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Abstract: Gravity inversion can be used to obtain the spatial structure and physical properties
of subsurface anomalies through gravity observation data. With the continuous development of
machine learning, geophysical inversion methods based on deep learning have achieved good results.
Geophysical inversion methods based on deep learning often employ large-scale data sets to obtain
inversion networks with strong generalization. They are widely used but face a problem of lacking
information constraints. Therefore, a self-constrained network is proposed to optimize the inversion
results, composed of two networks with similar structures but different functions. At the same time,
a fine-tuning strategy is also introduced. On the basis of data-driven deep learning, we further
optimized the results by controlling the self-constrained network and optimizing fine-tuning strategy.
The results of model testing show that the method proposed in this study can effectively improve
inversion precision and obtain more reliable and accurate inversion results. Finally, the method is
applied to the field data of Gonghe Basin, Qinghai Province, and the 3D inversion results are used to
effectively delineate the geothermal storage area.

Keywords: self-constrained network; deep learning; gravity; inversion

1. Introduction

The main purpose of exploring gravity data interpretation is to realize the quantitative
inversion of field source parameters. Gravity inversion is the process of obtaining the
physical properties and spatial structures of subsurface anomalous bodies using gravity
observation data, which is an important aspect of gravity data interpretation. In traditional
gravity inversion, the subsurface space is evenly divided into several prisms, each with
specific physical property parameters. Then, a suitable objective function is established
to make the inversion results fit the actual situation as closely as possible. Existing 3D
inversion methods can be categorized into linear and nonlinear inversion methods. Both of
these approaches are widely used in the inversion of gravity data. Linear inversion methods
use optimization techniques to minimize the objective function and can quickly estimate
the underground density distribution in gravity inversion [1]. Li and Oldenburg proposed
two linear methods based on the objective function for inverting gravity anomalies to
recover the 3D distribution of density contrast [2]. These methods, while relatively fast, are
sensitive to initial guesses and their performance is limited. Nonlinear methods reduce
the dependence on the initial model, including ant colony algorithms, genetic algorithms,
particle swarm optimization algorithms, neural network methods, etc. [3–10]. Among the
nonlinear methods, neural networks show good performance.

In recent years, machine learning has seen rapid development and advancement.
As an emerging and important branch of machine learning, deep learning has demon-
strated excellent performance in the recognition and classification of speech and image
processing, especially in inverse problems such as model reconstruction [11–13]. With the
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continuous progress of deep learning methods, geophysical data processing and inversion
methods based on deep learning have also seen robust development and achieved good
results [14,15]. One of the aims of geophysical inversion methods is to obtain the mapping
relationships between geologic models and gravity anomalies. Geophysical inversion based
on deep learning achieves the above purpose through neural networks with geological
model labels. Zhang et al. proposed a 3D gravity inversion method based on encoder–
decoder neural networks. Constructing a highly random data set for hyperparameter
experiments improved the network’s accuracy and generalizability.Numerical examples
showed that the accuracy of the network can reach 97% [16]. Huang et al. used a new grav-
ity inversion method based on a supervised full, deep convolutional neural network [17].
They generated subsurface density model distribution from the gravity data and used many
data sets to train the network and derive good model inversion outcomes, but the forward
fitting of the inversion results was inaccurate. Wang et al. developed a new 3D gravity
inversion technique based on 3D U-Net ++, in which the input and output of the network
are 3D, and the depth resolution is low [18]. Hu et al. successfully recovered the physical
property distribution of magnetic ore bodies using deep learning inversion methods [19].
This approach was data-driven and did not include prior knowledge. Zhang et al. con-
structed a new neural network (DecNet) for deep learning inversion [20]. This method can
learn boundary positions, vertical centers, thickness and density distributions, and other
attributes through 2D-to-2D mapping and use these parameters to reconstruct a 3D model.
Yang et al. suggested a gravity inversion method utilizing convolutional neural networks
(CNNs), where the trained algorithm can quickly determine the subsurface density distri-
bution, but its training model was too simple and lacked practical data applications [21].
However, current deep learning methods tend to be data-driven, using large-scale data
training sets to produce inversion networks with strong generality. The advantage of
these methods is that they can obtain reasonable inversion results when the data set is rich
enough. However, the disadvantage of these methods is also apparent: they depend on
the complexity and richness of the data set. In fact, the amount of geophysical field data
is generally small, and the corresponding label—the corresponding underground density
model—is missing. Generally, the data set used for training is built by generating a density
model and then calculating the forward data. Because of the computational cost, the data
set cannot be infinite, and the actual geological condition is very complicated, so there are
great differences between the model and the actual situation. Therefore, the effect of this
method is sometimes not ideal in practical applications and lacks high accuracy.

To achieve efficient and accurate geophysical inversion, Sagar Singh et al. proposed a
new unsupervised deep learning method, which is divided into two phases [22]. The first
phase uses the generalization power of convolutional neural networks (CNNs) to generate
an estimate of acoustic impedance (AI) while also adding a Bayesian layer to measure
the model’s errors and improve its interpretability. The second stage combines physical
information to generate synthetic data from subsurface AI distributions. This method not
only achieves uncertainty mapping but also eliminates the need to use labeled data for
training. A new network structure, called SG-Unet, was proposed by Yuqi Su et al. [23].
The authors added the adjacent traces of each trace into the network for training to improve
the lateral continuity of the network prediction results. In addition, geophysical constraints
were added to the network to improve the accuracy and stability of the prediction results.
In practical applications, the transfer learning strategy was also introduced. Jian Zhang
et al. proposed a new inversion network structure for seismic inversion with initial model
constraints [24]. After pretraining the network, the transfer learning strategy was intro-
duced with the aim of fine-tuning the network by using the labeled data in the real survey.
Yuqing Wang et al. proposed a new seismic impedance inversion method [25]. This method
is based on deep learning and introduces physical constraints in the inversion process. The
prediction results indicated that the method could significantly improve the prediction
accuracy. In recent years, a number of studies have used neural networks instead of a
forwarding operator, which greatly speeds up the forwarding process [26–29].
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In this study, a deep learning gravity inversion method based on a self-constrained
network is proposed. This method constructs a new self-constrained network composed of
two networks with similar structures but different functions. The two network modules
perform 2D-to-3D and 3D-to-2D mapping, respectively. Therefore, unlike previous 2D-
to-3D inversion methods, the proposed method utilizes 2D-to-2D mapping. At the same
time, a fine-tuning strategy is introduced in the inversion process. When the gravity data
are input into the self-constrained network, the output is the gravity data of the predicted
inversion result, and the predicted 3D inversion results are the output in the intermediate
process. Because of the control of the self-constrained network and the optimization of the
fine-tuning strategy, this network can obtain more reliable and accurate inversion results.

2. Method
2.1. Deep Learning Inversion Theory

In this study, a U-Net network structure was used for deep learning, and a gravity
forward modeling sample set was established for network training. As shown in Figure 1,
the U-Net network is a typical full convolutional network (FCN), similar in shape to the
letter “U”. The network is made up of two parts: one is the feature extraction layer on
the left, also called the encoder, and the other is the upsampling process on the right, also
called the decoder.
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Figure 1. Network structure.

The left side of the network, the encoder, is a series of downsampling processes con-
sisting of convolution and pooling. The whole consists of four submodules, each containing
two convolutional layers, and each submodule is downsampled by a convolutional opera-
tion with a convolutional kernel of 2 × 2 and a step size of two. Also, a dropout layer is
added to prevent overfitting.

The decoder is symmetrical to the encoder and also consists of four modules. It
gradually learns features via upsampling until the output resolution matches the resolution
of the input image. Meanwhile, a jump connection is used between the left and right
parts to connect the upsampling result with the output of the submodule with the same
resolution in the encoder, which is then used as the input of the next submodule in the
decoder in order to obtain more accurate information and achieve better results.

The network uses batch learning; the batch size is 32, and the convolutional layers of
the network are connected through the ELU activation function to increase the nonlinearity
of the neural network and improve the ability of network learning and fitting. The optimizer
selects Adam. Finally, the Tanh activation function is used to predict each pixel in the
channel and generate the predicted subsurface density model. The above steps achieve the
mapping of gravity data to the 3D prediction model via 2D-to-3D mapping. By modifying
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the number of input and output channels and the activation function, we can obtain a new
network that can realize 3D-to-2D mapping.

Fine-tuning has become a common technique for using deep learning networks. When
using deep networks for image processing tasks, using a model pretrained on a large data
set to fine-tune its own data can often achieve better results than directly training on its own
data because the model parameters pretrained on a large data set are in a better position
from the beginning of the fine-tuning process and the fine-tuning can speed up the network
convergence. When using large data sets for training, pretrained models have the ability to
extract shallow basic features and deep abstract features. Without fine-tuning, training must
begin from scratch, which requires a lot of data, computing time, and computing resources.
In addition, risks such as model nonconvergence, insufficient parameter optimization, low
accuracy, low generalization ability, and easy overfitting are present. Using fine-tuning can
effectively avoid the above problems.

The process of fine-tuning involves initializing the built network with the trained
parameters (obtained from the trained model) and then training with the data, adjusting
the parameters in the same way as in the training process. For the initialization process, the
constructed network is the target network, and the network corresponding to the trained
model is the source network. The layer of the target network to be initialized should be the
same as that of the source network (the name, type, and setting parameters of the layer are
the same).

2.2. Self-Constrained Network

The data processing procedure used in this study is shown in Figure 2. The whole
process is divided into two steps. The first step is to obtain two networks with good
enough generalization using the data-driven deep learning method and realize 2D-to-3D
and 3D-to-2D mapping. These two networks are called Inv_Net and Forw_Net. The second
step is to build a new self-constrained network and introduce fine-tuning strategies based
on data-driven deep learning so as to improve and optimize the prediction results obtained
in the previous step, making them more reliable and accurate.
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In the first step, we constructed a large number of random data sets to train the
network in order to achieve strong generalization. When training Inv_Net, the input was
2D data, and the output was a 3D density model. In contrast, Forw_Net was trained with a
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3D density model as the input and 2D gravity data as the output. The loss function of the
two networks is defined as:

Loss_inv= ∥m̂1 − m∥2
L2 (1)

Loss_forw=
∥∥∥d̂1 − d

∥∥∥2

L2
(2)

where m̂1 and m represent the predicted models I and real models, and d̂1 and d represent
the predicted data I and true gravity data, respectively.

For traditional geophysical forward modeling, which typically divides the entire
subsurface into N equally sized cubes, each with defined physical properties, the forward
modeling of gravity anomalies can be expressed as:

d = Sm (3)

where d represents the observed gravity anomaly data vector, m represents the residual
density value vector of the model, and S represents the forward operator.

Because of their powerful nonlinear mapping capabilities, deep neural networks can
represent any complex function. Therefore, once the mapping relationship of the neural
network has been determined, it can be used to perform fast mapping to move from
one thing to its corresponding other thing. In this paper, a U-Net network was used to
approximate the forward modeling process and map the 3D gravity density model to the
2D gravity data, which can be expressed as:

d = F(m, θ) (4)

where d represents the predicted gravity data, m represents the density model, F represents
the forward network, and θ represents the parameters that the forward network needs
to learn.

Forw_Net implements the above process of mapping a 3D density model to the 2D
gravity data. By building large random data sets for training, Forw_Net can achieve high
accuracy and be much faster.

The second step is the establishment of a self-constrained network and the introduc-
tion of the fine-tuning strategy. The process of fine-tuning involves initializing the built
network with trained parameters (obtained from the trained model) and then training
with the data, adjusting the parameters in the same way as in the training process. For the
initialization process, the constructed network can be called the target network, and the
network corresponding to the trained model is the source network. The layer of the target
network to be initialized should be the same as that of the source network (the name, type,
and setting parameters of the layer are the same).

In this study, the second step connected the same two networks as in the first step and
initialized them. Therefore, the networks in the first step were the source networks, while
the network in the second step was the target network. The input of the self-constrained
network was 2D gravity data, and the output was also 2D gravity data, but the 3D density
model can be output in the intermediate process. The network model parameters trained
in the first step were loaded into the self-constrained network, and then the network was
trained. Because the pretrained model has a strong enough generalization, that is, it has
learned enough features, instead of retraining the entire network, certain layers can be
fine-tuned. The specific approach was used to freeze the feature extraction portion and
fine-tune the remaining layers using a lower learning rate. The target data of the second
step were the unlabeled data, that is, the actual measured data. In order to obtain the
labels required for supervised learning, the first step is to obtain a basic predicted model
through the inversion network and fine-tune and improve on this basis. In this case, the
loss function was defined as:

L= Loss_m + Loss_d = ∥m̂2 − m̂1∥2
L2 +

∥∥∥d̂2 − d
∥∥∥2

L2
(5)
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where, m̂2 and m̂1 represent the predicted model II and predicted model I, respectively, and
d̂2 and d represent the predicted data II and true gravity data, respectively. The second
fine-tuning process involves the improvement and optimization of the generalization
inversion results, so only a small amount of data is required. Meanwhile, the forward data
fitting constraint was added so that the fine-tuning results were not only optimized in the
inversion results but also had better forward fitting. The second step was the improvement
and optimization of the results of the generalization inversion, so only a small amount
of data was required. At the same time, a self-constrained control was added so that the
fine-tuning results were not only optimized on the inversion results but also had better
forward-fitting accuracy.

3. Model Testing
3.1. Data Set

In this study, the label was synthesized first, and then the corresponding input data
were derived; that is, the density model was generated first, and then the synthetic data
were calculated. In order to ensure the feasibility and effectiveness of deep learning inver-
sion methods, the data set needs to be sufficiently complex. Therefore, we used random
walks to generate a large number of relatively regular and diversified density models.

The subsurface research area was evenly divided into 32 × 32 × 16 = 16,384 cubes
with a side length of 1 km, and then the subsurface density model was generated using
a random walking method; that is, one or two starting points were randomly set in the
space, and then they moved a certain number of steps in a random direction. When the
actual model was established, the residual density of the gravity source was 1 g/cm3, and
the background was 0 g/cm3. The density model was then generated in a 32 × 32 × 16 km
subsurface area. In the subsurface area, one or two starting points were randomly set, and
each starting point was composed of 8 cubes (2 × 2 × 2 km). The starting point randomly
moved one step (2 km) in one direction (up, down, left, right, back, or forth), and the
total number of steps of each starting point was 60–80, leading to a random model being
generated in the space. Figure 3 shows some of the random models generated by this
method, including models with one and two starting points.
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For an observation point (x, y, z) on the ground, the gravity anomaly generated by
each prism can be expressed as [30]:

g = −γρj

2

∑
p=1

2

∑
q=1

2

∑
s=1

µpqs ×
[

apln
(
bq + rpqs

)
+ bqln

(
ap + rpqs

)
− csarctan

(
apbq

csrpqs

)]
(6)

where µpqs = (−1)pqs, rpqs =
√

a2
p + b2

q + c2
s ,p, q, s = 1, 2. ap = x − ξp, bq = y − ηq,

cs = z − ζs ,(ξp, ηq, ζs) is the coordinate of the prism. γ represents the universal gravitation
constant, ρj represents the residual density of the jth small prism, and rpqs represents the
distance from the corner of the small prism to the observation point.

The gravity anomaly at the observation point can be expressed as the combined action
of all underground prisms as follows:

g = ∑N
j=1 Gjρj (7)

where Gj represents the kernel matrix of the jth small prism for the observation point.
According to the above formula, the gravity data corresponding to each model can be
calculated, and then the data set can be built.

The 30,000 data sets generated by the random walk method served as the training set
and the verification set, while the test set consisted of a series of regular models containing
1000 data sets. The model’s physical properties of the training set, the verification set, and
the test set were the same, and the ratio was 22:8:1. The 3D density model and its gravity
data were used as data sets to train the two networks in the first step until a network model
with strong generalization and high accuracy was obtained. The model parameters were
then loaded into the network in step 2 for fine-tuning.

3.2. Model Testing

In order to prove the effectiveness of the proposed method and its advantages over
data-driven deep learning methods, a series of models was used for testing, and the spatial
position information of the models is shown in Table 1.

Table 1. The range of the models in the X, Y, and Z directions.

Model X/km Y/km Z/km

Model I 17–25 15–21 2–10
Model II 8–12; 18–22 16–24 3–9;5–11
Model III 15–21 2–22 5–13
Model IV 6–22; 10–26 10–14; 22–26 2–8

3.2.1. Model I

The model I was a single prism with a length of 8 km, a width of 6 km, and a height of
6 km, as shown in Figure 4a. Figure 4b shows the inversion results output by the fine-tuned
inversion network, and the black solid line is the boundary of the real model. Figure 4c
shows the inversion results of the data-driven deep learning method. It can be seen from
the results that, compared with Figure 4c, the fine-tuned inversion network obtained a more
focused 3D distribution of physical properties in the recovery of the physical parameters of
the target body and the delineation of 3D spatial positions. Figure 4d–f show the gravity
anomaly data corresponding to (a), (b), and (c), respectively. The results show that the
degree of the network fitting to the observed data was improved because of the addition of
self-constraint, and the fine-tuned inversion result obtained better data fitting accuracy.
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3.2.2. Model II

In order to test the effect of the inversion method on adjacent superimposed objects,
model II was designed, as shown in Figure 5a. Model II consisted of two identical prisms
with a length, width, and height of 8, 4, and 6 km, respectively, with a difference of 2 km in
depth and 6 km in the Y direction. Figure 6b is the inversion output result of the fine-tuned
inversion network, and the black solid line is the boundary of the real model. Figure 5c
shows the inversion results of the data-driven deep learning method. It can be seen that
the method can reverse the spatial position of the prisms but showed poor recovery of
density values and fitting of boundary positions. However, the fine-tuned inversion results
clearly reversed the 3D space positions of the two adjacent superimposed prisms, indicating
that the proposed method has higher precision and resolution in the inversion of adjacent
superimposed anomalous bodies. In forward data fitting, the fitting degree of the fine-
tuned inversion results is much better because of the addition of the self-constraint, which
makes the results obtained by the fine-tuned method more consistent with the forward
theory of the gravity field.

3.2.3. Model III

As shown in Figure 6a, model III was composed of four small prisms with a length,
width, and height of 8, 4, and 2 km, respectively, with a total length of 20 km. Figure 6b
shows the fine-tuned inversion results, and the black solid line is the boundary of the real
model. Figure 6c shows the inversion results for the data-driven deep learning method. It
can be seen that the fine-tuned inversion results obtained the model’s incline information,
that the boundary delineation was closer to the true boundary, and that the boundary
fitting accuracy was higher at the top and bottom of the target. In the recovery of physical
property parameters, the inversion density value of the fine-tuned inversion results was
obviously closer to the real density. The inversion results for the data-driven deep learning
method were clearly inferior to the fine-tuned results. In the fitting of forward data, the
fitting precision of the fine-tuned inversion results was obviously higher. This shows that
the fine-tuning method can effectively invert the subsurface-inclined anomaly, which not
only has a good effect on model reconstruction but also leads to excellent performance in
forward fitting.
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3.2.4. Model IV

As shown in Figure 7a, model IV was composed of two inclined steps of the same
shape but opposite directions. Each inclined step was composed of three small prisms with
a length, width, and height of 8, 4, and 2 km, respectively, with a total length of 16 km. The
two inclined steps had the same depth, were opposite in the Y direction, and 8 km apart in
the X direction. Figure 7b shows the fine-tuned inversion results, and the black solid line is
the boundary of the real model. Figure 7c shows the inversion results of the data-driven
deep learning method. It can be seen that the fine-tuned inversion results still obtained
the model’s incline information under more complex conditions and are closer to the true
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boundary in the oblique boundary demarcation along the Y direction. Meanwhile, in the
recovery of physical property parameters, the inversion density value of the fine-tuned
inversion results was also significantly closer to the true density. Similarly, the forward
data of the inversion results still had good fitting accuracy.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. (a) Real model; (b) fine-tuned inversion results; (c) inversion results of data-driven deep 
learning method; (d) real anomaly data; (e,f) forward data of (b,c). 

3.2.5. Analytical Metrics 
In order to explain more specifically, the effect of inversion results, the root-mean-

square error (RMSE) was introduced to conduct a quantitative analysis of the error be-
tween the model and the data. The expression is as follows: 

𝐸 = 1𝑛 (𝑚 − 𝑚)  

𝐸 = 1𝑛 𝑑 − 𝑑  

In the formula, 𝑚 and 𝑑 represent the inversion results and their forward data, and 𝑚 and 𝑑 represent the real model and gravity data. 𝐸  and 𝐸  are used to represent the 
model fitting error and data fitting error, respectively. The closer the value is to 0, the 
better the model fitting is and the smaller the data fitting error is. Next, we undertook a 
quantitative analysis of the above four theoretical models, and the results are shown in 
Table 2. 

Table 2. Error analysis of the models. 

Model Data-Driven Deep Learning Self-Constrained Network 
Em Ed Em Ed 

Model Ⅰ  10.2667 98.8648 7.2498 34.1445 
Model Ⅱ  10.3254 90.0130 8.2652 33.6362 
Model Ⅲ  15.3313 71.3274 11.5404 31.2421 
Model Ⅳ  11.3257 54.6194 8.3752 42.3873 

4. Application of Field Data 
Geothermal energy is the third largest renewable energy resource in the world. Dry, 

hot rocks are important geothermal resources, referring to rock bodies with temperatures 

Figure 7. (a) Real model; (b) fine-tuned inversion results; (c) inversion results of data-driven deep
learning method; (d) real anomaly data; (e,f) forward data of (b,c).

3.2.5. Analytical Metrics

In order to explain more specifically, the effect of inversion results, the root-mean-
square error (RMSE) was introduced to conduct a quantitative analysis of the error between
the model and the data. The expression is as follows:

Em =

√
1
n

n
∑

i=1
(m̂ − m)2

Ed =

√
1
n

n
∑

i=1

(
d̂ − d

)2

In the formula, m̂ and d̂ represent the inversion results and their forward data, and m
and d represent the real model and gravity data. Em and Ed are used to represent the model
fitting error and data fitting error, respectively. The closer the value is to 0, the better the
model fitting is and the smaller the data fitting error is. Next, we undertook a quantitative
analysis of the above four theoretical models, and the results are shown in Table 2.

Table 2. Error analysis of the models.

Model
Data-Driven Deep Learning Self-Constrained Network

Em Ed Em Ed

Model I 10.2667 98.8648 7.2498 34.1445
Model II 10.3254 90.0130 8.2652 33.6362
Model III 15.3313 71.3274 11.5404 31.2421
Model IV 11.3257 54.6194 8.3752 42.3873
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4. Application of Field Data

Geothermal energy is the third largest renewable energy resource in the world. Dry,
hot rocks are important geothermal resources, referring to rock bodies with temperatures
higher than 180 ◦C and very low fluid content, whose thermal energy can be utilized by
existing technologies. At present, their reserves are relatively abundant in the world, and it
is generally believed that dry, hot rocks are mainly stored about 3–10 km underground. For
these rocks to be utilized by humans, they need to have several characteristics, such as high
temperature, shallow burial depth, and low development and utilization difficulty and
cost. According to a statistical report released by the Massachusetts Institute of Technology
in 2006, dry, hot rock reserves are extremely abundant in the world, and the energy of dry,
hot rock reserves at a depth of 3–10 km underground is equivalent to nearly 3000 times the
total energy consumption of the United States in 2005 [31].

Gonghe Basin is located in an area with significantly concentrated geothermal activ-
ities and features significant geothermal anomalies, with a high heat flow value of 90 to
300 mW/m2 [32]. The Gonghe Basin is not only rich in hydrothermal geothermal resources
but is also one of the areas with the most potential for the development of hot, dry rock
geothermal resources in China. It has been shown that the average geothermal gradient in
the Republican Basin is more than double the standard geothermal gradient [33].

Gonghe Basin, the third largest basin in Qinghai Province, is about 280 km long and
95 km wide. It covers an area of about 15,000 km2 and has a diamond distribution shape.
As shown in Figure 8, located in the northeast margin of the Qinghai–Tibet Plateau, the
Gonghe Basin is surrounded by several tectonic belts, orogenic belts, and faults. The west
side of the basin is bounded by the Wahongshan strike-slip fault and Qaidam–East Kunlun
fault and is adjacent to the West Qinling block. On the east side, the basin is bounded
by the Duohemao Fault and adjacent to the Bayankela Basin. The southern part of the
basin is bounded by the Anyemakeng suture belt and adjacent to the Songpan–Garze
fold belt, while the northern part of the basin is bounded by the Qinghai Lake Nanshan
Fault and adjacent to the Qilian orogenic belt. It is the most intense deformation area of
the Qinghai–Tibet Plateau since the late Cenozoic [34–36]. Subject to plate collision, the
northeastern part of the Qinghai–Tibetan Plateau is still in the stage of deformation and is
currently undergoing continuous uplift. Because of the existence of ruptures, the geological
structure of the surrounding area has become very complex, structurally heterogeneous,
and unstable, so the Gonghe Basin area has strong tectonic activity [37].
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A complete geothermal system consists of three main components: a cap rock, a heat
reservoir, and a heat source. Gao et al. also analyzed and discussed the three components
of the Gonghe Basin using 3D magnetotelluric imaging [39]. The results show that the
resistivity near the surface is very low, which corresponds well with the deposited material.
The cap rock of a geothermal system is generally a low-permeability layer, which mainly
prevents heat loss. The cap rock in the Gonghe Basin corresponds to Quaternary sediments
with a thickness of 700 to 1600 m. Previous research has focused on the basin’s heat sources,
with two large low-resistivity anomalies at depths of 15 to 35 km being found. Combined
with the relevant data, it can be inferred that this area is composed of a molten body, which
is the heat source of the geothermal system in the Gonghe Basin. The 3D resistivity model
also showed a general low-resistivity anomaly beginning at a depth of 3 km, which was
interpreted as a reservoir of the Gonghe Basin geothermal system.

Hirt et al. obtained the distribution of ultrahigh-resolution gravity anomalies in this
region, showing that this region is associated with low-gravity anomalies [40]. This indi-
cates the presence of low-density rock formations below the study area. As the temperature
rises, the seismic speed and density of the rock decrease [39]. Therefore, the inversion of
gravity data in this area can predict the distribution of underground heat reservoirs.

Figure 9 shows the gravity anomaly data collected in the Gonghe Basin. In or-
der to prove the effectiveness of our method in real situations and detect the distribu-
tion of heat reservoirs, we applied it to the Gonghe Basin region. Using the trained
network model, we processed the gravity data and divided the subsurface space into
32 × 32 × 16 = 16,384 prisms. According to the process, the gravity data were first input
into the inversion network, and the preliminary prediction model was obtained. Then,
the gravity data and preliminary prediction model were input into the self-constrained
network, and 3D inversion results were obtained after prediction. In order to clearly display
the inversion result, four cross sections were selected, as shown in Figure 10b–e. The white
dotted line in Figure 10a is the location of the four profiles, and the black dotted line in
Figure 10b–e is the geothermal reservoir. They clearly show a wide range of negative
density anomalies in the subsurface, with depths ranging from approximately 3 to 10 km.
This is consistent with the results obtained by Gao et al., indicating that the distribution of
heat reservoir is roughly within this range. The results also showed that the subsurface
negative density anomalies are mainly distributed in the east and the west. The scale of
the negative density anomalies is larger in the east, and there are also smaller negative
density anomalies in the west. This indicates that there are also small reserves in the west.
The 3D inversion results were generally effective in mapping geothermal storage areas,
which indicates that the inversion method has a good effect on the actual data processing
and interpretation.
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5. Conclusions

In this paper, a deep learning gravity inversion method based on a self-constrained
network was proposed. On the basis of the data-driven deep learning gravity inversion
method, a new inversion idea was proposed, and a fine-tuning strategy was introduced.
Through the control of the self-constrained network, the inversion results were improved
in the forward data fitting. At the same time, because of the introduction of a fine-tuning
strategy, the inversion results could be optimized and improved. Through model testing,
we verified the effectiveness of this method, and the inversion results showed good perfor-
mance in model fitting and data fitting. Finally, the method was applied to the gravity data
inversion of the Gonghe Basin in Qinghai Province, and reasonable results were obtained.

It is worth noting that the fine-tuning process was based on the pretrained network
model, so the generalization and accuracy of the pretrained model must be guaranteed.
This means that the number and richness of data sets for pretraining needs to be guaranteed.
The method proposed in this paper is not only suitable for gravity inversion but also feasible
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for other geophysical methods. In addition, if there are other prior information constraints,
they can be added to the proposed method.
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