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Abstract: Multi-view stereo plays an important role in 3D reconstruction but suffers from low recon-
struction efficiency and has difficulties reconstructing areas with low or repeated textures. To address
this, we propose MVP-Stereo, a novel multi-view parallel patchmatch stereo method. MVP-Stereo
employs two key techniques. First, MVP-Stereo utilizes multi-view dilated ZNCC to handle low
texture and repeated texture by dynamically adjusting the matching window size based on image
variance and using a portion of pixels to calculate matching costs without increasing computational
complexity. Second, MVP-Stereo leverages multi-scale parallel patchmatch to reconstruct the depth
map for each image in a highly efficient manner, which is implemented by CUDA with random
initialization, multi-scale parallel spatial propagation, random refinement, and the coarse-to-fine
strategy. Experiments on the Strecha dataset, the ETH3D benchmark, and the UAV dataset demon-
strate that MVP-Stereo can achieve competitive reconstruction quality compared to state-of-the-art
methods with the highest reconstruction efficiency. For example, MVP-Stereo outperforms COLMAP
in reconstruction quality by around 30% of reconstruction time, and achieves around 90% of the
quality of ACMMP and SD-MVS in only around 20% of the time. In summary, MVP-Stereo can effi-
ciently reconstruct high-quality point clouds and meet the requirements of several photogrammetric
applications, such as emergency relief, infrastructure inspection, and environmental monitoring.

Keywords: patchmatch stereo; parallel propagation; multi-view stereo; 3D reconstruction; reconstruction
efficiency; photogrammetric applications

1. Introduction

Three dimensional reconstruction based on RGB images is more convenient and less
costly compared to RGB-D sensors and lasers, and has a very wide range of applications in
various industries [1–3], laying the foundation for 3D perception [4–8]. Generally, the 3D
reconstruction pipeline includes structure from motion (SfM) [9,10], multi-view stereo
(MVS) [11–17], mesh reconstruction [18–22] and texture mapping [23], where MVS tries to
obtain correspondence between pixels on images to reconstruct a dense 3D point cloud.
With the rapid development of sensors, such as the charge-coupled device (CCD) and the
complementary metal oxide semiconductor (CMOS), and delivery platforms, such as the
mobile phone and the unmanned aerial vehicle (UAV), the quality and quantity of images
have been greatly improved, making it an urgent need to improve the reconstruction
efficiency of MVS while maintaining the reconstruction quality.

A large amount of MVS methods have been proposed in the field of computer vi-
sion [15–17] and photogrammetry [1,11–14]. Based on the image features used for pixel
matching, MVS methods can be divided into traditional methods and learning-based meth-
ods. Traditional methods use handcrafted features for pixel matching, while learning-based
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methods leverage high-level semantic features captured by a convolutional neural network
(CNN) or Transformer.

1.1. Traditional MVS Methods

Traditional MVS methods can be classified into four categories [24–26], including voxel-
based methods, surface evolution methods, patch-based methods, and depth map fusion
methods. Voxel-based methods [27,28] split the space into several voxels and classify these
voxels to estimate the 3D shape. Surface evolution methods [29,30] refine a rough surface via
photometric consistency to reconstruct a high-quality surface. Patch-based methods [31–34] first
detect feature points from texture-rich regions and gradually propagate depth information
to neighboring pixels to obtain dense point cloud. However, these methods suffer from
computation complexity and cannot be directly applied to large-scale scenes.

Depth map fusion methods are the dominant pipeline of MVS [15–17,31,35–38], which
simplifies MVS to stereo matching by first estimating depth maps for each view and then
fusing multiple depth maps to reconstruct dense point cloud [15,39]. Compared with
other MVS methods, depth map fusion methods can directly work on large scenes and
are easier for parallel compute depth maps for each image [15]. A straightforward idea
is utilizing stereo matching methods to reconstruct disparity maps from each pair after
stereo rectification, where the matching problem decreases to a one-dimensional search
problem. SGM [40] is one of the most popular stereo matching methods [26], which
builds a two-dimensional cost volume to determine disparity through locally aggregated
costs. Following SGM, Rothermel et al. [35] improves the reconstruction efficiency of
SGM via a coarse-to-fine strategy to narrow disparity search ranges at higher resolutions,
and Hernandez-Juarez et al. [41] implements SGM on an embedded graphics processing
unit (GPU) device to reliably produce disparity in real-time. Furthermore, Li et al. [36]
utilizes a guided median filter post-processing step to refine the disparity generated by
SGM, and Kuhn et al. [42] tries to model the uncertainty of disparity maps obtained from
SGM to produce high-quality point clouds. However, stereo matching methods are not
suitable for MVS, as they need to perform several stereo rectifications for each image, which
has several neighbor images, and estimate disparity maps for each pair separately without
benefiting from multi-view constrain.

Considering limitations of stereo matching methods, researchers extend patchmatch
stereo [43] from stereo matching to multi-view stereo, which reconstructs the disparity
map by random searching and spatial propagation without using the two-dimensional cost
volume. Compared to SGM-based methods, patchmatch stereo does not need to build a
two-dimensional cost volume for each pixel, and it is more friendly for high-resolution
images and large scenes. Cernea [44] and Shen [15] first extend patchmatch stereo to MVS
and determine the depth of each pixel by calculating photometric consistency via homogra-
phy [45]. Zheng et al. [46] and Schönberger et al. [47] incorporate pixel-level view selection
with depth estimation through a probabilistic framework. To improve the reconstruction
efficiency, Galliani et al. [16] utilizes a red–black board to implement the patchmatch stereo,
which parallelly operates half of all pixels in an image on a consumer-grade GPU. Then, Xu
and Tao [37] employs an adaptive red–black board to parallelly propagate depth and pixel
visibility and deals with low-texture regions by the multi-scale geometric consistency guid-
ance through a coarse-to-fine strategy. To improve the reconstruction quality of low-texture
regions, Kuhn et al. [48], and Romanoni and Matteucci [49] utilize superpixels to improve the
completeness of the depth map through plane-fitting on superpixel regions. Xu et al. [50] uses
the sparse feature points from SfM to initialize the depth map and further propagate planes
with the related 2D image patch with less ambiguity. Meanwhile, Wang et al. [51] utilizes
the mesh reconstructed on coarse images to guide the reconstruction of the high-resolution
images. Xu et al. [38] assumes low-texture areas are piecewise planar and introduces plane
priors through triangulating sparse reliable points in the 2D image domain. Stathopoulou
et al. [52] uses plane priors guided by quadtree structures to enhance the propagation of more
reliable depth estimates. Yuan et al. [53] relies on the Segment Anything Model to distin-
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guish semantic instances in scenes and enhance the matching cost and the propagation in
patchmatch to deal with texture-less regions. However, these methods struggle to balance
reconstruction quality with reconstruction efficiency.

1.2. Learning-Based MVS Methods

The development of deep learning has brought new ideas to MVS, where CNN [54]
or Transformer [55] can find robust semantic features. Yao et al. [54] proposes MVSNet,
which firstly extracts the visual features from an image using a CNN, and then partitions
the 3D space into a series of parallel planes based on the given depth range to construct
a 3D matching cost volume by differential homography, and finally regresses the depth
map by the 3D convolution. Following MVSNet, a large number of deep learning methods
have emerged in recent years [56–63]. However, learning-based methods require a large
amount of data to train the network and suffer from low generalization abilities on unseen
scenes. Moreover, learning-based methods cannot directly deal with high-resolution images
because of high GPU memory consumption [64].

1.3. Our Contributions

In this paper, we propose MVP-Stereo, a novel multi-view patchmatch stereo method.
On the one hand, we introduce a multi-view dilated zero-mean normalized cross-correlation
(ZNCC) to deal with low texture and repeated texture with a dilated matching window to
avoid increasing computation complexity, inspired by dilated convolution [65]. On the
other hand, we propose a multi-scale parallel patchmatch implemented by compute unified
device architecture (CUDA), which contains random initialization, multi-scale parallel spa-
tial propagation, random refinement, and the coarse-to-fine strategy. Unlike Gipuma [16],
ACMM [37], and ACMMP [38] directly performing parallel spatial propagation, our method
proposes multi-scale parallel spatial propagation, which splits pixels into pixel blocks with
different scales and propagates the best plane parameters in each pixel block to accelerate
converge speed. To validate the proposed method, we conduct qualitative and quantitative
experiments on the Strecha dataset [66] and the ETH3D benchmark [67], and compare with
state-of-the-art methods like COLMAP [47], OpenMVS [15,44], Gipuma [16], ACMM [37],
ACMMP [38], and SD-MVS [53]. We further build a UAV dataset containing three scenes
to evaluate the performance of MVS-Stereo. Experimented results show that our method,
MVP-Stereo, can achieve competitive reconstruction quality with the highest efficiency.
Our contributions are as follows:

1. We introduce a multi-view dilated ZNCC, which can dynamically adjust the match-
ing window size by calculating image variance and reducing computational complexity
through a dilated window strategy.

2. We propose a multi-scale parallel patchmatch method, which runs on the GPU,
with the multi-scale parallel spatial propagation and the coarse-to-fine strategy to speed up
the convergence of depth maps.

3. We propose MVP-Stereo, a multi-view patchmatch stereo method, which achieves
competitive reconstruction quality with the highest reconstruction efficiency compared to
state-of-the-art methods.

This paper is organized as follows: Section 2 presents details of the proposed method,
whereas Section 2.1 describes preliminary knowledge of patchmatch stereo and Section 2.2
introduces our method MVP-Stereo. In Section 3, we conduct qualitative and quantitative
experiments on three datasets and compare our method with state-of-the-art methods. The
paper is finally concluded in Section 4.

2. Methods

In this section, we provide details of the proposed method. We briefly introduce the
patchmatch stereo in Section 2.1 to establish preliminary knowledge. We then present
our method MVP-Stereo in Section 2.2, as Figure 1 shows. Specifically, we first describe
parameters that need to be estimated, including the depth, the normal, and the window
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radius. We then introduce how to calculate the multi-view photometric consistency based
on the multi-view dilated ZNCC inspired by dilated convolution [65]. We finally explain
the multi-scale parallel patchmatch implemented by CUDA.

Figure 1. The pipeline of MVP-Stereo. Given the source image and several neighbor images, MVP-
Stereo uses multi-scale parallel spatial patchmatch to calculate the depth, the normal, and the window
radius, with the matching cost calculated by the multi-view dilated ZNCC. After reconstructing all
depth maps, MVP-Stereo generates the point cloud through depth map fusion [15,39].

2.1. Patchmatch Stereo

Given two rectified images Ii and Ij, patchmatch stereo [43] aims to find a correspond-
ing pixel pj in image Ij for each pixel pi in image Ii to maximizes photometric consistency,
as Equation (1) shows, where m is the aggregated matching cost, Wpi is the window around
pi, fpi (p) is the matched pixel defined by the disparity fpi around the pixel pi, F is the set
of all possible plane hypotheses.

arg min
f∈F

∑
pi∈Ii ,p∈Wpi

m(Ii(p), Ij( fpi (p))) (1)

Unlike other stereo estimation methods that rely on the front-parallel assumption [40],
patchmatch stereo defines a slanted plane for each pixel pi using three parameters a fpi

, b fpi
, c fpi

to calculate the matched pixel pj, as shown in Equation (2), where xpi , ypi is the position of
pi on the image plane.

pj = fpi (p) = p − (a fpi
xpi + b fpi

ypi + c fpi
) (2)

As the size of F is infinite, it is impossible to directly build a cost volume to find the
best plane. Patchmatch stereo solves this problem using an iterative randomized method
containing random initialization, spatial propagation, and random refinement.

The random initialization assigns an initial plane to each pixel. Although it is im-
possible to correctly set the plane parameters for all pixels through random initialization,
some pixels can be assigned the correct plane parameters by chance. For example, if we
assume the probability of a pixel being assigned the correct plane parameters randomly is
c, the probability that all pixels in an image of width w and height h are assigned incorrect
planes is (1 − c)wh, which approaches zero for high-resolution images.

After random initialization, patchmatch stereo uses spatial propagation and random
refinement to find the optimal plane parameters for each pixel in Ii through several iter-
ations. Spatial propagation aims to identify better plane parameters from nearby pixels,
and random refinement aims to find better plane parameters through random searching
from all possible plane parameters. During each iteration, patchmatch stereo starts from
the top left or bottom right of the image and sequentially updates the plane parameters
for each pixel, as Figure 2 shows. Patchmatch stereo can reconstruct high-quality disparity
maps within three iterations, and each pixel only needs four neighboring pixels in the
spatial propagation and six random searches in the random refinement.
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(a) Sequential propagation from top to bottom (b) Sequential propagation from bottom to top

Figure 2. Sequential propagation. Patchmatch stereo [43] uses two types of sequential propagation
according to the propagation direction, as (a,b) show. During stereo estimation, patchmatch stereo
alternates between these propagations during iterations.

2.2. MVP-Stereo

Following patchmatch stereo [43], we propose MVP-Stereo, a multi-view patchmatch
stereo method to iteratively reconstruct the depth map. Firstly, we explain how to define a
slanted plane for each pixel and the corresponding parameters that need to be estimated
in Section 2.2.1. Secondly, in Section 2.2.2, we propose the dilated ZNCC to address
low-texture or repeated texture and extend the dilated ZNCC to multi-view. Finally, we
describe the details of multi-scale parallel patchmatch in Section 2.2, which contains random
initialization, multi-scale parallel spatial propagation, random refinement, and the coarse-
to-fine strategy. After reconstructing the depth map, MVP-Stereo follows [15,39] to filter
out noise, re-project the depth map to 3D space and generate the point cloud.

To simplify the following introduction, we define some symbols. Each source image
IS has several neighbor images INi , (1 <= i <= m), with intrinsic parameters KIS , KINi

and
extrinsic parameters, including rotation RIS , RINi

and camera center CIS , CINi
.

2.2.1. Estimated Parameter

Similar to patchmatch stereo [43], which builds a slanted plane to estimate the disparity
of each pixel, MVP-Stereo also assumes that each pixel p in image IS is located on a plane fp
[15,16,37,38]. However, instead of using fp to estimate the disparity, which is only workable
for two views, MVP-Stereo directly estimates the parameter of a 3D plane fp. Generally, fp
has three types of parameters, including the central point of the plane Pp = (XPp , YPp , ZPp),
the plane normal N⃗p = (XN⃗p, YN⃗p, ZN⃗p), and the plane radius Rp, as shown in Figure 3.

According to the multi-view geometry (MVG) [45], Pp can be re-parameterized by
the depth dp through Pp = dpK−1

IS
p̃ to reduce freedom from three to one, where p̃ is the

homograph representation of p. Meanwhile, we re-parameter the plane radius Rp by the
window radius around the pixel p on the image plane to simplify the calculation, based on
the assumption that nearby pixels are on the same plane. Therefore, MVP-Stereo needs to
estimate the depth dp, the normal N⃗p, and the window radius rp.
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Figure 3. Visualization of a plane. For each pixel p on the 2D coordinate o − uv of the reference image
IS, its corresponding 3D point Pp in the world coordinate Ow − XwYwZw lies in a finite 3D plane fp,
which is parameterized by the central point Pp of the plane, the normal N⃗p, and the plane radius Rp.
To ease calculation, we re-parameter Pp and Rp by the depth dp and the window radius rp.

2.2.2. Multi-View Dilated ZNCC

Given a plane fp, we use the ZNCC, which is suitable for high-resolution images [15],
to calculate photometric consistency to determine the best plane parameter, as Equation (3)
shows, where fp(p, INi ) is the matched pixel on one of the neighbor images INi , Wp is
the set of pixels within a window of radius rp around p, Ir(p) is the average pixel value
within the window around p, and INi ( fp(p)) is the average pixel value within the window
around fp(p). In practice, we use ZNCC = 1 − ZNCC to denote photometric consistency,
with smaller values indicating higher similarity.

ZNCC(IS, INi , p, fp) =
∑j∈Wp (IS(j)− IS(p))(INi ( fp(j, INi ))− INi ( fp(p, INi )))√

∑j∈Wp (IS(j)− IS(p))2 ∑j∈Wp (INi ( fp(j, INi ))− INi ( fp(p, INi )))
2

(3)

Based on the MVG [45], fp estimates the matched pixel of p on INi through homograph
mapping fp(p, INi ) = HSNi p̃, where HSNi is defined in Equation (4).

HSNi = KNi (RNi R
−1
S +

RNi (CS − CNi )N⃗T
p

N⃗T
p [p; dp]

)K−1
S (4)

However, ZNCC only works for two views, and we can not directly average photo-
metric consistency to extend ZNCC to multi-views, since a pixel p on the source image IS
may not be visible to all neighbor images because of occlusions. Therefore, we define a
minimal photometric consistency threshold Zmin to filter out the neighbor image whose
ZNCC is beyond the threshold and mark this image as invisible for this pixel. In the end,
we only average the ZNCC on visible images, as shown in Equation (5), where IV is the set
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of visible images and belongs to IN , |IV | is the size of the visible images. As for the plane
with no visible images, we directly set the multi-view matching cost to Zmax.

ZNCC(IS, p, fp) =


∑v∈IV

ZNCC(IS ,Iv ,p, fp)

|IV |
; |IV | >= 1

Zmax; |IV | = 0
(5)

Although ZNCC achieves impressive reconstruction quality, it still suffers from low
texture and repeated texture problems. Xu and Tao [37], Xu et al. [38], Romanoni and
Matteucci [49] try to overcome this limitation by introducing external constraints, and
Xu et al. [50] improves the reconstruction quality by increasing the window radius rp,
but all of these methods increase the computational complexity. Inspired by the dilated
convolution [65], we propose dilated ZNCC to balance the accuracy and the efficiency,
which utilizes a portion of pixels within the window to calculate photometric consistency,
as Figure 4 shows. For low texture and repeated texture areas, we increase rp to improve
the reception field of ZNCC without increasing the computational complexity. However,
unquestioningly increasing rp will lead to over-smooth reconstruction results. Therefore,
we propose a dynamic window adjustment strategy that strives to find a balance between
rd and the reconstruction quality, as Equation (6) shows, where σp is the variance of the
pixel values within the window around p, and β = exp(−max(σp/Tσ − 1, 0)). The pixel p
with σp lower than Tσ = 0.005 is considered as low texture or repeated texture.

ZNCC(IS, p, fp) = (
β

rp
+ (1 − β)rp)ZNCC(IS, p, fp) (6)

(a) rd = 1 (b) rd = 2 (c) rd = 3

Figure 4. Dilated window radius. Assuming that the number of pixels used to compute the ZNCC
is 3 × 3, we mark in (a–c) the pixels that need to be used as green when rd = 1, rd = 2 and rd = 3,
respectively. Although the reception field increases with a higher window radius rd, dilated ZNCC
does not increase the computation complexity.

2.2.3. Multi-Scale Parallel Patchmatch

Our method MVP-Stereo reconstructs the dense point cloud based on the depth map
fusion [24,26], and its core module is multi-scale parallel patchmatch (MSP-Patchmatch)
using multi-view dilated ZNCC, which reconstructs the depth map of the source image IS
through random initialization, multi-scale parallel spatial propagation, random refinement,
and the coarse-to-fine strategy. In this section, we describe the details of MSP-Patchmatch.

Random initialization: According to Section 2.2.1, we need to initialize three types of
parameters for all pixels in the source image IS, including the depth, the normal, and the
window radius. The initial depth dinit is randomly selected between the minimum depth
dmin and the maximum depth dmax, as Equation (7) shows, where δd is a random number
between 0 and 1 following the normal distribution. The initial normal N⃗init is randomly
generated by Equation (8) following Gipuma [16], where δn1 and δn2 are two random
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number between 0 and 1 following the normal distribution. As for the initial window
radius, we set sinit = 1.

dinit = dmin + (dmax − dmin)δd (7)

N⃗init = (1 − 2S, 2δn1

√
1 − S, 2δn2

√
1 − S), S = (δ2

n1
+ δ2

n2
) < 1 (8)

Multi-scale parallel spatial propagation: Unlike patchmatch stereo, which performs
sequentially spatial propagation, MSP-Patchmatch utilizes multi-scale parallel spatial prop-
agation. The straightforward way to apply parallel spatial propagation is utilizing the
red–black board [16], which only updates half of the pixels in each iteration. However,
parallel spatial propagation is easy to stack in local minimal and needs more plane hypothe-
ses from adjacent pixels [16,37,38]. To deal with this problem, we propose a multi-scale
parallel spatial propagation pipeline. First, We build a multi-scale red–black board by
dividing all pixels into several blocks of different sizes. We then build the perpendicular
red–black board (PRB board) and the diagonal red–black board (DRB board), where each
red block in the PRB board has four adjacent black boards from top, down, left, and right.
At the same time, each red block in the DRB board has four adjacent black boards from
left–up, right–up, right–down, and left–down. Compared to using a PRB board alone,
a DRB board improves the propagation speed. When diagonally adjacent blocks have better
planar parameters, a DRB board requires one propagation, while a PRB board requires
two propagations. Finally, we parallelly propagate plane parameters between adjacent
blocks. More specifically, we first find out the best plane parameters by the multi-view
dilated ZNCC in each block, then propagate adjacent plane parameters to the central block,
and finally find the best plane parameters. Therefore, MSP-Patchmatch finds the best plane
parameters in a pixel block and only updates a portion of pixels. Figure 5 shows how to
build a multi-scale red–black board on a 12 × 12 image with block size ranges from 1 to 3
and how to propagate plane parameters. In MVP-Stereo, we build a multi-scale red–black
board with block size ranges from smin = 1 to smax = 6. We conduct Piter iterations and
perform spatial propagation from a larger block size to a smaller one in each iteration.

Random refinement: In each iteration, we refine the plane parameters with random
refinement after spatial propagation. Random refinement contains local and global ran-
dom searching. Local random searching perturbs the current plane parameters within
a neighborhood and selects the best plane parameters that maximize multi-view photo
consistency. Equation (9) shows how to generate the random depth dsear, where ξd is
the searching scale and δd is a random number. Equation (10) generates the random nor-
mal N⃗sear, where ξn is the searching scale and N⃗init is coming from Equation (8). As for
the window radius, we generate a random scale in each search as Equation (11) shows,
where rmin = 1 and rmax = 6 are the minimal and maximum window radius. Meanwhile,
the global random searching only applies when the propagation fails to find valid plane
parameters, i.e., ZNCC(IS, p, fp) > Zmax. During the global random searching, the random
depth comes from Equation (7), the random normal comes from Equation (8), and the
random window radius comes from Equation (11). We conduct Riter random searching
during each iteration behind spatial propagation.

dsear = dold + (dmax − dmin)ξdδd (9)

N⃗sear = N⃗old + N⃗initξn, ||N⃗sear||2 = 1 (10)

sinit = (rmax − rmin) ∗ δr + rmin (11)

Coarse-to-fine: In addition, we use the coarse-to-fine strategy as ACMM [37] and
ACMMP [38] do, where we reconstruct the coarse depth map at low-resolution images
and then estimate the fine depth map at original resolution images. However, we do not
use random initialization at the fine stage. We initialize the fine stage by upsampling
the depth map and normal map directly from the coarse stage and setting rp = 1. In
addition, we reduce searching scales ξd and ξn in the fine stage in anticipation of obtaining
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finer planar parameters. Specifically, we set ξd = 0.1, ξn = 0.1 at the coarse stage and
ξd = 0.01, ξn = 0.01 at the fine stage.

(a) pixel block with s = 1 (b) pixel block with s = 2 (c) pixel block with s = 3

(d) PRB board when s = 1 (e) PRB board when s = 2 (f) PRB board when s = 3

(g) DRB board when s = 1 (h) DRB board when s = 2 (i) DRB board when s = 3

Figure 5. Multi-scale parallel spatial propagation. We build a multi-scale red–black board on an
image with resolution 12 × 12. We first build pixel blocks with scale ranges from 1 to 3 in (a–c). We
then build three PRB boards in (d–f), and three DRB boards in (g–i). Finally, we propagate plane
parameters from four pixel blocks marked in green to one central pixel block marked in yellow, where
only pixels with the highest photometric consistency marked in blue are used.

3. Experiments
3.1. Datasets

We conduct qualitative and quantitative experiments on two datasets, including the
Strecha dataset [66] and the ETH3D benchmark [67]. The Strecha dataset contains two
scenes with ground truth depth maps, including Fountain and Herzjuse. The ETH3D
benchmark comprises several indoor and outdoor scenes and is divided into training and
test splits. The training split contains 13 scenes for tuning our method and verifying the
effectiveness of each component. The test split contains 12 scenes for evaluating different
approaches. In addition, we further qualitatively evaluate our method on three datasets
captured by a UAV. Table 1 represents details of used datasets in our experiments.
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Table 1. Details of three datasets. Superscripts 1, 2, 3, and 4 indicate indoor scenes in the train split,
outdoor scenes in the train split, indoor scenes in the test split, and outdoor scenes in the test split in
the ETH3D benchmark, respectively.

Datasets Scene Image Number Resolution

Strecha [66] Fountain, Herzjesu 11, 8 3072 × 2048

ETH3D [67]

(courtyard, electro, facade, meadow,
playground, terrace) 1, (delivery_area, kicker,

office, pipes, relief, relief_2, terrains) 2,
(boulders, observatory, terrace_2) 3,

(botanical_garden, bridge, door,
exhibition_hall, lecture_room, living_room,

lounge, old_computer, statue) 4

(38, 45, 76, 15, 38, 23) 1, (44, 31, 26, 14, 31, 31,
42) 2, (26, 27, 13) 3, (30, 110, 7, 68, 23, 65, 10,

54, 11) 4
around 6200 × 4130

UAV
P104 104 5472 × 3468
P114 114 5456 × 3632
P139 139 6000 × 4000

3.2. Implementation

We implement our method MVP-Stereo on CUDA in Visual Studio 2015. To be as
efficient as possible, we use the texture memory to store the reference image and the
neighbor images. Meanwhile, we utilize curandGenerateUniform to generate random
numbers efficiently. In all experiments, we use a personal computer (PC) equipped with
an NVIDIA RTX1080Ti, 64G RAM (random access memory), and an Intel i5 processor.
Moreover, we use uniform hyperparameter settings on all datasets. We set Wp = 5,
Zmin = 0.3, Zmax = 0.6 in the multi-view dialted ZNCC. We set Piter = 6, Riter = 6 in the
multi-scale parallel spatial patchmatch. As for dmin and dmax, we obtain them from the
sparse points provided by COLMAP [9].

3.3. Evaluation Metrics

We follow ACMM [37] and ACMMP [38] to evaluate the reconstruction quality of
different methods. On the Strecha dataset, we evaluate the quality of depth maps recon-
structed by different methods. For each reconstructed depth map, the quality is calculated
by the percent of pixels whose distance between the ground truth depth map is below the
threshold Td. On the ETH3D benchmark, we evaluate point clouds generated by different
methods, including completeness, accuracy, and F1. The completeness is calculated by
counting the percent of points in the ground truth point cloud whose distance from the
nearest point in the reconstructed point cloud is below the threshold Tc. The accuracy
is calculated by counting the percent of points in the reconstructed point cloud whose
distance from the nearest point in the ground truth point cloud is below the threshold Tc.
As the completeness and the accuracy are complementary, we also calculate F1, which
averages the completeness and the accuracy. In addition to the reconstruction quality,
we measure the time required to reconstruct the point cloud to evaluate the reconstruc-
tion efficiency of different methods. Generally, quality, completeness, accuracy, and F1
are measured in percentages without units, while efficiency is measured in seconds. We
compare our method with several state-of-the-art methods, including COLMAP [47], Open-
MVS [15,44], Gipuma [16], ACMM [37], ACMMP [38], and SD-MVS [53]. In all experiments,
we set Td = 2 cm, 10 cm and Tc = 2 cm, 10 cm.

3.4. Experiments on the Strecha Dataset

Table 2 shows the quantitative results on the Strecha dataset. When Tdepth = 2 cm, our
method achieves 97.5%, 94.5%, and 95.1% of the reconstruction quality of COLMAP [47],
ACMM [37], and ACMMP [38] on the Fountain scene, while only requiring 7.8%, 25.3%,
and 20.5% of their reconstruction time, respectively. On the Herzjesu scene, our method
achieves 94.9%, 89.7%, and 91.5% of the reconstruction quality of COLMAP, ACMM,
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and ACMMP using only 7.6%, 38.3%, and 21.8% of their reconstruction times, respec-
tively. When Tdepth = 10 cm, the difference in reconstruction quality between our method
and COLMAP, ACMM, and ACMMP remains small. Meanwhile, on both Fountain and
Herzjesu scenes, our method outperforms OpenMVS [15,44] and Gipuma [16] in recon-
struction quality and reconstruction time, using approximately one-third of their time
but obtain higher quality. Overall, our method demonstrates the highest reconstruction
efficiency among all methods while achieving competitive reconstruction quality compared
to state-of-the-art methods.

Table 2. Reconstruction quality and reconstruction time on the Strecha dataset [66]. ↑ means the
higher the better, and ↓ means the lower the better.

Method Fountain Herzjesu

Quality (%) Quality (%)

Time (s) ↓ Td = 2 cm ↑ Td = 10 cm ↑ Time (s) ↓ Td = 2 cm ↑ Td = 10 cm ↑

COLMAP [47] 1046.88 82.7 97.5 709.14 69.1 93.1
OpenMVS [15,44] 191.13 77.1 90.7 150.48 65.5 82.2
Gipuma [16] 235.58 69.3 83.8 134.34 28.3 45.5
ACMM [37] 321.66 85.3 97.4 141.26 73.1 93.2
ACMMP [38] 395.48 84.8 97.2 248.28 72.6 93.5
Ours 81.21 80.6 93.1 54.10 65.6 84.6

The reconstruction results of our method are shown in Figure 6, including normal
maps, depth maps, and point clouds. Different colors in the normal map mean different
orientations. Different colors in the depth map indicate different distances, where blue is
closer and red is farther. Different colors of the point cloud are obtained by projecting each
point onto the image plane and sampling the RGB information. These visualization results
show that our method can reconstruct high-quality point clouds with a simple random
search and parallel propagation.

(a) RGB (b) normal map (c) depth map (d) point cloud

Figure 6. Reconstruction results on the Strecha dataset. We visualize an image from each scene in
(a) with a normal map in (b) and a depth map in (c), which are reconstructed by our method. We
further visualize point clouds generated by our method in (d).

3.5. Experiments on the ETH3D Benchmark

We quantitatively evaluate our method on the test split of the ETH3D benchmark
and show results in Table 3. ACMMP [38] achieves the highest F1 score, surpassing
other methods. When Tc is set to 2 cm, the F1 of our method reaches 83.80% and 91.86%
of ACMMP on indoor and outdoor scenes, respectively. However, our method only
requires 16.25% and 17.14% reconstruction time of ACMMP in both the indoor and outdoor
datasets. Although SD-MVS [53] ranks second on the F1 score, our method obtains 84.14%
and 98.72% of this method with 17.47% and 20.21% reconstruction time on indoor and
outdoor scenes. Gipuma [16] is the second most efficient of all the methods, and our
method needs 69.58% and 64.05% of its reconstruction time on indoor and outdoor scenes,
respectively, but achieves an improvement of 77.88% and 47.07% in F1. While COLMAP [47]
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achieves the best results in accuracy, it is not good in completeness and reconstruction
efficiency. Our method achieves competitive reconstruction quality to OpenMVS [15,44] and
ACMM [37], with little difference in F1, but our method only requires roughly one-third of
the reconstruction time. Overall, our method achieves the highest reconstruction efficiency
on the ETH3D benchmark while guaranteeing a reconstruction quality competitive to
state-of-the-art methods. To be noted, all visualization results are available on the ETH3D
benchmark through the following link https://www.eth3d.net/result_details?id=1090
(accessed on 1 February 2024).

Table 3. Reconstruction quality and reconstruction time on the test split of the ETH3D benchmark. ↑
means the higher the better, and ↓ means the lower the better.

Method Tc = 2 cm (%) Tc = 10 cm (%)

Time (s) ↓ comp ↑ acc ↑ F1 ↑ comp ↑ acc ↑ F1 ↑

indoor

COLMAP [47] 1869.33 59.65 91.95 70.41 82.82 98.11 89.28
OpenMVS [15,44] 2263.08 75.92 82.00 78.33 88.84 95.20 91.68
Gipuma [16] 767.00 31.44 86.33 41.86 52.22 98.31 65.41
ACMM [37] 1332.72 72.73 90.99 79.84 88.22 97.79 92.50
ACMMP [38] 3284.78 86.90 91.36 88.86 97.34 97.76 97.53
SD-MVS [53] 3055.56 87.49 89.88 88.50 97.40 97.70 97.53
Ours 533.67 76.23 73.51 74.46 85.83 95.28 90.08

outdoor

COLMAP [47] 1025.33 72.98 92.04 80.81 89.70 98.64 93.79
OpenMVS [15,44] 1459.67 86.41 81.93 84.09 96.48 96.32 96.40
Gipuma [16] 458.00 45.30 78.78 55.16 62.40 97.36 75.18
ACMM [37] 662.07 79.17 89.63 83.58 90.43 98.85 94.35
ACMMP [38] 1711.67 86.58 90.55 88.32 97.01 98.79 97.87
SD-MVS [53] 1451.45 86.71 86.22 87.50 97.06 96.35 97.53
Ours 293.33 79.79 82.71 81.13 88.93 96.92 92.71

To further compare different methods, we select three scenes from indoor and outdoor in
the test split of the ETH3D benchmark and visualize reconstruction results in Figures 7 and 8.
In the indoor scenes, COLMAP [47], OpenMVS [15,44], and Gipuma [16] all suffer from
low texture and repeated texture, and there are a large number of empty space in the
reconstructed point clouds, especially in the door scene, where the walls do not reconstruct
at all. ACMM [37], ACMMP [38], SD-MVS [53], and our methods all recover relatively
complete reconstruction results in the indoor scene. In the outdoor scene, the reconstruction
quality of all methods is relatively complete, except for Gipuma, which has relatively poor
reconstruction quality because the texture is much richer in the outdoor scene. However,
ACMM, ACMMP, and SD-MVS, in order to improve the reconstruction quality of the low
texture region, are disturbed by the sky region, and there is a lot of noise in the point cloud.
Our method effectively removes the influence of the sky by multi-view dialted ZNCC
without generating noise.
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Figure 7. Indoor reconstruction results on the test split of the ETH3D benchmark [67]. We com-
pare our method with COLMAP [47], OpenMVS [15,44], Gipuma [16], ACMM [37], ACMMP [38],
and SD-MVS [53] on three selected scenes. To be noted, the ETH3D benchmark provides these
visualizations.
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Figure 8. Outdoor reconstruction results on the test split in the ETH3D benchmark [67]. We visualize
reconstruction from COLMAP [47], OpenMVS [15,44], Gipuma [16], ACMM [37], ACMMP [38],
SD-MVS [53], and our methods on three selected indoor scenes. It is worth noting that the ETH3D
benchmark provides these visualization results.

3.6. Ablation Experiments

To verify the effectiveness of proposed modules, including the multi-view dilated
ZNCC, multi-scale parallel spatial propagation, and coarse-to-fine, we conduct several abla-
tion experiments on the train split of the ETH3D benchmark. Meanwhile, unlike sequential
propagation, which propagates the planar hypothesis among all pixels, multi-scale parallel
spatial propagation only propagates the plane hypothesis between nearby pixels. Although
increasing the number of iterations Piter can propagate the plane hypothesis further, we
analyze how to set Piter to ensure the reconstruction quality.

Table 4 shows the reconstruction results of different modules in MVP-Stereo on the
train split of the ETH3D benchmark. When Tc is set to 2 cm, the F1 score without using
any module is 59.39 and 59.70 on indoor and outdoor scenes, respectively. With the help of
the multi-view dilated ZNCC, the reconstruction quality of the indoor and outdoor scenes
is substantially improved, where the F1 score is 65.26 and 66.43, respectively. The recon-
struction quality is further improved after replacing the parallel spatial propagation with
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multi-scale parallel spatial propagation, where the F1 score is 67.07 and 68.68, respectively.
After applying the coarse-to-fine strategy, the F1 score reaches 71.43 and 70.60, respectively.
Compared to the version without any proposed modules, MVP-Stereo improves the F1
score by 12.04 and 10.90. MVP-Stereo achieves similar results when Tc is set to 10 cm.
Although multi-scale parallel spatial propagation and the coarse-to-fine strategy improve
the reconstruction quality, the multi-view dilated ZNCC plays a vital role in improving the
reconstruction quality among proposed modules, as the ETH3D benchmark contains lots
of low and repeated texture regions.

Table 4. Ablation experiments of different modules in our method. The d-Z indicates the multi-view
dilated ZNCC, MSP means multi-scale parallel spatial propagation, and C2F represents the coarse-to-
fine strategy. × means not using the module, and ✓ means using the module. ↑ means the higher
the better, and ↓ means the lower the better.

Tc = 2 cm (%) Tc = 10 cm (%)

d-Z MSP C2F comp ↑ acc ↑ F1 ↑ comp ↑ acc ↑ F1 ↑

indoor

× × × 50.09 82.21 59.39 67.14 97.51 78.23
✓ × × 59.19 77.44 65.26 72.79 95.77 81.69
✓ ✓ × 61.20 78.56 67.07 74.01 95.90 82.51
✓ ✓ ✓ 70.07 74.39 71.43 82.97 94.70 88.09

outdoor

× × × 51.10 76.57 59.70 65.60 97.48 77.30
✓ × × 61.35 74.37 66.43 73.57 97.08 83.02
✓ ✓ × 64.13 74.95 68.68 76.23 97.13 84.82
✓ ✓ ✓ 69.97 72.08 70.60 80.70 95.23 87.32

In order to qualitatively compare the impact of the different modules on the reconstruc-
tion quality, we visualize six scenes from the train split of the ETH3D benchmark, as shown
in Figures 9 and 10. With the help of different modules, MVP-Stereo successfully deals with
low texture and repeated texture areas and reconstructs high-quality point clouds from
indoor and outdoor scenes.
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✓
✓
✓

(a) delivery (b) kicker (c) relief
Figure 9. Indoor reconstruction results on the train split in the ETH3D benchmark [67] with different
modules, where ××× means does not use any extra modules, ✓×× means use the dilated ZNCC,
✓✓× means use the dilated ZNCC and the multi-scale parallel spatial propagation, and ✓✓✓
means use all modules.
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(a) courtyard (b) facade (c) terrace
Figure 10. Outdoor reconstruction results on the train split in the ETH3D benchmark [67] with
different modules, where × × × means does not use any extra modules, ✓ × × means use the
dilated ZNCC, ✓✓× means use the dilated ZNCC and the multi-scale parallel spatial propagation,
and ✓✓✓ means use all modules.

Considering that multi-scale parallel spatial propagation propagates between neigh-
boring pixels, MVP-Stereo requires more iterations Piter to improve the reconstruction
quality. Therefore, we conduct ablation experiments on Piter to determine how to set it
to ensure the reconstruction quality. Table 5 shows reconstruction quality with different
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iterations on the train split of the ETH3D benchmark. When Tc is set to 2 cm, the F1 score is
only 33.73 and 37.98 on indoor and outdoor scenes as Piter = 1. As Piter gradually increases
to 2, 4, 6, there are 34.61, 2.13, and 0.96 improvements in F1 in indoor scenes. At the same
time, there are 29.49, 2.51, and 0.62 improvements in F1 scores in outdoor scenes. When
Tc = 10 cm, the F1 score is only 54.91 and 61.22 as Piter = 1. When Piter is gradually raised
to 2, 4, 6, the F1 score on indoor scenes has 31.19, 1.54, and 0.45 improvement, while the
F1 score has 22.98, 2.48, 0.64 improvement on outdoor scenes. Overall, as Piter increases,
the reconstruction quality increases but with more minor improvement. The reconstruction
quality is almost not improved much when Piter = 6, which indicates that MVP-Stereo
converges very fast and does not require a lot of iterations. Compared with sequential prop-
agation, which usually requires three iterations to complete convergence, MSP-Patchmatch
does not require a high number of iterations.

Table 5. Ablation experiments on the number of iterations Piter. ↑ means the higher the better.

Tc = 2 cm (%) Tc = 10 cm (%)

Piter comp ↑ acc ↑ F1 ↑ comp ↑ acc ↑ F1 ↑

indoor

1 27.49 51.49 33.73 45.06 76.63 54.91
2 66.24 71.99 68.34 80.51 93.23 86.10
4 68.84 73.73 70.47 82.36 94.39 87.64
6 70.07 74.39 71.43 82.97 94.70 88.09

outdoor

1 30.80 53.73 37.98 49.18 86.35 61.22
2 64.93 71.25 67.47 76.00 95.52 84.20
4 68.77 72.22 69.98 79.62 95.88 86.68
6 69.97 72.08 70.60 80.70 95.23 87.32

3.7. Experiments on the UAV Dataset

Due to the lack of evaluation datasets in UAV, we use a UAV to collect three scenes to
qualitatively evaluate MVP-Stereo. Compared to the Strecha dataset [66] and the ETH3D
benchmark [67], the UAV dataset has more images in each scene and covers larger areas with
complex structures. As Gipuma [16] and ACMM [37] can not directly handle large scenes,
and ACMMP [38] is extremely time-consuming, we compare our method to COLMAP [47]
and OpenMVS [15,44]. Table 6 shows the reconstruction time of different methods, where
our method is the most efficient and only needs around one-fourth of their time. Without
adjusting any parameters, MVP-Stereo can reconstruct high-quality, dense point clouds at
P104, P114, and P139, and the reconstruction results are shown in Figure 11.

Table 6. Reconstruction time on the UAV dataset. ↓ means the lower the better.

Method Time (s) ↓

P104 P114 P139

COLMAP [47] 5905 6916 8403
OpenMVS [15,44] 4510 6876 7868
Ours 1146 1542 1993

Figure 11. Cont.
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(a) RGB (b) normal map (c) depth map (d) point cloud
Figure 11. Reconstruction results on the UAV dataset. We visualize an image from each scene in
(a) with a normal map in (b) and a depth map in (c), which are reconstructed by our method. We
further visualize point clouds generated by our method in (d).

4. Conclusions

This paper proposes a multi-view parallel patchmatch stereo method, MVP-Stereo,
which can reconstruct high-quality point clouds with the highest efficiency. Compared with
COLMAP, MVP-Stereo achieves higher reconstruction quality, but only needs one-third
of the reconstruction time. Compared with ACMMP and SD-MVS, MVP-Stereo achieves
competitive reconstruction quality but only needs one-fifth of the reconstruction time.
On the one hand, MVP-Stereo utilizes the multi-view dilated ZNCC to deal with low
texture and repeated texture, which dynamically adjusts the window radius based on
the image variance and only uses a small portion of pixels to increase the inception field
without increasing computation complexity. On the other hand, MVP-Stereo uses MSP-
Patchmatch, which uses random initialization, multi-scale parallel spatial propagation,
random refinement, and the coarse-to-fine strategy to estimate the depth map and the
normal map efficiently. Experiments on the Strecha dataset, the ETH3D benchmark, and the
UAV dataset show that our method can achieve competitive results with state-of-the-art
methods with the highest reconstruction efficiency. In the future, we plan to improve the
reconstruction quality by selecting visible images for each pixel and combining the random
refinement with an optimization strategy.
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