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Abstract: At present, for business lightning positioning systems, the classification of lightning dis-
charge types is mostly based on lightning pulse signal features, and there is still a lot of room for
improvement. We propose a lightning discharge classification method based on convolutional en-
coding features. This method utilizes convolutional neural networks to extract encoding features,
and uses random forests to classify the extracted encoding features, achieving high accuracy discrim-
ination for various lightning discharge events. Compared with traditional multi-parameter-based
methods, the new method proposed in this paper has the ability to identify multiple lightning dis-
charge events and does not require precise detailed feature engineering to extract individual pulse
parameters. The accuracy of this method for identifying lightning discharge types in intra-cloud flash
(IC), cloud-to-ground flash (CG), and narrow bipolar events (NBEs) is 97%, which is higher than that
of multi-parameter methods. Moreover, our method can complete the classification task of lightning
signals at a faster speed. Under the same conditions, the new method only requires 28.2 µs to identify
one pulse, while deep learning-based methods require 300 µs. This method has faster recognition
speed and higher accuracy in identifying multiple discharge types, which can better meet the needs
of real-time business positioning.

Keywords: lightning classification; convolutional encoder; deep learning; encoding features

1. Introduction

Lightning is one of the most common discharge phenomena in the atmosphere. Accord-
ing to statistics, lightning events occur approximately 30–100 times per second globally [1].
According to the spatial location of lightning, people usually classify lightning events into
two types: IC and CG. According to a large amount of recorded data, cloud flash events
account for about three-quarters of total lightning events [2]. In all lightning events, some
lightning discharges from the cloud to the ground, which is considered a ground flash.
This type of lightning poses a serious threat to human survival and may cause the death of
organisms. The pulses generated by cloud flashes are different from those generated by
CG. Based on the difference in waveform between IC and CG, people can simply classify
discharge events based on the waveform of extremely low-frequency electromagnetic fields.
Usually, CG flashes within a range of several tens of kilometers from the observation
point have similar time-domain characteristics, and their initial peaks in the time-domain
waveform have the characteristics of a steep rising edge and a slow falling edge [3,4].
Compared to CG, the pulses of most cloud flashes are usually narrower. In addition, due
to the high diversity of discharge events, the pulse waveforms generated often exhibit
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significant differences from one event to another. Therefore, the differences between the
electric field waveforms generated by IC and CG are utilized by many lightning detection
networks as a basis for distinguishing between different types of lightning.

For most lightning detection networks, multi-parameter methods are often used to
classify lightning strikes and lightning in clouds. This method typically extracts time-
domain features such as amplitude ratio, descent time, ascent time, and zero-crossing time
of waveforms to characterize electromagnetic field waveforms [5,6]. According to some
practical verification results, the multi-parameter method has low classification accuracy
for lightning signals. For example, Flenor et al. [7] demonstrated that, in a 2005 actual
inspection, approximately 54% of the ICs recorded by the National Lightning Detection
Network (NLDN) were incorrectly classified as CG. Based on the inspection results, Leal
et al. [8] found that when the peak current of cloud flash is greater than 50 kA, the NLDN
and Earth Networks Total Lightning Network (ENTLN) wrongly classify this cloud flash
as CG; Paul et al. [9] found during an inspection that 30% of the detected ground flashes
were actually cloud flashes. Most lightning detection networks only provide classification
results for cloud flashes and ground flashes, but there is little mention of the classification
and recognition results for special cloud lightning events such as NBEs. In a few articles
that provide NBE classification accuracy, their classification accuracy for NBEs is usually
low, mainly due to the influence of multi-parameter classification methods. For example,
when the peak current is higher than 20 kA, more than 97% of NBEs are misclassified in the
NLDN, while the corresponding percentage misclassified by the ENTLN exceeds 63% [8].
Therefore, using multi-parameter methods for more precise classification of lightning
discharges is a challenge.

Deep learning has become an increasingly important branch within the field of ma-
chine learning. In recent years, deep learning has made breakthrough progress in fields
such as video recognition, audio analysis, and medical diagnosis. A study has used support
vector machine (SVM) methods to classify extremely low-frequency lightning waveforms
of cloud and ground flashes, with an accuracy of 97% [10]. The introduction of neural
networks has significantly improved the classification ability of lightning waveforms. In a
study by Wang et al. [11], they applied one-dimensional convolutional neural networks
(CNNs) to lightning signal classification. In their results, 10 types of lightning signals
were classified with an overall accuracy of 98%, but its recognition efficiency was very low
and required high hardware equipment, making it difficult to meet the needs of real-time
classification. On the other hand, although multi-parameter recognition methods have
better recognition speed than CNNs and other methods, it is difficult to achieve higher
accuracy recognition. Therefore, in practical business applications, a method that balances
classification accuracy and classification speed is needed. Autoencoders were developed as
early as 1980 [12]. People can use autoencoders to convert complex high-dimensional data
into low-dimensional encoding, and apply autoencoders to various fields. For example,
Mak et al. applied variational autoencoders to the field of game design [13], Kapoor et al.
improved the detection accuracy of images by merging multi-layer features through bottle-
neck structures [14], Guo et al. achieved efficient compression of lightning signals through
stacked autoencoders [15], and Ling et al. improved the accuracy of lightning prediction
by leveraging the advantages of encoder decoder structures [16]. This article proposes a
classification method based on convolutional encoding features, which utilizes the excellent
feature extraction ability of convolutional neural networks and utilizes the special structure
of encoders to extract low-dimensional features and complete the classification of extremely
low-frequency lightning waveforms.

2. Methods
2.1. Data

All lightning data used in this article are from the Lightning Low Frequency Electric
Field Detection Array (LFEDA). In 2014, the Chinese Academy of Meteorological Sciences
established the LFEDA at the Field Experiment Base on Lightning Sciences of China
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Meteorological Administration (CMA_FEBLS). The LFEDA is used to detect triggered
lightning experiments and natural lightning in the region. The array was completed in
Conghua and surrounding areas of Guangzhou in 2014, and 10 independently operating
substations have been set up in the area, forming a full flash positioning network. As shown
in Figure 1, the detection station network is distributed between longitude 113.2~113.9◦E
and latitude 23.1~23.7◦N. The central station is CHJ. Except for ZCJ station and GDJ station,
the baseline length of the other 8 adjacent stations is between 6 and 42 km. ZCJ station
and GDJ station are far away from the other 8 stations, with a baseline length of 30–68 km,
forming a longer baseline. Each substation of the LFEDA is mainly composed of three
parts: a lightning fast electric field change measuring instrument [17], a signal collector,
and a GPS clock source. The lightning fast electric field change measuring instrument with
a sensitivity of about 1 V/m is responsible for receiving spatial electric field change signals.
The received signal is filtered and input to the signal collector. The length of each signal
is 1 ms, and the pre trigger length is 0.2 ms. The final collected signal frequency range
is 160 Hz to 600 kHz. The GPS clock source provides a time accuracy of about 30 ns to
achieve synchronization among various substations, and the final waveform data have a
time accuracy of about 100 ns. Each substation can capture discharge signals without dead
time and perform high-precision time labeling, thereby achieving high-precision three-
dimensional positioning of thunderstorm activity [18]. In order to meet the application
requirements of real-time monitoring and early warning, the LFEDA was upgraded in 2020
to form a real-time low-frequency all flash positioning network (RT_LFEDA). Each station
of the RT_LFEDA is able to perform real-time signal processing on the collected data, store
the original waveform, and transmit the features in real time to the central station through
the network. Each substation can independently extract discharge signal features and save
the original waveform, and transmit the features in real-time to the central station through
wireless networks. At the same time, we have built a cloud center station for real-time
reception of substation data and real-time positioning results.
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Figure 1. Layout of low-frequency electric field detection array station network.

We used data collected by RT_LFEDA for lightning discharge events during the pe-
riod from June to July 2019 to establish a data set for training and testing. We selected
10,000 cloud flash, ground flash, and bipolar narrowband pulses each to form the entire
training sample. The entire dataset was divided into training and testing datasets, with
a segmentation ratio of 75/25. The training dataset was used during the process of ad-
justing model parameters and training, using quadruple cross-validation to adjust model
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hyperparameters and validate model capabilities. Then, we trained the final model on the
entire training dataset. During the model training phase, we did not use the test dataset.
To ensure the objectivity of the evaluation, we only used the test dataset to evaluate the
performance of the model in the final stage.

2.2. Classification Methods

At present, there are two main methods for distinguishing lightning types: one is
based on the lightning waveform itself, directly classifying lightning waveform through
different methods, such as using convolutional neural networks to directly classify light-
ning waveform data; another approach is to extract appropriate features from lightning
waveform data and use different methods to classify these features. The classic method
is to perform time-domain feature analysis on the waveform of lightning electric field
changes, and achieve lightning classification by statistically analyzing the characteristic
parameters of different types of lightning waveforms. The features used in this method
were extracted based on artificially defined standards, which may introduce artificial errors
and affect the classification results. At the same time, there is still doubt as to whether
these features can fully represent waveform information. Therefore, this article proposes a
lightning classification method based on convolutional encoding features; Figure 2 shows
a flowchart of this method. Firstly, we filtered the lightning waveform data collected by
the collector to reduce the noise contained in the data. Due to the signal length collected
by the collector being 1 ms, we extracted a waveform near the signal peak as the original
waveform for constructing the dataset. We also standardized the data, which can accelerate
the convergence speed of the classifier. Next, we used the processed data to train the
convolutional encoder. We removed the decoder part of the trained convolutional encoder,
and the remaining part was called the feature extraction model. The feature extraction
model was used to extract convolutional encoding features of lightning signals. At the
same time, we manually selected three types of lightning signals, including IC, CG, and
NBE, each containing a dataset of 10,000 samples. We used feature extraction models to
extract their convolutional encoding features, forming a dataset of convolutional encoding
characteristics including the three types of lightning mentioned above. Finally, we selected
the appropriate classifier to train the classification model. We connected the output of the
feature extraction model with the input for the lightning coding feature classification model
to form our final model. Through the above process, our lightning classification method
based on convolutional encoding features was ultimately formed.

2.2.1. Waveform Preprocessing

Data preprocessing is mainly divided into three parts:

(1) Digital filters can be used to filter out high-frequency noise in lightning signals and
preserve the composite lightning signals that appear in the original signal;

(2) Peak search and interception: finding the discharge pulse by peak-searching the
original data, and intercepting a certain length of waveform signal before and after
the peak;

(3) Normalization processing: Data normalization is the process of using a certain al-
gorithm to map data to a specified range, remove unit constraints, and convert it
into dimensionless pure values. Under normal circumstances, standardization allows
for numerical comparability of features between different dimensions, which helps
improve the accuracy and convergence speed of classifiers. This article uses the
minimum maximum normalization method to uniformly map data to [0,1].
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2.2.2. Lightning Waveform Convolutional Encoding Feature Extraction Method

The key to correctly identifying discharge types using feature-based recognition meth-
ods is whether more effective features can be extracted. In previous studies, time-domain
features such as the rise and fall time of primary and secondary pulses, pulse interval, and
pulse to peak ratio were often used to describe the corresponding lightning waveform.
However, limited time-domain features cannot fully describe the discharge waveform infor-
mation, and traditional manual feature extraction methods may introduce errors, making it
difficult to improve the recognition accuracy. Therefore, in order to extract more effective
lightning waveform features, it is necessary to study better feature extraction methods.
Artificial intelligence technology provides an effective way to accurately extract lightning
features. Convolutional neural networks have excellent feature extraction capabilities. This
paper applies convolutional neural network technology to lightning feature extraction,
trains and establishes a lightning autoencoder, and extracts convolutional encoding features
for high-precision classification of lightning signals.

The convolutional autoencoder network is a commonly used feature extraction tech-
nique, which is divided into encoder subnetworks for feature extraction and decoder
subnetworks for input restoration based on different network functions. The simple en-
coder structure is shown in Figure 3. The part between the input layer and the hidden
layer is the encoder subnetwork, and the part between the hidden layer and the output
layer is the decoder subnetwork. The encoder subnetwork maps high-dimensional data
raw data to a low-dimensional data space to obtain representation features with higher
information density, while the decoder subnetwork is completely the opposite, restoring
low dimensional features to the original data. Autoencoders, also known as bottleneck



Remote Sens. 2024, 16, 965 6 of 13

structures based on network structure, have a feature dimension smaller than the input
and output in the middle layer, which forces the model to retain important information
for reconstructing data samples in the encoding features of the middle layer. In order to
minimize the reconstruction error of the restored data, it is required to retain the same
information as most samples. In order to obtain richer and more informative feature rep-
resentations, many studies have made appropriate adjustments in autoencoder networks.
Convolutional autoencoders use convolutional kernels in the middle layer, which have
efficient high-dimensional feature extraction and compression capabilities and exhibit
excellent performance on various types of data.
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This paper uses a convolutional autoencoder to obtain the encoding features of light-
ning pulse signals. Each layer of the convolutional encoder has convolution kernels of
different sizes, which have a good recognition effect on waveform edge trends. In wave-
form feature extraction, waveform edge recognition is particularly important for waveform
description. The convolutional encoder framework mainly consists of three parts: encoder,
decoder, and feature output module. The convolutional encoder is composed of alternating
convolutional layers and pooling layers. The decoder has a completely opposite structure
to the encoder, expanding the encoding features into a reconstructed waveform that is
basically consistent with the input waveform through deconvolution and pooling layers.
There is a feature output module between the encoder and decoder, which can convert
effective encoding into convolutional encoding features for output. By minimizing the
error at both ends of the convolutional encoder, we can obtain more effective convolutional
encoding features. The training process extracts pulse waveform encoding features through
an encoder, and the decoder decodes the encoding features into waveforms. In neural
networks, loss functions are commonly used to measure the quality of training results. In
this experiment, we used mean square error (MSE) as the loss function. The smaller the loss
value, the smaller the difference between the predicted value and the true value. During
the training process, we judged the quality of the model by observing the changes in the
loss function. In this task, we can also judge the quality of the model by comparing the
consistency of the original waveform before and after entering the convolutional encoder.
We drew the waveforms of the input and output of the convolutional encoder and by
observing whether there is a significant difference between the two we can intuitively
judge the quality of the model. Figure 4 compares the waveforms of the input and output
of the convolutional encoder after decoding. We can see that the decoded output wave-
form is basically consistent with the input waveform, indicating that the convolutional
autoencoder can restore the original waveform well. We removed the decoder part of the
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convolutional encoder, and the remaining part was called the feature extraction model. In
practical applications, we only need to input the lightning pulse waveform into the feature
extraction model to extract the convolutional encoding features of lightning pulses.
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The convolutional encoder we designed mainly consists of an encoder and a decoder. The
encoder section is composed of alternating stacking of convolutional layers and pooling layers.
The decoder section is composed of alternating convolutional layers and upsampling layers.
The specific parameters of the model are shown in Table 1. After inputting 1200 × 1 waveform
data through the input layer, the encoder part passes through a stacked structure of 4 Conv1D
layers and MaxPooling1D layers to obtain 8 × 16 feature data. The parameters and structure of
the decoder and encoder parts are completely symmetrical, and the 8 × 16 feature data obtained
in the encoder part is reconstructed into waveform data after passing through the decoder part.
We have designed a feature output module between the encoder and decoder sections, which
consists of a Conv1D layer with special parameters. This module will not be used during the
training process and will only function when feature extraction is required.

Table 1. Detailed parameters of convolutional encoder structure.

No. Module Layer Filter Number Kernel Size Pooling Window
Size

Activation
Function Output Shape

1

Encoder

Input - - - - (1200,1)
2 1D-Conv 128 3 - ReLU (1200,128)
3 MaxPooling1D - - 5 - (240,128)
4 1D-Conv 64 3 - ReLU (240,64)
5 MaxPooling1D - - 5 - (48,64)
6 1D-Conv 32 3 - ReLU (48,32)
7 MaxPooling1D - - 3 - (16,32)
8 1D-Conv 16 3 - ReLU (16,16)
9 MaxPooling1D - - 2 - (8,16)

10 Feature output
module 1D-Conv 1 1 - ReLU (8,1)

11

Decoder

1D-Conv 16 3 - ReLU (8,16)
12 UpSampling1D - - 2 - (16,16)
13 1D-Conv 32 3 - ReLU (16,32)
14 UpSampling1D - - 3 - (48,32)
15 1D-Conv 64 3 - ReLU (48,64)
16 UpSampling1D - - 5 - (240,64)
17 1D-Conv 128 3 - ReLU (240,128)
18 UpSampling1D - - 5 - (1200,128)
19 Output 1 1 - - (1200,1)

1D-Conv: 1D convolutional layer. ReLU: Rectified Linear Unit.
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2.2.3. Classifier

There are quite a few classification algorithms in machine learning, and different
classification algorithms will produce different results in different applications. Therefore,
choosing the appropriate classification algorithm is also very important. Random forest
was proposed by Leo Breiman (2001) [19], which is an ensemble learning algorithm. Firstly,
it randomly selects N samples from the original sample set with replacement as the training
set. Next, it randomly selects m features from each sample for training. Finally, it uses
all trained decision trees to classify or predict the data to be validated, and uses methods
such as voting or averaging to obtain the final result. This approach of collecting results
from multiple decision trees can help to improve the accuracy of classification. In a random
forest, each decision tree is trained based on different samples and features, so they can
complement each other, thereby improving the accuracy and robustness of the entire model.

SVM is a common binary machine learning model that is often used for linear or
nonlinear classification. SVM performs well when the classified object is linearly separable.
The mathematics behind SVM are beyond the scope of this article and are explained in
detail by Hastie et al. [20], so it will not be elaborated in detail in this article. The ultimate
goal of SVM is to find the most suitable classification hyperplane and apply it effectively
to complete classification tasks. Although SVM is a binary classifier, it can also perform
multi-classification tasks through some methods.

We input the dataset formed by convolutional encoding features into two classifiers
for training. By comparing the classification results and recognition speed on the test
set, we selected the classifier with better performance. Here, we only compared random
forest and SVM classifiers, which are used to classify lightning waveforms using the
convolutional encoding features described in this article. Table 2 shows the performance
of two classification models when the number of encoding features is 8. We compared
the classification results of the two classifiers using the same training set and found that
the classification performance of the random forest model was slightly higher than that
of SVM. The classification accuracy of the two classifiers only differs by 2%. However,
the random forest classifier recognizes a single waveform in less than 30 microseconds,
while the SVM classifier recognizes a single pulse in approximately 87.2 microseconds.
Therefore, the random forest model is more suitable as a classifier for classifying lightning
waveforms using convolutional encoding features. For multi-class classification models,
we used Equation (1) to calculate the accuracy of each category.

Accuracy = Correct Predictions
Total Samples (1)

Table 2. The results of convolutional coding features on SVM and random forest classifiers.

Classifier Random Forest SVM

Single waveform recognition Time (µs) 28.2 87.2
Accuracy 97% 95%

3. Results
3.1. Determination of Parameters

During the research process, we found that different pulse lengths can affect the
classification results. Therefore, we studied the changes in accuracy corresponding to
lightning waveforms with different lengths. Based on the duration distribution of lightning
discharge pulses, we selected pulse waveforms with total lengths of 80 µs, 100 µs, 120 µs,
and 140 µs. We extracted eight convolutional encoding features from four different lengths
of lightning pulses, and presented their classification results in Table 3. As the pulse length
gradually increases, we found that the corresponding classification accuracy also improves.
However, when the pulse length exceeds 120 µs, there was no significant change in accuracy.
Therefore, we believe that when the pulse length reaches 120 µs our method can accurately
distinguish the three types of lightning signals.
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Table 3. Comparison of accuracy of four pulse lengths.

Pulse Length

80 µs 100 µs 120 µs 140 µs

Accuracy 93% 95% 97% 97%

At the same time, we also studied the impact of the number of convolutional encoding
features on accuracy. In Table 4, we provide the classification accuracy for each lightning
type when the pulse length is 120 µs and the number of convolutional encoded features
is set to 12, 8, and 4. When the number of extracted features exceeds eight, the overall
event accuracy of the test dataset remains stable at around 97%. The accuracy of CG in the
test dataset was slightly higher than that of IC, which is similar to the accuracy of NBE.
The overall accuracy of event classification in the test dataset was basically consistent with
the accuracy of the training dataset, with little difference in accuracy for each category,
indicating that our model can be well applied to “unprecedented” test data.

Table 4. The characteristic bits of convolutional coding (4, 8 and 12 respectively) and the accuracy of
three types of discharge events.

Classification Accuracy

Number of Feature IC CG NBE Total

12 97% 98% 97% 97%
8 97% 97% 97% 97%
4 93% 96% 93% 94%

3.2. Model Testing

On 7 July 2019, multiple thunderstorms occurred in Conghua District, Guangzhou City,
Guangdong Province, China. We selected the waveform data recorded by the substation of
the RT_LFEDA located at the Conghua Meteorological Bureau in Guangzhou from 15:48
to 16:48 on that day. A total of 9241 pieces of data within an hour were collected to test
the actual accuracy of the model proposed in this article. Based on the results of manual
inspection, we sorted the recognition results of the model. Based on the inspection results,
we placed the actual identification results of each lightning type in the discharge process of
the model in Table 5. Our method achieved classification accuracies of 96.83%, 97.01%, and
97.37% for IC, CG, and NBE in this test. We found that this was very similar to the results
in the test set, indicating that our method has good generalization ability. Therefore, we
believe that our method could also achieve good results in practical applications.

Table 5. The classification accuracy of the model for each type of lightning signal.

Classification Lightning

IC CG NBE Total

True Classification 8071 583 297 8951
Error Classification 264 18 8 290

Accuracy 96.83% 97.01% 97.37% 96.86%

4. Discussion
4.1. Comparison of Classification Methods Based on Different Features

Based on the test set data, this section compares the classification performance of
classification methods based on waveform time-domain parameter features and convo-
lutional encoder features. As for the identification method of waveform time-domain
parameter characteristics, this paper refers to the method proposed by Cai et al. [21] to
extract time-domain characteristic parameters such as rise time, fall time, pulse width, pulse
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interval, pulse amplitude ratio, the ratio of the maximum waveform fluctuation amplitude
before pulse to its peak to peak value, the ratio of the difference between the maximum
and minimum values in the data, and the ratio of the negative and positive amplitudes of
the pulse; we then use a random forest classifier for multi-classification testing. Table 6
shows the accuracy of two methods for each type of lightning waveform. In terms of
accuracy, the convolutional encoding features of the three types of lightning waveforms
exhibit higher precision compared to their waveform time-domain features. The reason
for this difference may be that some cloud flashes and NBEs have similar waveforms, and
the extracted time-domain waveform cannot describe the differences between the two in
some cases, resulting in the inability of waveform time-domain feature-based recognition
methods to accurately distinguish the two waveforms. This article selects one cloud flash
pulse and one NBE pulse as shown in Figure 5. The waveforms of the two pulses have
high similarity near the peak. When using a multi-parameter method for recognition, both
pulses are recognized as NBEs, and using convolutional encoding features can distinguish
between the two. In addition, the multi-parameter method also requires detailed feature
engineering to extract the feature vectors of waveform time-domain features. When facing
different datasets, it requires multiple fine-tuning of feature vector selection to maintain
high performance, which has certain limitations and lower efficiency than convolutional
encoding features.

Table 6. Comparison of classification accuracy between time domain features and convolutional
coding features.

Method A Random Forest Classification Model Based on
Waveform Time-Domain Features

A Random Forest Classification Model Based on
Convolutional Encoding Features

Type IC CG NBE IC CG NBE
Accuracy 89% 90% 88% 97% 97% 97%
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4.2. Comparing Classification Methods Based on Waveform and Encoding Features

Wang et al. [11] applied deep learning methods to the classification of lightning signals.
The model structure of this method mainly consists of stacked convolutional layers and
pooling layers, and the classification results are ultimately obtained through fully connected
layers and output layers. The convolutional layer extracts different features of lightning
waveforms through convolutional kernels of different sizes, the pooling layer reduces the
dimensionality of the extracted features, and finally the fully connected layer integrates
all features to calculate the probability of each type included in the training set. In order
to compare with the effectiveness of this study, we tested the method proposed by Wang
et al. [11] using our dataset. We obtained the classification accuracy of two models for
three types of lightning and the time required for each model to recognize one pulse, as
shown in Table 7. For three types of lightning discharges, both classification methods



Remote Sens. 2024, 16, 965 11 of 13

maintained high recognition accuracy, with values of 99% and 97%, respectively. However,
the method based on convolutional encoding features had significantly better identification
speed than the CNN method, with recognition times for individual pulses of 300 µs and
28.5 µs, respectively. Considering the rapid progress of lightning positioning technology
and the increasing number of lightning discharge events captured within a unit time,
higher requirements are put forward for real-time identification speed. Compared to CNN
methods, the method proposed in this article can better meet the requirements of higher
performance real-time positioning services.

Table 7. Comparison of classification accuracy and recognition time between the CNN model and
convolutional coding features.

Method Waveform Based Convolutional Neural Network
Classification Model

A Random Forest Classification Model Based on
Convolutional Encoding Features

Single pulse
recognition
Time (µs)

300 28.2

Type IC CG NBE IC CG NBE
Accuracy 99% 99% 99% 97% 97% 97%

It is worth noting that the above comparison is a comparison of the effectiveness of
different identification methods. During the comparison process, the identification accuracy
obtained by each method is true. This is because for each method, we use the results
of manually identifying waveforms as the testing criteria. Using the results of manual
waveform identification as a standard is also a commonly used method in identifying other
lightning discharge signals, and its reliability has been widely proven. Due to the unique
waveform characteristics of discharge signals such as CG and NBEs involved in this article,
the results of manually identifying waveforms themselves are relatively reliable.

5. Conclusions

This article proposes a lightning classification method based on convolutional encod-
ing features, which can recognize and classify various types of lightning such as IC, CG,
and NBEs. The main results are as follows:

(1) This paper proposes a multi-type lightning discharge recognition method based on
encoding features and a random forest classifier. The method utilizes the excellent feature
extraction ability of convolutional neural networks to effectively extract the convolutional
encoding features of lightning waveform signals. After comparative testing, the random
forest classifier outperformed SVM in accuracy and recognition speed for the same dataset
classification. Therefore, we chose a random forest classifier as the final classifier for this
method. Comparative tests were conducted on two factors that may affect the classification
results; namely, the length of lightning pulse signals and the number of bits extracted from
convolutional encoding features. After verification, it was shown that when the pulse
length is 120 µs and 8-bit convolutional encoding features are extracted, this method can
achieve a high recognition accuracy of 97% for the IC, CG, and NBE lightning types;

(2) Compared with multi-parameter classification methods, the new method solves
the problem that multi-parameter classification methods cannot accurately identify similar
cloud discharge signals (such as NBEs and cloud flash pulses), and also improves the
classification accuracy of IC and CG, which to some extent reduces the complexity of
lightning signal classification tasks. It was found that for the same set of data, the new
method has a higher classification accuracy for the three types of lightning than the multi-
parameter classification method, with an accuracy rate of about 97%. In addition, the new
method does not require detailed feature engineering to extract pulse time-domain features,
such as rising edge time, falling edge time, pulse width, and peak to peak ratio before and
after the pulse, reducing the possibility of low accuracy caused by human error;

(3) Compared with waveform classification methods based on convolutional neural
networks, our method can quickly identify lightning signals. From the recognition results,
both methods have high recognition accuracy, with an accuracy difference of only about
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2%. The time required for the recognition of single pulse signals by the new method
is about one-tenth of that of waveform classification methods based on convolutional
neural networks. The recognition speed has been greatly improved. The method can also
quickly classify lightning signals while maintaining high classification accuracy, providing
important support for real-time positioning business applications.

The type of lightning discharge is a key parameter for lightning monitoring and
research. High-precision lightning classification information can enhance the applicability
of lightning positioning data and can also be used for positioning, reducing the error of
lightning positioning to a certain extent. In addition, this method is not only applicable
to the classification of CG, IC, and NBEs, but can also be extended to identify more types
of lightning discharges. Currently, various total lightning positioning technologies have
been applied to business positioning systems. However, due to the complexity of cloud
flash signals, there are many errors in using traditional signal features to identify lightning
discharge types. The method proposed in this article can be applied to business positioning
systems in two ways. The first way is to apply the feature extraction model to each
substation of the lightning positioning system, extract the encoded features in real time,
and send them to the central station. At the central station, the lightning type identification
results are obtained through a random forest classification model. The second approach
is to directly use the feature extraction model and random forest classification model
proposed in this article in the substations to obtain the lightning discharge type results, and
then send the lightning signal classification results to the central station.
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