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Abstract: Estuarine reservoirs are critical for freshwater supply and security, especially for regions
facing water scarcity challenges due to climate change and population growth. Conventional methods
for assessing drought severity or monitoring reservoir water level and storage are often limited by
data availability, accessibility and quality. We present an approach for monitoring estuarine reservoir
water levels, storage and extreme drought via satellite remote sensing and waterline detection. Based
on the CoastSat algorithm, Landsat-8 and Sentinel-2 images from 2013 to 2022 were adopted to
extract the waterline of Qingcaosha Reservoir, the largest estuarine reservoir in the world and a key
source of freshwater for Shanghai, China. This study confirmed the accuracy of the satellite-extracted
results through two main methods: (1) calculating the angle of the central shoal slope in the reservoir
using the extracted waterline data and measured water levels and (2) inverting the time series of
water levels for comparison with measured data. The correlation coefficient of the estimated water
level reached ~0.86, and the root mean square error (RMSE) of the estimated shoal slope was ~0.2◦,
indicating that the approach had high accuracy and reliability. We analyzed the temporal and spatial
patterns of waterline changes and identified two dates (21 February 2014 and 15 October 2022) when
the reservoir reached the lowest water levels, coinciding with periods of severe saltwater intrusions in
the estuary. The extreme drought occurrences in the Qingcaosha Reservoir were firstly documented
through the utilization of remote sensing data. The results also indicate a strong resilience of the
Qingcaosha Reservoir and demonstrate that the feasibility and utility of using satellite remote sensing
and waterline detection for estuarine reservoir storage can provide timely and accurate information
for water resource assessment, management and planning.

Keywords: estuarine reservoir; extreme low water level events; waterline extraction; water resource;
saltwater intrusion

1. Introduction

Estuarine reservoirs are particularly important for estuary regions, where large rivers
meet the sea and form complex and productive ecosystems. Estuary regions are often
densely populated and highly developed, as they provide abundant natural resources (e.g.,
water, food and tidal energy) and strategic advantages (e.g., transportation and trade).
However, they are also facing multiple challenges and threats, such as sea level rise [1],
saltwater intrusion [2], flooding [3], drought [4] and pollution [5]. Estuarine reservoirs
can play a vital role in enhancing the resilience and sustainability of estuary regions
by regulating the freshwater–saltwater balance, buffering the impacts of extreme events,
storing and supplying water for various uses, generating renewable energy and maintaining
ecological functions and services [6,7]. Therefore, understanding and managing the water

Remote Sens. 2024, 16, 980. https://doi.org/10.3390/rs16060980 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16060980
https://doi.org/10.3390/rs16060980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8828-9352
https://doi.org/10.3390/rs16060980
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16060980?type=check_update&version=2


Remote Sens. 2024, 16, 980 2 of 20

resources of estuarine reservoirs is crucial for the well-being and prosperity of estuary
regions and their inhabitants.

Typical droughts include meteorological drought, agricultural drought, hydrological
drought and socio-economic drought [8]. This study concentrates on hydrological reservoir
drought, which could be considered as a specific condition characterized by significantly
reduced water levels within a reservoir due to prolonged periods of insufficient freshwater
inflow [9]. Estuarine reservoir storage might be unstable due to continuous saltwater intrusion
occurring during the dry season, when the river discharge is low or the oceanic dynamic
condition is anomalously strong [10–12]. However, saltwater intrusions also occur, even during
flood seasons under the influences of abnormally extreme drought [13,14] and typhoons [15,16].
For instance, 2022 was reported as a year of drought [17], when continuous drought
occurred in the Changjiang River Basin. Figure 1 shows the dramatic decrease in river
discharge in the flood season of 2022. Through comparison with continuous data collected
since 1950, the historical extreme drought event was effectively illustrated. The monitored
river discharge was obtained from Datong Station, which is located approximately 624 km
from the mouth of the Changjiang River and serves as the tidal limit. It plays an important
role in the observation of water changes in the Changjiang River system [18,19]. The river
water level decrease was also visible in the satellite images, and the obvious increase in the
island area is shown in Figure 1c,d. Data of river discharge into the sea are obtained by
Datong station, and its water level serves as important reference data for flood and drought
defense downstream of the Changjiang River [20].
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Figure 1. (a) Monthly mean river discharge variations at Datong station from 1950 to 2022. The red
solid line represents the data for 2022, the black solid line is the monthly mean river discharge from
1950 to 2022 and the gray solid line is the monthly average in each year. The discharge data were
obtained from the Anhui Water Information at http://slt.ah.gov.cn/ (accessed on 10 November 2022).
(b) Daily average river discharge variations at Datong station in 2022. The blue dashed line represents
10,000 m3/s. (c,d) represent the original satellite images of Tianxingzhou in the upper reaches of the
Changjiang River; the solid black line represents the waterline calculated by CoastSat. The satellite
image source was Sentinel-2.
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The statistical results indicate that the water availability of the Changjiang River in
the summer and autumn of 2022 was very low. The river discharge at Datong station
dropped sharply from July to November in 2022, with it reaching its lowest level in the
past 70 years. Furthermore, the daily average river discharge shows a cliff-like decrease
after 24 June, reaching 8982 m3/s on 5 October, with a decrease rate of 84.47%, which is less
than one-third of the daily average river discharge during the same period. In August, the
monthly mean river discharge from 1950 to 2022 was 44,900 m3/s, but on 15 August in 2022,
it was only 20,300 m3/s, which is more than 50% lower than the monthly mean value. In
late September, the daily average river discharge dropped below 10,000 m3/s, which is 70%
lower than the historical average value. In this case, estuarine reservoirs faced a significant
risk of saltwater intrusion and a critical water supply situation. Therefore, monitoring the
changes in relevant indicators of estuarine reservoirs is crucial for effective water resource
management and sustainable development [21]. Due to their unique locations and limited
data availability, monitoring and evaluating the water resources of estuarine reservoirs
have always been challenging tasks.

Compared with estuarine reservoirs, the instability of water storage in river extent,
inland reservoirs and lakes are common and widely studied [22–25]. Satellite remote sens-
ing technology is a novel monitoring method that significantly enhances efficiency [26].
The continuous development of remote sensing technology has also made it applicable
to water resource management and available to a wider user base through technological
innovation [22]. Currently, various approaches to monitoring water bodies involve the
effective utilization of satellite remote sensing at varying resolutions to detect and analyze
them, thus allowing for the acquisition of frequent and consistent spatial data over a large
area, which is crucial for monitoring changes in water resources. The use of different
water indices to distinguish between water and land is important. Optical satellite images
processed by the normalized difference water index (NDWI) are used for mapping urban
surface water extraction and have achieved good accuracy [27]. Modifications have been
made to the near-infrared band used in the NDWI, and the improved modified normalized
difference water index (MNDWI) is more suitable for water extraction in urban areas [28].
In early studies on reservoir monitoring, satellite remote sensing technology was employed
to validate the strong correlation between the MODIS-based data (including water level,
surface area and storage volume) of 34 major reservoirs globally and corresponding ob-
servations. As a result, a comprehensive dataset of reservoir storage at a global scale was
generated [29]. Thereafter, a dataset for 21 reservoirs in the South Asian region from 2000
to 2012 was built using a multi satellite algorithm, and uncertainty analysis was conducted
to improve the accuracy of estimating the water surface area for small reservoirs [30].

Except for optical satellite data, satellite radar altimetry was considered a more straight-
forward way to obtain water surface elevation data, based on which the actual capacity of
the reservoir could be determined in one study [31]. Satellites equipped with radar and
laser altimetry include Jason-1, Jason-2, ENVISAT, GFO, Topex/Poseidon and ICESat-2,
with a precision of up to 5 cm, which assists in accurately assessing the water storage
situation and available capacity of the reservoir [32–36]. However, small reservoirs or lakes
(with small surface areas, narrow and elongated zones and complex terrain) often suffer
from limited availability of elevation data derived from altimetry satellites due to issues,
such as those relating to spatial resolution and satellite orbital spacing. As a result, the
coverage of elevation data for these water bodies remains sparse. Therefore, elevation data
derived from radar altimetry are only used for large lakes [37].



Remote Sens. 2024, 16, 980 4 of 20

To assess the stability of reservoir storage, it is crucial to have long-term monitoring
data that span a significant duration, such as a decade or more. Remote sensing data
typically operate on a large scale and may have restrictions on access. However, the Google
Earth Engine (GEE) serves as a valuable tool for detecting changes, visualizing historical
trends and quantifying the Earth’s surface. With an extensive collection of over 40 PB
(petabytes) of available data, the GEE is continuously updated and expanded, offering
researchers a wealth of information for analysis [38]. GFO, ERS-2 and other satellite data
have been utilized to monitor the volume changes of lakes and inland seas, with the aim of
establishing a global, remote sensing-based lake volume storage database [39]. Similarly,
researchers have used Landsat satellite images in the GEE platform to calculate water
indices for monitoring reservoir storage [40].

Extreme events, such as continuous drought, which may lead to a dramatic decrease in
river discharge, result in inadequate water supply to inland lakes and reservoirs. Significant
research has been carried out on drought-prone regions and inland reservoirs globally [41,42].
However, in areas where water resource scarcity is not a prevalent issue, the occurrence
of historical reservoir water level decline is relatively uncommon. Furthermore, limited
research and quantitative evaluation that specifically focus on estuarine reservoirs related
to extreme events exist.

In this study, regarding the background of historical drought event in the river basin,
we take the Qingcaosha Reservoir in the Changjiang Estuary (China) as an example and
present an approach for monitoring reservoir waterlines and water levels, which serve
as satellite-derived indicators of extreme drought conditions, determining if the reservoir
exhibited a historical response. To achieve this main goal, we utilized CoastSat to examine
remote sensing images of the estuarine reservoir. Through this approach, we monitored
changes in waterline position over a time series spanning from 2013 to 2022 to assess the
drought severity within the timeframe. By integrating topography data, we indirectly
calculated the water level and reservoir storage corresponding to each waterline to evaluate
the reservoir’s responses to extreme saltwater intrusion or drought events.

2. Materials and Methods
Study Area

The study area centers around the Qingcaosha Reservoir, situated on the northwest
alluvial sandbar of Changxing Island, near the river mouth of the Changjiang River in
China (Figure 2). This reservoir (Figure 3A), which was constructed in the estuary, holds great
economic importance for Shanghai and plays a crucial role in the well-being of its residents [43].
With a water area of about 66 km2, a design effective capacity of 4.38 × 108 m3 and a maximum
operating water level of ~7 m [44], the Qingcaosha Reservoir has a large amount of high-
quality fresh water, which meets the drinking water standard. The actual reservoir capacity is
3.8 × 108 m3, and the water supply capacity exceeds 7.19 × 106 m3/day, accounting for more
than 50% of Shanghai’s total raw water supply and benefiting more than 13 million people.
Since its full operation in June 2011, the reservoir has played a vital role in Shanghai’s
drinking water supply, fundamentally altering the historical reliance on the Huangpu
River as the primary water source [12,45]. As of early 2022, based on our information,
the reservoir’s water level had been consistently normal and well regulated until it was
disrupted by extreme drought (Figure 1), resulting in a significant decrease in water levels
(Figure 3B,C).
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Figure 2. The location and topography of the study area. The star symbol represents the location of
the Qingcaosha Reservoir, the thick solid black line represents the boundary of the reclaimed land
around the reservoir, the circle indicates the position of the salinity monitoring buoy that provided
the salinity data utilized in this research.
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Figure 3. (A) Satellite imagery of the Qingcaosha Reservoir. (B) Satellite imagery with low-angle
altitude during the period of normal water level, obtained from Google Earth. (C) Ariel photo taken
during the low water level period, captured by an unmanned aerial vehicle (UAV) from a similar
viewing perspective as (B).

3. Data and Methods
3.1. Satellite Imagery and Waterline Extraction

Satellite remote sensing provides cost-effective long-term image data that can address
situations where in situ measurements are not available or it is inconvenient to conduct
fieldwork within the desired timeframe [22].

The utilization of the CoastSat toolkit empowers users to extract waterlines from
images obtained from various satellite missions, including Landsat-5, Landsat-7, Landsat-8,
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Landsat-9 and Sentinel-2 satellites [46]. This tool facilitates the analysis of water bodies by
enabling feature extraction from satellite optical images.

The satellite remote sensing images selected in this study are mainly from Sentinel-
2 (S2) [47] and Landsat-8 (L8) [48], with data providers (USGS for Landsat or ESA for
Sentinel-2), and the parameters are listed in Table 1. The former, with a revisit period of
only 5 days, provided abundant image data with high spatial resolution and minimal cloud
cover, enabling clear remote sensing images of the reservoir and offering advantages, such as
large data volume [49]. For L8, its launch time aligns well with the operational period of the
Qingcaosha Reservoir, enabling the extraction of relevant image data for a decadal analysis.

Table 1. Satellite parameters of Landsat-8 and Sentinel-2.

Satellite Name Launch Date Revisit
Period (d)

Sensor
Parameters

Spectral Range
(µm)

Spatial Resolution
(m)

Sentinel-2 (MSI) 23 June 2015 5 Multispectral
Imager 0.4–2.4 10

Landsat-8 (OLI) 11 Feb 2013 16 Thermal
Infrared Sensor 0.433–12.5 30

In the field of coastal engineering, the variation in the interface between the land and
water, which is defined as the shoreline or waterline, can indicate coastal features. Many
studies have used this framework to investigate coastal evolution problems [50,51]. Since
there is a shallow shoal in the center of the Qingcaosha Reservoir, in this location, we em-
ployed this same approach to detect the waterline and other hydrodynamical characteristics
(e.g., water level and storage). To establish a time series of satellite data for the Qingcaosha
Reservoir, L8 and S2 satellite images were preprocessed from the GEE platform, covering
the period from 1 January 2013 to 31 December 2022. A total of 40 images from Landsat-8
and 62 images from Sentinel-2 were obtained for the region of interest (Figure 4).
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Figure 4. The number of satellite images selected for different years. The time series spans from 2013
to 2022. The S2 satellite has a larger quantity due to its shorter revisit period.

Regarding the satellite detachment methodology, an improved version of the MNDWI [52]
was employed. Additionally, the waterline detection algorithm from CoastSat, which was
initially designed for sandy waterlines, was adapted by adjusting relevant parameters (e.g.,
cloud_mask_issue, sand_color and pan_off). The modified normalized difference water
index (MNDWI) equation is as follows:

MNDWI=
ρ(G)− ρ(SWIR)
ρ(G) + ρ(SWIR)

(1)
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where ρ(G) is a band that encompasses the reflected green light and ρ(SWIR) is the
short-wave infrared band. The workflow diagram is illustrated in Figure 5.
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Figure 5. Flowchart of this study for downloading. Top panel: filtering and pre-processing satellite
images; middle panel: detaching the waterlines from each image, ROI: region of interest, W1 and W2

are the normal waterline derived from satellite images, Wa and We represent the averaged position
of normal waterlines and extreme position, respectively; (bottom panel).

3.2. Data Validation

The CoastSat model has been extensively calibrated, validated and applied in various
studies on sandy beaches in Australia and America [53]. For muddy edges, such validation
studies have also demonstrated that CoastSat can accurately reproduce waterlines, and
based on several waterlines at different tidal levels, the topography of the beaches could be
reconstructed [54].

In this study, we used two approaches to validate the accuracy of the extracted results.
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3.2.1. Slope

We employed a single-beam echo sounder capable of real-time field measurements
with centimeter-level positioning accuracy. The in situ data were collected in 2019 with a
spatial resolution of 20 m. Subsequently, by assigning the monitored water levels to two
waterlines (Figure 6a) during a short period (e.g., less than one month), we calculated the
slope using the following equation:

tan θi =
∆H
∆Li

(2)

where θi represents each section slope, ∆H is the water level difference and ∆Li is the
horizontal distance between two waterlines in each section.
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Figure 6. (a) The selected control section satellite image. The solid black lines indicate the control
section, the red waterline corresponds to the extraction on 6 November 2022, the yellow waterline
corresponds to the extraction on 20 October 2022 and the blue dot represents the topographic
data points (the monitored topography was collected in 2019 with a spatial resolution of ~20 m).
(b) A diagram of the slope on the shallow shoal in the middle of the reservoir. W1 and W2 represent
the waterlines at different elevations, while H1 and H2 represent the water levels. (c) Comparison
between the measured data obtained from different cross-sections and the reconstructed data using
the water level and waterline.

RMSE =

√
1
n

n

∑
i=1

(Xi − Yi)
2 (3)
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where Xi is each constructed data point, Yi represents each measured data point and n is
the number of data points.

As shown in Figure 6c, the comparison between the reconstructed slope and monitored
data has an RMSE of 0.2052◦.

3.2.2. Water Level

To enhance the validation of water level calculations obtained from waterlines, we
adopted an alternative approach. Treat the waterlines as contour lines depicting different
elevations, in accordance with the methodology outlined by [55]. The waterline captured
on 2 August 2017, which was more centrally located within the given timeframe, was
chosen as the reference waterline, and the corresponding water level at the same moment
was assigned (2.72 m according to the monitored data). Satellite-derived water levels were
calculated using Equation (4), incorporating the shoal slope and the distances between each
waterline and the reference waterline. Subsequently, a comparison was conducted between
these computed water levels and the concurrently recorded actual measured water level
captured by the satellite during the observation of the waterline.

Wl = 2.72 + ∆L·tan α (4)

where Wl is the calculated waterline level, ∆L is the distance from the reference waterline
(2 August 2017) and tan α is the slope of the shallow shoal.

Based on the above results, we calculated the mean absolute percentage error (MAPE)
of the satellite inversion of the water level with the following equation:

MAPE =
1
n

n

∑
i=1

∣∣∣∣Wi − wi
Wi

∣∣∣∣ (5)

where Wi is water level on each measured data point, wi represents water level on each
constructed data point and n is the number of data points.

The validation of the water levels is presented in Figure 7; the water levels gener-
ated by combining topography and waterlines closely align with the in situ water levels
(MAPE = 9.91%). Notably, during the winter season, it is crucial to consider the influence
of saltwater intrusion, which typically necessitates higher water levels in the reservoir. The
graph indicates a reduced number of estimates for high water levels, likely due to certain
areas of the shoal in Qingcaosha already being submerged under high water level condi-
tions. The estimated water levels also reflect the increasing trend on an annual scale due to
the deposition of suspended sediment from the Changjiang River and the growing water
demand. Because the water levels were derived based on the topography data measured in
2019, the validation performance is extensively discussed in the next subsection.
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According to the above validations of slope and water level, the comparisons between
the measured data and the estimated data support the reliability of the proposed method
for validating slope and water level calculations. Thus, CoastSat can also be applied for
extracting and analyzing waterlines in reservoirs and further evaluating the variations in
reservoir storage and water resources.

3.2.3. The Reliability of Evaluating the Reservoir Water Level

To verify the reliability of the aforementioned method using optical satellite assess-
ment, we performed error analysis across various timeframes. Since the accuracy of
water level inversion and the validation of water levels between monitored data and
satellite-based estimations are significantly influenced by the shoal slope or topography, we
conducted validations during different timeframes from 2014 to 2020 to determine whether
approaching the time (2019) when topography was measured resulted in higher accuracy
(Figure 8).

Therefore, the effectiveness of verification should vary over time. Using the correlation
coefficient formula to solve, the formula is obtained as follows:

COR(X, Y) =
cov(X, Y)

σXσY
(6)

MAE =
1
n∑n

i=1 | Xi − Yi | (7)

where X is the constructed data, Y is the measured data and n is the number of data points.
cov means covariance, and σ represents the standard deviation.

Overall, the correlation coefficient for 2014 to 2020 is 0.76. Upon analyzing the compar-
isons year by year, the correlation coefficients range from 0.61 to 0.86, and it can be observed
that the fitting performance is significantly poorer for earlier years compared to other years.
This discrepancy is attributed to the utilization of terrain data from 2019, which introduces
temporal differences. If there are terrain data with higher temporal and spatial resolutions,
the remote sensing inversion of reservoir water level will aid in obtaining better results.
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4. Results
4.1. Extraction of the Waterlines around the Shallow Shoal in the Qingcaosha Reservoir

Registering and correcting satellite images from different periods enables the positional
information of waterlines to be acquired at different times, thus providing information
about water level changes. The waterline ensemble maps extracted from satellite images
reveal that the area of the shoal in the Qingcaosha Reservoir stands out significantly from
the normal water level on 21 February 2014 and 15 October 2022, with the latter showing a
more pronounced expansion of the waterline than the former (Figures 9 and 10).
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Figure 9. Compilation of waterlines around the shoal in the Qingcaosha Reservoir. All waterlines
were extracted from satellite imagery using CoastSat. The red line represents the waterline on
15 October 2022, and the yellow line corresponds to the waterline on 21 February 2014. The blue lines
represent the waterline extracted from other years. Sections 1 to 5 are the selected cross-sections of
the waterlines.
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Based on the satellite images captured in December 2022, the water level in the
reservoir returned to its normal level as in previous years. Notably, the accuracy of the
CoastSat mapping technique in the shallow areas in the shoal in the reservoir is remarkably
high, particularly in the area enclosed by waterline points (a) and (g). This significant area
indicates the current critical water level, emphasizing the need for attention from water
management authorities.

4.2. Assessment of the Reservoir Drought Severity

To quantify the reservoir drought severity over the past decade and evaluate the
resilience of the reservoir, the variations in the distance between each waterline and the
reference waterline along five sections are shown in Figure 11. The variations in salinity
response at the reservoir intake to river mouth droughts are illustrated in Figure 12. The
salinity threshold for reservoir water intake is 0.45. If the salinity exceeds 0.45 for a
prolonged period, it will disrupt the water level balance.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 22 
 

 

Landsat-8 and (d–i) are from Sentinel-2. The solid black line represents the waterline calculated by 
CoastSat. 

Based on the satellite images captured in December 2022, the water level in the res-
ervoir returned to its normal level as in previous years. Notably, the accuracy of the 
CoastSat mapping technique in the shallow areas in the shoal in the reservoir is re-
markably high, particularly in the area enclosed by waterline points (a) and (g). This 
significant area indicates the current critical water level, emphasizing the need for atten-
tion from water management authorities. 

4.2. Assessment of the Reservoir Drought Severity 
To quantify the reservoir drought severity over the past decade and evaluate the re-

silience of the reservoir, the variations in the distance between each waterline and the 
reference waterline along five sections are shown in Figure 11. The variations in salinity 
response at the reservoir intake to river mouth droughts are illustrated in Figure 12. The 
salinity threshold for reservoir water intake is 0.45. If the salinity exceeds 0.45 for a pro-
longed period, it will disrupt the water level balance. 

 
Figure 11. Time series trends of waterline spanning from 2013 to 2022. Sections 1 to 5 represent the 
selected cross-sections of the waterlines (locations are shown in Figure 9). Positive values corre-
spond to lower water levels. The red boxes mark two significant instabilities in the past decade. The 
dashed lines are the trendlines within this timeframe. 

Figure 11. Time series trends of waterline spanning from 2013 to 2022. Sections 1 to 5 represent the
selected cross-sections of the waterlines (locations are shown in Figure 9). Positive values correspond
to lower water levels. The red boxes mark two significant instabilities in the past decade. The dashed
lines are the trendlines within this timeframe.

In February 2014, the Qingcaosha Reservoir was experiencing a water shortage emer-
gency caused by strong saltwater intrusion, which was driven by the long-persistent, strong
northerly wind [11], resulting in a 23-day interruption in freshwater intake (Figure 12a).
Comparing the peak heights highlighted in the red boxes, the waterline in 2022 is much
farther than the event in 2014 (Figure 11), resulting in a 98-day interruption of the fresh-
water intake from September to December (Figure 12b). Performing linear regression on
the data between the two peaks indicates that the water level in the Qingcaosha Reservoir
is in a state of gradually increasing, which coincides with the trend of monitored water
levels (Figure 11). This extremely low water level in the reservoir was caused by the most
severe saltwater intrusion in 2022 due to prolonged very low river discharge. The water level,
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calculated from the extracted waterline on 15 October 2022, was estimated to be 0.722 m. In
contrast to the well-regulated storage level (approximately 2.5–5.5 m, as shown in Figure 7),
the water level plummeted to its historically lowest value, even lower than that recorded in
February 2014 (1.32 m, as depicted in Figure 7). After 15 October, the reservoir water level
gradually began to recover, leading to an increasing trend in the reservoir’s water surface area.
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4.3. Storage Capacity Evaluation of the Qingcaosha Reservoir

When assessing regional drought, the reservoir storage capacity is an important
indicator in addition to the water level of the reservoir. However, due to the lack of
reservoir storage capacity information or issues regarding data transparency, it is difficult
to obtain comprehensive and accurate information on reservoir storage capacity, which
affects the accuracy of drought assessment and monitoring and hampers the formulation
and implementation of drought response measures [56]. Therefore, obtaining and updating
reservoir capacity information is crucial for drought management and decision making. In
this study, a method based on CoastSat-extracted waterline data (Figure 9) is proposed to
estimate the reservoir storage capacity using topography data and water level data in the
Qingcaosha Reservoir. The water area is calculated using threshold segmentation applied
to the extracted waterline data, while the water depth is calculated using topography
and water level data. The topography data are obtained in 2019, after which the storage
reservoir capacity can be calculated from them, as shown in the formula:

V(H) =
n

∑
i=1

(H − hi)·Ai (8)

where V denotes water storage at water level H; hi denotes the pixel value of the topography
(in m); n is the number of pixels of the topography inside the mask, and Ai represents the
area of each orthogonal grid. The extent of the calculation is determined by the waterline
data and the reservoir boundary.



Remote Sens. 2024, 16, 980 14 of 20

By interpolating the monitored depth to orthogonal grids with fixed areas and corre-
sponding to the water levels through the locations of the waterline, the total volume variations
in the Qingcaosha Reservoir were calculated. When the reservoir water level is at the dead water
level, the corresponding reservoir storage is approximately 1.01 × 108 m3 (Figure 13c), which
is close to the reported value [44]. Therefore, we use this method to calculate the reservoir
storage capacity under the following conditions: when the water level is operating normally,
the calculated reservoir storage capacity is 3.92 × 108 m3 (Figure 13d). In extreme events, the
lowest storage capacities in 2014 and 2022 were 1.82 × 108 and 1.65 × 108 m3, respectively.
Under the influence of extreme events, the storage capacity obviously decreased, but the
corresponding storage at the lowest water level of the reservoir was still higher than the
dead storage, indicating the reservoir’s robust resilience during the historical extreme
drought event.
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Figure 13. (a) The blue dots represent topographic data points. (b) The reservoir volume computation
model, which utilizes the waterline and interpolates topographic data to determine the reservoir’s
water depth. Each grid cell contains a water depth value, with different colors representing varying
depths. (c,d) depict the minimum storage and maximum storage, respectively.

5. Discussion

The Qingcaosha Reservoir, which provides water to 13 million people in Shanghai,
experienced a severe drought and saltwater intrusion in the autumn and winter of 2022.
This drought was the worst in the Changjiang River Basin in 61 years, which reduced
the upstream water inflow and allowed seawater to flow into the river and salinize the
water. The reservoir had to close its water intake from 5 September to 12 December, a
total of 97 days, to prevent saltwater contamination. This occurrence significantly affected
Shanghai’s water supply and security. The reservoir can store fresh water for 68 days when
it is full [43], but it is vulnerable to saltwater intrusion under very low river discharge.
Saltwater intrusion usually occurs from October to March of the following year [57], but it
started earlier in 2022 due to the continuous drought in summer and autumn and resulted
in a total of 97 days of unsuitable water intake.
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With the intensification of global climate change, the occurrence of extreme drought
events is becoming frequent. The 2022 extreme drought event had a significant impact on
reservoir storage around the world. In the U.S., the drought caused some major reservoirs
such as Lake Mead and Lake Powell to drop to their lowest levels on record, threatening
the water supply and hydropower generation for millions of people. Statewide reservoir
storage was 69 percent of average for this time of year [58]. In Europe, at the end of summer
2022, the drought emergency seemed partially overcome. However, as of October 2022, the
water storage levels in some reservoirs remain significantly below the reference values for
this timeframe. This situation is likely to heighten awareness of the risks associated with
extreme droughts on freshwater supply in Europe [59]. In China, the drought also lowered
the water level of Poyang Lake, the largest freshwater lake in China, to its lowest level
since 1955. The minimum area of Poyang Lake estimated by satellite data was 814 km2,
which matched well with the observed drought characteristics [60]. In the recent research
focused on drought assessment within the Changjiang River Basin, satellites equipped
with altimeters were used [61,62]. However, this approach may not be appropriate for the
Qingcaosha Reservoir due to its smaller spatial scale. Consequently, employing a method
that extracts the waterline to assess drought severity would be more suitable.

We also employed the aforementioned method to monitor reservoirs situated in the
Pearl River Estuary, such as the Zhuyin Reservoir, as well as other estuary reservoirs in
South Korea, including the Ganwol Estuary Reservoir and Youngsan Estuary Reservoir.
Additionally, remote sensing monitoring has also been employed to monitor several inland
reservoirs for comparison.

The results showed that the water levels of the inland reservoirs decreased significantly
during the dry hydrological year of 2022 (Figure 14a–e). However, most of the estuarine
reservoirs in water-rich areas did not exhibit such noticeable changes in water levels, except
for the Zhuyin Reservoir (Figure 14h).

Nevertheless, this method also has the following limitations: it is applicable to reser-
voirs with relatively small surface slope gradients, and in such cases, the variations near
the waterline are more pronounced, making it possible to further analyze the migration
of data identified by CoastSat. For example, the Chenhang Reservoir (Figure 14i), located
in the Changjiang River Estuary, also had closed water intake points, but due to the steep
slopes surrounding the reservoir, no significant changes were observed within the known
waterlines using CoastSat.

Additionally, the temporal resolution for selecting remote sensing data in the toolkit
is limited. Although satellite remote sensing data can provide extensive coverage, their
temporal resolution may be constrained, meaning that they may not capture all short-
term water level changes. The accuracy of remote sensing data is also limited. While
satellite remote sensing data can capture changes in reservoir water levels, their accuracy
is influenced by various factors, which can lead to errors in the remote sensing data and
inaccurate detection of water level changes.

The results of our research can provide information for water resource management
decisions and promote the sustainable development of estuarine reservoirs as important
water sources. Further research is needed to comprehensively investigate the potential
of other remote sensing techniques in monitoring water resources and managing water
resource utilization.
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Figure 14. Locations of the studied reservoirs. (a–j) Waterside map of reservoirs at different times
extracted by CoastSat. (a–e) Inland reservoirs, including the Alto Lindoso reservoir, Sau reservoir,
Mackenzie reservoir, EI Yeso reservior and Baells reservoir. (f–j) Estuary reservoirs, including
the Ganwol Estuary reservoir, Huchengang reservoir, Zhuyin reservoir, Chenhang reservoir and
Yeongsan reservoir.
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6. Conclusions

In 2022, the Changjiang River reached record low levels in August. Consequently,
the reservoirs along the Changjiang River encountered drought conditions, including the
estuarine reservoir, which was previously believed to have sufficient water during the
summer. Remote sensing inversion stands out as a crucial method for investigating issues
related to reservoir drought. Although, the method that employs optical satellite imagery to
derive water levels is dependent on topographical data, specifically high spatial resolution
data and gentle slopes near the waterline, in contrast to techniques that utilize satellites
equipped with altimeters. It may be better suited for studies of reservoirs on a small scale
(on the order of several kilometers). Therefore, we used the satellite-derived waterline
position as an indicator to identify the drought severity in the remote sensing records of
the Qingcaosha Reservoir.

Based on the GEE platform, utilizing 102 images from Landsat-8 and Sentinel-2
satellites, the time series of the Qingcaosha Reservoir from 2013 to 2022 can be rapidly
and accurately processed to monitor the water area extent and shallow shoal area changes
dynamically. CoastSat, which was previously used for coastline extraction, was successfully
employed for the first time to extract the waterlines of estuarine reservoirs in this paper.
By training the algorithm with appropriate datasets and adjusting relevant parameters,
satisfactory results are achieved in mapping the waterlines of the Qingcaosha Reservoir.
Utilizing this algorithm, the lowest water level since the reservoir’s establishment was
indirectly captured by using the waterlines as an indication, which reached 0.722 m in
October 2022 and was significantly lower than the well-regulated water level (~2.5–5.5 m).
The second lowest water level, 1.32 m, was observed in the satellite image from February
2014. The two severe drought events were induced by notable saltwater intrusions in the
Changjiang River Estuary. The most severe event was triggered by an overall drought
affecting the entire river basin throughout the flood season of 2022, while the other resulted
from the prolonged and robust northerly winds during the dry season of 2014. The
low water level phenomenon persisted for approximately 3 months, spanning August
to November 2022. Despite returning to the normal level following an increase in river
discharge, the occurrence of two severe drought events in the reservoir not only deserves
attention but also serves as a notable example of how estuarine reservoirs respond to
saltwater intrusion during both flood and dry seasons. Furthermore, the lowest actual
reservoir storage levels in 2014 and 2022 were evaluated at 1.82 × 108 and 1.65 × 108 m3,
which are still higher than that for dead storage (1.01 × 108 m3), highlighting the reservoir’s
significant resilience. The discussion of the remote sensing technique utilized in this study
reveals that its effectiveness and precision in determining water levels are contingent upon
the topographical characteristics of the reservoir. This highlights a constraint in applying
this method to reservoirs that either lack detailed topographical data or feature steep slopes,
underscoring the method’s limitations in such environments.

The Qingcaosha Reservoir has maintained a stable balance between water supply and
demand for a decade. Extreme drought events upset this balance and cause water level
fluctuations and water shortages. Similar events in reservoirs located in wet regions around
the globe rarely exhibit such phenomena, indicating the rarity of this occurrence.

In the context of extreme drought, it is observed that even water supply reservoirs
located in nonwater-stressed regions experienced critical water levels. In the future, further
attention will be given to satellite data for more detailed and in-depth research and analysis
of resilience to estuarine reservoirs worldwide, which will enable long-term monitoring of
extreme drought events and their impacts.
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