convergence and improve the quality of interpolated reconstructed seismic data. We have
applied this algorithm to the interpolation of seismic data, and the results of this application
confirm the effectiveness and practicality of the method.

2. Methods
2.1. Stolt-Stretch-Based Apex Shifted Hyperbolic Radon Transform

Compared with the traditional hyperbolic Radon transform, ASHRT does not assume
that the apexes of all events are located in the same spatial coordinates. The ASHRT model
can be estimated using the adjoint operation as follows:

m(q, τ, xa) = ∑x d(x, t =
√

τ2 + q2
(

x− xa)
2

)
(1)

where m(q, τ, xa) is the estimated Radon domain model, d(x, t) is the original seismic data;
xa is the offset at the apex of the hyperbolic; x is offset; q is hyperbolic curvature; τ is
intercept time, and t is travel time. Its inverse transformation can be defined as follows:

d(x, t) = ∑xa ∑v m

(
q, τ =

√
t2 − q2

(
x− xa)

2 , xa

)
(2)

These transformations can be written as operator formats as follows:

d = Lm (3)

m = LTd (4)
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where d is time-offset domain seismic data, m is Radon domain model, L is forward
operator, and LT is adjoint operator.

ASHRT can be implemented by using Stolt-stretch imaging and modeling operators
instead of the adjoint and forward operators, at which point the corresponding forward
and adjoint ASHRT operators are represented as [26]:

L = SFFT−1
kx ,ωMkx ,ωτ

FFTx,tST (5)

LT = SFFT−1
kx ,ωτ

MT
kx ,ωFFTx,tST (6)

where S is the Stolt-stretch operator to stretch the time axis before Stolt migration and ST is
the Stolt-squeeze operator to squeeze the time axis after Stolt migration. FFT and FFT−1

are the 2D Fourier transform operators. M and MT are the spectrum-mapping operators
related to the dispersion relation. ωτ is the Fourier dual of τ, and ωτ and ω satisfy the
dispersion relationship [27]:

ωτ = ±
√

ω2 − (vkx)
2 (7)

2.2. PSPI Operator

The PSPI [28] migration method is developed based on the phase-shift migration [29].
The fundamental principle of phase-shift migration involves depth-based wavefield extrap-
olation using the principles of explosive reflection [30]. The corresponding extrapolation
formula is as follows:

p(k x, z + ∆z, ω)= p(k x, z, ω)exp[−ikz∆z] (8)

The above equation represents the extrapolation formula for the upgoing wave, and
there is also an extrapolation formula for the down going wave:

p(k x, z + ∆z, ω)= p(k x, z, ω)exp[ikz∆z] (9)

kz is determined by the dispersion relationship:

kz = ±
√

ω2

v2 − k2
x (10)

Due to the similarity between the explosive reflection surface model and zero-offset
seismic records, we can set the extrapolation step as ∆z = v∆τ, which transforms the depth
domain extrapolation formulas for the upgoing and down going waves into time domain
extrapolation formulas:

p(k x, τ + ∆τ, ω)= p(k x, τ, ω)exp[−iωτ∆τ] (11)

p(k x, τ + ∆τ, ω)= p(k x, τ, ω)exp[iωτ∆τ] (12)

where ωτ is the Fourier dual of the apex time, τ, θT = −iωτ∆τ represents the phase shift
imaging operator for the upgoing wave, and θ = iωτ∆τ corresponds to the modeling
operator for the down going wave.

The primary idea behind the PSPI operator is to use two or more reference velocities for
downward extrapolation, which allows the computation of multiple reference wavefields
p1(x, z, ω), p2(x, z, ω), . . ., pn(x, z, ω). Subsequently, based on the relationship between
the actual migration velocity v(x, t) and the reference velocities, the actual wavefield
p(x, z, ω) is computed using interpolation methods. The PSPI method’s interpolation of the
wavefield is well-suited for models with relatively simple velocity variations and involves
moderate computational demands. However, for complex models, the computational load
significantly increases compared to phase-shift migration, and the precision of interpolation
can diminish when dealing with overly complex velocity fields. In this paper, only two
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reference wavefields are utilized for interpolation, and a Lagrange interpolation method is
employed to calculate the actual wavefield. The interpolation formula is as follows:

p =
v2 − v(x, t)

v2 − v1
p1 +

v(x, t)− v1

v2 − v1
p2 (13)

2.3. PSPI-Based Apex-Shifted Hyperbolic Radon Transform

Due to the mathematical similarity between the ASHRT operator’s description and
the kinematic post-stack time migration equation, we introduce time-domain PSPI imaging
and modeling operators to implement ASHRT. In this context, the imaging operator, which
folds hyperbolic events to their vertices, is equivalent to the LT operator in the top-shifted
hyperbolic Radon transform. Similarly, the modeling operator, which transforms the Radon
domain model back to t− x domain data, is equivalent to the L operator in the apex-shifted
hyperbolic Radon transform. They are defined as follows:

LT = FFT−1
kx

AIθTFFTx,t (14)

L = FFT−1
kx ,ωIθATFFTx (15)

where FFT−1
kx

is the 1D Fourier inverse transform along, kx direction and FFTx is the 1D
Fourier transform along the x direction; A is the summation operator and AT is the inverse
operator of A; θ and θT are the extension operators for phase-shift modeling and imaging;
I is the Lagrangian interpolation operator; FFTx,t is the 2D Fourier transform and FFT−1

kx ,ω
is the 2D Fourier inverse transform.

The flow of ASHRT implementation based on the PSPI operator is shown in Figures 1 and 2.
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2.4. Sparsity Promotion of Apex-Shifted Hyperbolic Radon Transform

In the process of solving Radon transform, for the solution of d = Lm (the data in
time-offset domain are solved according to Radon domain data), the obtained d is often ill-
posed, and the obtained d does not satisfy the existence, uniqueness, and stability. To solve
these problems, it is often necessary to determine a unique and stable solution with some
prior information given in a fixed or random form. This method is known as regularization,
and the corresponding approach to constructing the objective function is as follows:

Firstly, define an objective function:

J = ∥d− Lm∥p
p (16)

The regularization process involves adding a regularization term to this objective
function. For the equation d = Lm, the objective function can be constructed:

J = ∥d− Lm∥p
p + λ∥m∥q

q (17)

where J is the defined objective function. λ is a balancing parameter for the tradeoff between
data mismatch and regularization terms. As λ increases, the Radon coefficients become
sparser. However, when λ reaches a certain threshold, the regularization term becomes
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dominant, reducing the constraint on the error in the objective function. If λ is excessively
large, the Radon coefficients may become overly sparse, leading to the loss of important
information after transformation. Therefore, choosing an appropriate λ value is crucial
to balance the sparsity of the model and the fidelity of data recovery. The variables p
and q represent different norms used to measure vector sparsity. When different values
of p and q are chosen, the solutions for Radon coefficients will also differ. A common
approach is to use the l2 norm (p = 2) for the mismatch term and the l1 norm (q = 1) for
data regularization.

To address this mixed l1− l2 optimization problem, various sparse constraint inversion
algorithms are often introduced. The Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [31] is an improved iteration process for faster convergence, higher computational
efficiency, and more accurate results. The iterative process is as follows:

To begin, initialize t1 = 1 and Y1 = m0, where m0 is typically the Radon domain
coefficients obtained directly from the original data’s Radon transform or the solution from
the least-squares Radon transform.

mk+1 = soft
{

Yk +
LT(d− LYk)

α
,
λ

2α

}
(18)

tk+1 =
1 +

√
1 + 4t2

k

2
(19)

Yk+1 = mk+1 +

(
tk − 1
tk+1

)
(mk+1 −mk) (20)

where k represents the current iteration number, soft is the soft-thresholding operator, λ is
the regularization coefficient, and α is a control parameter known as the Lipschitz constant,
where α ≥ maxeig

(
LTL

)
. By selecting the appropriate values for λ and α, you can ensure

that the iteratively obtained solution maintains high fidelity and signal-to-noise ratio. The
pseudocode for this algorithm (Algorithm 1) is as follows:

Algorithm 1: The pseudocode for FISTA: Fast iterative shrinkage threshold algorithm (FISTA)

1) Input: The Solution of Least Squares Radon Transform m0, regularization parameter λ,
Lipschitz constant α, Number of iterations Niter
2) Initialization: t1 = 1, Y1 = m0
3) k← 2
4) Main cycle:

5) mk+1 = soft
{

Yk +
LT(d−LYk)

α , λ
2α

}
6) tk+1 =

1+
√

1+4t2
k

2
7) Yk+1 = mk+1 +

(
tk−1
tk+1

)
(mk+1 −mk)

8) k← k + 1
9) Until k = Niter
10) Output: Radon coefficients for sparse constrained inversion

3. Results
3.1. Synthetic Example

We evaluated the proposed ASHRT algorithm using synthetic data. The synthetic data
consists of four reflection events and two diffraction events. The reflection interfaces include
two horizontal interfaces and two inclined interfaces. The final synthetic data is shown in
Figure 3a, with a sampling interval of 0.008 s and receiver spacing of 10 m. The input to the
interpolation algorithm is obtained by keeping one in every two traces of the initial data
as shown in Figure 3b. Figure 3c,d show the f − kx spectra corresponding to Figure 3a,b,
respectively. We applied ASHRT based on the Stolt-stretch operator and the PSPI operator
for interpolation of the decimated gather. The results are presented in Figure 4, where
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Figure 4a shows the interpolation result based on the Stolt-stretch operator, Figure 4c
shows the corresponding interpolation error, Figure 4b shows the interpolation result
based on the PSPI operator, and Figure 4d shows the corresponding interpolation error.
In addition, Figure 4e–h are the f − kx spectra corresponding to Figure 4a–d, respectively.
It can be observed that the interpolation result based on the PSPI operator outperforms
the interpolation result based on the Stolt-stretch operator. Additionally, we analyzed
the amplitude spectra of the 50th and 190th traces of the data, as shown in Figure 5. The
interpolation based on the PSPI operator has a better fit with the original data compared
to the interpolation based on the Stolt-stretch operator. Figure 6 displays the objective
function curves for both ASHRT methods. The PSPI operator exhibits better convergence
compared to the Stolt-stretch operator.
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Figure 3. Simple synthetic data example: (a) original gather. (b) decimated gather, and (c,d) are the
f − kx spectra of (a,b), respectively.

We quantitatively analyzed the interpolation results of the two interpolation algo-
rithms, and calculated the peak signal-to-noise ratio (PSNR), the signal-to-noise ratio
(SNR), and the mean square error (MSE) of the two interpolation methods to evaluate the
interpolation quality of this synthetic data, and the results are shown in Table 1:

Table 1. Simple model example.

PSNR/db SNR/db MES

Stolt-stretch-based ASHRT 48.70 13.79 1.35 × 10−5

PSPI-based ASHRT 53.27 22.90 4.71 × 10−6

Comparing the three indexes in Table 1, it can be seen that the interpolation results
of the ASHRT interpolation method based on PSPI algorithm for synthetic data are better
than those of ASHRT interpolation method based on Stolt-stretch algorithm.
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Figure 4. Interpolation results for simple synthetic data: (a) ASHRT interpolation based on the
Stolt-stretch operator, (b) ASHRT interpolation based on the PSPI operator, (c) Interpolation error
for ASHRT based on the Stolt-stretch operator, (d) Interpolation error for ASHRT based on the PSPI
operator, and (e–h) are the f − kx spectra of (a–d), respectively.
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Figure 5. Amplitude spectra interpolation results for the simple synthetic data: (a) Amplitude
spectrum for the 50th trace of the original data (black curve), amplitude spectrum interpolated by
Stolt-stretch-based ASHRT (red curve), amplitude spectrum interpolated by PSPI-based ASHRT (blue
curve). (b) Amplitude spectrum for the 190th trace of the original data (black curve), amplitude
spectrum interpolated by Stolt-stretch-based ASHRT (red curve), amplitude spectrum interpolated
by PSPI-based ASHRT (blue curve).
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3.2. Field Example

We also tested the interpolation algorithm on the marine data acquisition shown in
Figure 7a. The data used an airgun source, which was carried on board along with the
towline survey line used for data acquisition, and the geophone was a common piezoelectric
geophone. The test data consisted of 200 channels of data with a data sampling interval of
8 ms and a receiver spacing of 12.5 m. The inputs to the interpolation algorithm are realized
by retaining four traces out of every five initial data, as shown in Figure 7b. This ended
up leaving 40 traces of data missing from the data. Figure 7c,d depicts the f − kx spectra
for Figure 7a,b, respectively. Figure 8 shows the decimated ways for the data of Figure 7b,
with the corresponding decimated traces shown as red lines in the figure. We applied the
ASHRT based on the Stolt-stretch operator and the ASHRT based on the PSPI operator for
interpolation, and the results are presented in Figure 9. It is evident that the interpolation
results using the PSPI operator outperform those using the Stolt-stretch operator. Figure 10
shows the convergence curves of the inversion process, indicating that the PSPI operator
achieves better convergence compared to the Stolt-stretch operator.
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Figure 9. Interpolation results for filed data: (a) ASHRT interpolation based on the Stolt-stretch
operator, (b) ASHRT interpolation based on the PSPI operator, (c) Interpolation error for ASHRT
based on the Stolt-stretch operator, (d) Interpolation error for ASHRT based on the PSPI operator,
and (e–h) are the f − kx spectra of (a–d), respectively.
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Similarly, for the field data, we quantitatively analyzed the interpolation results of
the two interpolation algorithms and calculated the peak signal-to-noise ratio, signal-to-
noise ratio, and mean square deviation of the two interpolation methods to evaluate the
interpolation quality of this field data, and the results are shown in Table 2.

Table 2. Filed data example.

PSNR/db SNR/db MES

Stolt-stretch-based ASHRT 20.66 6.56 0.0086
PSPI-based ASHRT 22.13 8.00 0.0061

Comparing the three indexes in Table 2, it can be seen that the interpolation results of
the ASHRT interpolation method based on the PSPI operator are better than those of the
ASHRT interpolation method based on the Stolt-stretch operator for the field data.

4. Conclusions

Pre-stack seismic data reconstruction is crucial in seismic data processing, and ASHRT
is a highly effective reconstruction algorithm. Traditional ASHRT based on the Stolt-stretch
operator has limitations in adapting to changes in medium velocity, resulting in some loss
in the recovery of effective signals. This paper introduces a new ASHRT that considers the
adaptability of the transformation operator to changes in medium velocity, aiming to better
reconstruct seismic data.

The new ASHRT is implemented using the PSPI imaging and modeling operator. The
advantage of the new operator is that it adapts to the case of transverse velocity variations in
the medium, showing better results in the case of transverse variable velocity modeling and
improving the signal-to-noise ratio of the reconstructed data. The results of related cases
and actual data processing show that the proposed method is an effective interpolation
technique. It recovers the attenuated data well and retains the effective signal. However,
the method proposed in this paper also has certain limitations, which will have a greater
impact when performing data reconstruction if the underground medium is more complex
and the lateral velocity changes drastically.
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