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Abstract: Globally, rice is one of the most important staple food crops. The most significant metric for
evaluating the rice growth and productivity is the Leaf Area Index (LAI), which can be effectively
monitored using remote sensing data. Hyperspectral remote sensing provides contiguous bands at
narrow wavelengths for mapping LAI at various rice phenological stages, and it is functionally related
to canopy spectral reflectance. Hyperspectral signatures for different phases of rice crop growth was
recorded using Airborne Visible Near-Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG)
along with corresponding ground based observations. Ground-based hyperspectral canopy spectral
reflectance measurements were recorded with FieldSpec 3 Hi-Res spectroradiometer (ASD Inc.,
Forsyth County, GA, USA; spectral range: 350–2500 nm) and LAI data from 132 farmer’s fields in
Southern India. Among 29 hyperspectral vegetation indices tested, 8 were found promising for
mapping rice LAI at various phenological stages. Among all the growth stages, the elongation stage
was the most accurately estimated using vegetation indices that exhibited a significant correlation
with the airborne hyperspectral reflectance. The validation of hyperspectral vegetation indices
revealed that the best fit model for estimating rice LAI was mND705 (red-edge, blue, and NIR bands)
at seedling and elongation, SAVI (red and NIR bands) at tillering and WDRVI (red and NIR bands) at
booting stage.

Keywords: hyperspectral remote sensing; vegetation indices; canopy reflectance; leaf area

1. Introduction

Global rice production was 513.68 million tonnes, of which India contributes 132 million
tonnes after China, and plays an important role in the global rice economy [1]. India ranks
second in consumption, which attributes to the adequate supply of rice, leading to food
security. Remote sensing technology has gained attention, as it provides rapid and macro-
scale observations using spectral data of the crop canopy to ameliorate the crop growth
parameter estimation [2–4]. The reflectance curve in the red and blue region displays a valley
when the plant canopy is healthy, as it significantly absorbs blue and red light and reflects
green light [5]. Thus, higher reflectance in the near infrared region (NIR) was closely associated
with internal cell structure, biomass, vegetation cover, leaf water content, and LAI, whereas
red-edge region exhibits strong absorption because of leaf chlorophyll content, and reflection
is due to mesophyll cells [6].

The LAI of crop is a key variable for estimating the foliage cover and photosynthetic
processes, and ultimately aids in forecasting of the crop growth and yield [7]. The estimation
of LAI includes direct and indirect measurement methods. The direct measurement of
LAI includes destructive sampling and laboratory evaluation, which is time-consuming,
labor-intensive, discontinuous, and is not applicable for large-scale investigations [8,9].
Therefore, numerous research efforts have been emphasized on the indirect measurement
of LAI using remote sensing technology due to its non-destructive and rapid monitoring
potential [10,11]. Recently, the use of remote sensing technology to estimate LAI at various
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rice growth stages has been widely developed, especially for large-scale and long-term
crop monitoring [12–17].

Among various vegetation indices (VI) and neural network approaches, the scaled
normalized difference vegetation index (NDVI) methodology was the most efficient way to
retrieve LAI [18]. However, it is sensitive to atmospheric processes, soil conditions, and
saturates at low LAI [19]. Thus, other VIs viz., modified red-edge normalized difference
vegetation index (mND705) [20], soil adjusted vegetation index (SAVI) [21], triangular
vegetation index [22], and renormalized difference vegetation index (RDVI) [23] were
developed to enhance the precision of LAI estimation. The VIs with red-edge bands
are better predictors of LAI [24–27]. Recently, hyperspectral remote sensing has drawn
the emphasis on LAI estimation because it provides continuous spectral coverage and
achieves a spectral resolution of <10 nm in the range of 400–2500 nm [4,28]. Hyperspectral
remote sensing data is used for the estimation of rice LAI at various growth stages [29–32].
Further, hyperspectral vegetation indices were used for precise and efficient nitrogen
management by estimating leaf nitrogen content in rice and wheat at various phenological
stages [33–35]. Other than LAI and leaf nitrogen content, the above-ground biomass
and yield estimation can also be better predicted using hyperspectral remotely sensed
images [36,37]. Mapping the distribution of LAI in winter wheat for various growth
phases was performed using UAV-based hyperspectral data [9] and AVIRIS-NG data [38].
Many studies in rice revealed that the VIs were positively correlated with biomass during
pre-heading stages and negatively during post-heading stages [39,40].

To maximize the effectiveness of LAI estimation, identification of significant wave
bands in the hyperspectral data is essential for retrieving more specific VIs [41]. Further,
the combination of these wave bands under diverse environmental conditions and cultural
practices provides appropriate information for the characterization of LAI with the crop
phenological stages [42]. In this study, we examined the utility of different VIs through
hyperspectral measurements from airborne AVIRIS-NG to map LAI at various phenological
stages of rice.

2. Materials and Methods
2.1. Study Area

The study area is Banaganapalle mandal, Kurnool district, Andhra Pradesh, India,
in which rice is predominantly cultivated in both wet and dry seasons. The wet sea-
son plantings were carried out during July–August, and dry season plantings during
November–December. Rice was mostly transplanted, and in few cases direct seeding
was noticed in the study area. The soils are predominantly vertisols, and rice was grown
following the recommended agronomic practices. Farmers mostly cultivate rice varieties
viz., BPT 5204, NDLR-7, RP Bio-226, and BPT 2270 of medium to long (130–160 days) crop
growth duration.

2.2. Sampling Sites and Field Data Collection

Ground-truth surveying of rice fields was carried out during the fourth week of Febru-
ary 2018 (20–24 February), and the AVIRIS-NG images were acquired on 26 February 2018,
which has spectral range of 380–2510 nm with spatial resolution of 4–8 m. The AVIRIS-NG
map with six scenes used in the study is depicted in Figure 1. Farmers’ fields were
surveyed based on the stratified random sampling procedure. A total of 132 fields in
Banaganapalle were selected randomly during the dry season for rice LAI estimation at
various phenological phases (15.723◦N to 15.979◦N latitude; 77.926◦E to 78.186◦E longi-
tude) (Figure A1 in Appendix A, Figure 2). The dates of sowing and transplanting were
recorded through farmer’s interaction and rice growth stages observed at the time of data
collection. The plantings varied considerably, and lasted for three months from the second
week of November 2017 to first week of February 2018. The harvesting was done for a
period of two months, i.e., from the first week of March to the second week of May 2018.
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Field measurements of in situ LAI was recorded from the surveyed fields individually
during or near the AVIRIS-NG airborne data acquisition.
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2.3. Sampling of LAI

Field surveys were conducted from 132 farmer’s fields for ground-truth data collection.
As the study area was a traditional rice growing belt, the crop was observed at different
phenological stages. Accordingly, the fields were categorized into seven phenological stages
(Table 1) as seedling (planted in the first to second week of February), tillering (planted
in the fourth week of January), elongation (planted during the second week of January),
booting (planted in the first week of January), heading (planted during the fourth week
of December), flowering (planted during the second week of December), and maturity
(planted during the second week of November) (Figure 3). The surveyed fields were
segregated separately for calibration (78 fields) and validation (54 fields) to estimate LAI
using remote sensing (Table 1). Five plants were selected randomly from each surveyed
field for non-destructive LAI measurement using SunScan plant canopy analyzer (Delta-T
devices Ltd., Burwell, UK) representing each phenological stage.

Table 1. Details of rice fields sampled at different phenological stages.

Crop Growth Stage Field Samples Considered
for Calibration

Field Samples Considered
for Validation

Seedling 14 12
Tillering 19 12

Elongation 9 7
Booting 11 7
Heading 10 6

Flowering 8 5
Maturity 7 5

Total 78 54
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2.4. Canopy Spectral Reflectance Measurements

Canopy spectral reflectance measurements from rice were recorded with FieldSpec 3 Hi-
Res spectroradiometer (ASD Inc., Falls Church, VA, USA; spectral range: 350–2500 nm). All
the spectral measurements were made during 20–24 February 2018 between 11:00 and 14:00 h
Indian standard time (GMT + 5.30 h) under clear sky. The radiometer was configured to record
30 scans for each sample, and 15–25 plants from each field were sampled at the time of the data
recording. The pistol grip of radiometer was positioned at 1 m above the crop canopy, centered
over the rice hills, with 25◦ FOV fore optic to ensure the reflectance from a single desired plant.
Prior to field measurements, the spectral radiometer was warmed-up for about 20 min to
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avoid the spectral steps at detector overlap wavelength regions, which occur due to different
warm-up rates for the three spectroradiometer arrays [43]. The sampling interval was 1.4 nm
at 350–1000 nm range and 2 nm at 1000–2500 nm range. The spectral resolution (full-width
half-maximum) was 3 nm at 700 nm, 6.5 nm at 1400 nm, and 8.5 nm at 2100 nm. Finally,
the collected spectral data was exported to RS3 software 5.6.4 and interpolated using ASD
ViewSpecPro software 5.6.10 in the post processing to produce values at each nanometer [44].
The spectral reflectance data from 1300 to 1400 nm and 1800 to 1950 nm were not considered
for analysis due to noise caused by atmospheric water absorption in the raw spectrum [45,46].

2.5. AVIRIS-NG Airborne Data Acquisition

The present study is part of the collaborative program between Indian Space Research
Organization (ISRO), India and Jet Propulsion Laboratory (JPL), NASA; Department of
Science & Technology, Government of India, and many other research organizations in-
cluding the Indian Council of Agricultural Research (ICAR). AVIRIS-NG data covers a
wavelength range of 380–2510 nm in VNIR and SWIR spectral channels, with a contiguous
spectral band of 425 at a 5 nm interval. Spatially, it has a varying resolution of 4–8 m
with a flying altitude of 4–8 km for a swath of 4–6 km. The AVIRIS-NG radiance data
were orthorectified using input geometry files (IGM) present with the data containing
the original line number and sample number for georeferencing, and later atmospheric
correction was carried out [47,48].

2.6. Data Processing

AVIRIS-NG data Endmember spectra was collected using ENVI software 4.7 for the
selected locations in farmers’ fields. Correlation analysis was performed for spectral
reflectance and LAI. Highly correlated spectral bands were used to calculate the new band
ratios and estimate the relevant vegetation indices. The regression analysis was performed
between vegetation indices and LAI. Descriptions and formulas of VIs [20,35,49] used in
the study are listed in Table 2.

Table 2. Hyperspectral vegetation indices used in the study.

Spectral Vegetation Index Formula

Vogelmann Index (VOG 1) (R740/R720)

Meris Terrestrial Chlorophyll Index (MTCI) (R850 − R730)/(R730 − R675)

Vogelmann Index (VOG 2) (R734 − R747)/(R715 + R726)

Modified simple ratio (MSR)
((R800/R670) − 1)(√
(R800/R670) + 1

)
Modified Red-edge Normalized Difference Vegetation Index (mND705) (R750 − R705)

(R750 + R705 − 2 ∗ R445)

Double Difference Index (DD) (R749 − R720)− (R701 − R672)

Green Normalized Difference Vegetation Index (GNDVI) (R750 − R550)/(R750 + R550)

Soil Adjusted Vegetation Index (OSAVI) (1 + 0.16)(R800 − R670)/(R800 + R670 + 0.16)

Renormalized Difference Vegetation Index (RDVI) R800 − R670√
R800 + R670

Simple Ratio (SR) R800/R670

Modified Triangular Vegetation Index (MTVI 2)
1.5 ∗ 1.2 ∗ (R800 − R550)−2.5 ∗ (R670 − R550)√
(2 ∗ R800 + 1)2 − (6 ∗ R800 − 5 ∗

√
R670) − 0.5

Soil-Adjusted Vegetation Index (SAVI)
(

R800 − R670
R800 + R670 + 0.5

)
(1 + 0.5)

Normalized Difference Vegetation Index (NDVI) (R810 − R680)/(R810 + R680)

Ratio Vegetation Index (RVI) (R810/R680)

Enhanced Vegetation Index (EVI 1) 2.5 ∗ (R860 − R645)/(1 + R860 + 6 ∗ R645 − 7.5 ∗ R470)
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Table 2. Cont.

Spectral Vegetation Index Formula

Difference Vegetation Index (DVI) (R810 − R680)

Photochemical Refectance Index (PRI) (R570 − R531)/(R570 + R531)

Transformed Vegetation Index (TVI) 120 ∗ (R750 − R550) − 200 ∗ (R670 − R550)
2

New Double Difference Index (DDn) 2 ∗ R710 − R660 − R760

Modified Red-edge Simple Ratio Index (MSR705) (R750 − R445)/(R705 − R445)

Modified Non-Linear Index (MNLI)
(1 + 0.5) ∗ (R2

810 − R680)
(R2

810 + R680 + 0.5)

Structure Insensitive Pigment Index (SIPI) (R800 − R445)/(R800 − R680)

Water Index (WI) R900/R970

Red-Edge Vegetation Stress Index (RVSI) R714 − R752
2 − R733

Standardized LAI Determining Index (SLAIDI) S ∗ R1050 − R1250
R1050 + R1250

∗ R1555 where S = 5

Normalized Difference Water Index (NDWI) (R858 − R2130)/(R858 + R2130)

Normalized Difference Infrared Index (NDII) (R819 − R1600)/(R819 + R1600)

Red Edge Position Index (REP) R700 + 40 ∗
[
(R670 + R780)

2 − R700

]
/(R740 − R700)

Wide Dynamic Range Vegetation Index (WDRVI) (0.2 ∗ R800 − R670)
(0.2 ∗ R800 + R670)

+ (1 − 0.2)
(1 + 0.2)

2.7. Data Analysis

The mean reflectance values of LAI at different phenological stages was obtained from
different rice fields (area ranged from 0.5 to 10.0 ha) to find out the sensitive wavebands for
each phenological stage. The descriptive statistics of LAI and vegetation indices at different
phenological stages were performed, and means along with the standard deviation were
presented. The spectral angle mapper (SAM) matching algorithm was used for comparing
the similarity between ground-truth and AVIRIS-NG image spectra [50]. Coefficient of
determination (R2) and root mean square error (RMSE) were used to evaluate the prediction
accuracy of the regression models [51], as they are the indicators of how well the regression
models (best-fit function) capture the relationship between LAI and vegetation indices.
Regression analysis was performed between LAI and vegetation indices for calibration and
validation of the data, and R2 and RMSE were presented. Statistical analysis was performed
using SAS Institute Inc., (Cary, NC, USA) [52].

3. Results
3.1. Reflectance Spectra of Rice Canopy from Hand Held Hyperspectral Radiometry

The ground-based mean canopy reflectance spectra of rice at different phenological
stages was recorded and presented in Figure 4a. It was found that the spectral reflectance
of rice showed variation at various phenological stages in ultraviolet (350–400 nm), visible
(400–750 nm), and NIR regions (750–1100 nm) with maximum reflectance in the NIR region.
In UV region, the canopy reflectance was maximum at tillering followed by seedling stage
and the lowest was observed during flowering and maturity. Within the visible region,
green region (490–560 nm) had higher reflectance compared to violet blue (400–425 nm)
and red region (640–685 nm). The reflectance in visible region increased as the crop
advanced from seedling to tillering and reduced from elongation to flowering, with the
lowest reflectance at heading. The reflectance in the NIR region varied steadily with
crop phenological stage, indicating a distinct variation in the spectral pattern that can be
leveraged to identify the crop phenological stage.
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3.2. Reflectance Spectra of Rice Canopy from AVIRIS-NG

The airborne spectral reflectance showed marked variation similar to ground-truth
spectra at different phenological stages, as shown in Figure 4b. The variations in spectral
reflectance were observed in UV, visible and NIR regions with increased reflectance in NIR
region, and reduced reflectance in both UV and visible regions. The findings of canopy
reflectance observed in ground-truth spectra were similar and consistent with the airborne
spectral reflectance at different phenological stages. In UV region, maximum and minimum
reflectance was noticed in tillering and maturity stages, respectively. Within visible region,
the reflectance variations were clearly observed in the green region compared to violet blue
and red regions, with the highest reflectance in tillering and lowest in elongation stage.
In NIR region, the reflectance pattern exhibited increased trend from seedling to booting,
and reduced trend from flowering to maturity stage. From these results, it is evident
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that various crop growth phases of rice can be differentiated using airborne hyperspectral
reflectance spectra. The study on similarity analysis between hyperspectral reflectance of
ground-based and airborne showed a SAM score of 0.85 at seedling, 0.84 at tillering, 0.88 at
elongation, 0.80 at booting, 0.81 at heading, 0.90 at flowering, and 0.77 at maturity stages of
rice (Figure S1).

3.3. Rice LAI at Different Phenological Stages

LAI measurements at different phenological stages were presented in Table 3. As the
crop advances from seedling to maturity, variations in LAI were obvious with changing
phenological stages. LAI increased from seedling to heading, and reached peak at flowering
and reduced thereafter (1.21 at seedling to 3.61 at heading and flowering). The range of
LAI was maximum at booting (1.70 to 4.00) followed by the tillering (0.75 to 2.60) and
elongation stages (1.60 to 3.00). The minimal variations in LAI were observed at the
maturity stage (1.60 to 2.50).

Table 3. Field measured Leaf Area Index (LAI) of rice at different crop growth stages used for model
building.

Crop Growth
Stage

Number of
Fields Surveyed

LAI

Mean ± SD Minimum Maximum p Value CV

Seedling 14 1.21 ± 0.45 0.54 2.20 0.59 37.50
Tillering 19 1.71 ± 0.54 0.75 2.60 0.68 31.66

Elongation 9 2.41 ± 0.53 1.60 3.00 0.12 21.79
Booting 11 3.00 ± 0.82 1.70 4.00 0.04 27.24
Heading 10 3.61 ± 0.47 3.10 4.30 0.15 13.00

Flowering 8 3.61 ± 0.45 2.80 4.10 0.42 12.49
Maturity 7 2.11 ± 0.35 1.60 2.50 0.38 16.48

3.4. Relationship of Vegetation Indices to Rice Phenological Stages

The vegetation indices used in the study showed marked variations with canopy
growth from seedling to maturity stage. We used 29 vegetation indices to estimate rice
LAI at varied phenological stages (Figure 5, Table A1 in Appendix A). The relationship of
different VIs with growth stages from seedling to heading were established. The temporal
variations of these VIs increased from seedling to heading, and later decreased till crop
maturity. The results in our study revealed that among various indices that were evaluated,
NDVI (0.54–0.91), SAVI (0.82–1.36), MSR (0.91–3.54), and VOG (1.06–2.11) found better
for different crop growth stages of rice. Similarly, other VIs viz., WDRVI, OSAVI, and
GNDVI also performed better from seedling to heading, with the values ranging between
0.50–1.27, 0.38–0.74, and 0.41–0.78, respectively. The SR (3.78–20.79), TVI (7.15–17.95), and
RVI (3.83–21.75) showed relatively higher values, whereas MTVI 2 (0.17–0.47), mND705
(0.16–0.74), and RDVI (0.27–0.56) exhibited lower values from seedling to heading stage.
The vegetation indices SLAIDI, RVSI, MNLI, PRI, DDN, DD, and VOG2 exhibited negative
to near zero values across all the rice growth stages.

3.5. Evaluation of Vegetation Indices for Rice LAI Estimation

The LAI data collected using hand held canopy analyzer during ground truthing
showed higher LAI until the heading stage. Similar results of LAI were observed with
AVIRIS-NG data. These vegetation indices were subjected to regression analysis to build
models for estimating LAI at each phenological stage. The regression analysis (R2 and
RMSE) was performed between LAI and VIs. The indices that are statistically significant
at each phenological stage were represented in Figure 6 and Table A2 in Appendix A.
The results showed that vegetation indices had significant relationship with LAI until
booting stage only. Thereafter, at the heading and flowering stages, the relationship was
non-significant. Among the VIs, at seedling stage, SR (R2 = 0.66 **, RMSE = 0.28), MSR
(R2 = 0.65 ***, RMSE = 0.28), RVI (R2 = 0.65 ***, RMSE = 0.28), and WDRVI (R2 = 0.64 ***,
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RMSE = 0.28) captured LAI better than the other VIs. However, SAVI (R2 = 0.60 **,
RMSE = 0.29) and NDVI (R2 = 0.59 **, RMSE = 0.30) exhibited a slightly lower signifi-
cant relationship with LAI at the same phenological stage. At tillering, though VOG2
(R2 = 0.52 **, RMSE = 0.38) and PRI (R2 = 0.47 **, RMSE = 0.41) had a strong positive rela-
tionship, it was not considered as the best fit, since no relationship with LAI was observed
at later phenological stages. The mND705 exhibited a strong relationship with LAI with
better values (R2 = 0.44 **, RMSE = 0.42), followed by NDVI (R2 = 0.42 **, RMSE = 0.42)
and SAVI (R2 = 0.42 **, RMSE = 0.42). The DD (R2 = 0.30 **, RMSE = 0.46) and GNDVI
(R2 = 0.32 *, RMSE = 0.46) had a weak relationship at all phenological stages.
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Figure 5. Mean of vegetation indices at different crop growth stages of rice estimated from AVIRIS-
NG. Error bars represents standard deviation. The mean values in the stacked bar for SR, TVI,
RVI, and REP are in the range of 60–750, and thus are not shown in the above Figure (Refer to
Table A1 in Appendix A for more details).

Interestingly, REP (R2 = 0.74 **, RMSE = 0.29) and MSR705 (R2 = 0.70 **, RMSE = 0.31)
had captured LAI better than other VIs during elongation stage, but failed for the rest
of the phenological stages. The best-fit models of LAI and VI for elongation stage were
NDVI (R2 = 0.69 **, RMSE = 0.31), SAVI (R2 = 0.69 **, RMSE = 0.31), WDRVI (R2 = 0.68 **,
RMSE = 0.32), and MSR (R2 = 0.66 **, RMSE = 0.33), while the least fit model was with
mND705 (R2 = 0.57 *, RMSE = 0.37). At the booting stage, WDRVI (R2 = 0.67 **, RMSE = 0.49),
NDVI (R2 = 0.65 **, RMSE = 0.52), SAVI (R2 = 0.65 **, RMSE = 0.51), and MSR (R2 = 0.64 **,
RMSE = 0.52) had a strong relationship between LAI and VI, whereas RVI (R2 = 0.53 *,
RMSE = 0.59) had a weak relationship at the booting stage. Some of the other Vis viz., RVSI,
OSAVI, RDVI, MTVI2, TVI, mND705, and PLS were good at seedling stage; SIPI, VOG,
MTCI, and DD at tillering; SIPI, PRI, VOG, and MTCI at elongation stage; and SIPI, MSR705,
OSAVI, RDVI, MTVI2, and DD at booting stage (Figure 6, Table A2 in Appendix A). The
indices that had varied responses with different phenological stages was not considered for
further validation.
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3.6. Validation of VIs for Estimation of LAI

The best fit VIs were validated using independent data sets of 54 field locations. As
the crop growth advanced from seedling to flowering, the LAI increased. Thereafter, it
decreased until maturity stage. The maximum deviations in LAI were noticed in the
booting stage ranging from 2.50 to 4.10. The minimal variations were observed in the
seedling stage, i.e., from 0.60 to 1.31 (Table 4, Figure 7). Further, the R2 and RMSE of the
validation dataset at four phenological stages were calculated for all the best-fit models,
but only the significant ones are represented in Table 5. Among several VIs that were found
statistically significant, only eight VIs were identified to estimate LAI at all the phenological
stages except booting stage. For the booting stage, only two VIs were found significant. The
R2 and RMSE values differed for each phenological stage and vegetation indices. Similar
to the calibration data, VIs showed differential response at each stage with fluctuating R2

values, and the best prediction was observed at the elongation stage.

Table 4. Field measured LAI of rice at different crop growth stages used for the validation of models.

Crop
Growth Stage

Number
of Fields

LAI

Mean ± SD Minimum Maximum p Value CV (%)

Seedling 12 0.99 ± 0.23 0.60 1.31 0.33 23.51
Tillering 12 1.78 ± 0.40 1.20 2.42 0.42 22.41

Elongation 7 2.89 ± 0.40 2.50 3.60 0.29 13.80
Booting 7 3.29 ± 0.58 2.50 4.10 0.88 17.70
Heading 6 3.63 ± 0.35 3.20 4.20 0.92 9.64

Flowering 5 3.79 ± 0.57 2.90 4.50 0.42 15.11
Maturity 5 2.24 ± 0.68 1.50 3.10 0.53 30.38
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Table 5. Estimated LAI at different crop growth stages of rice (validation of model outputs).

VI
Seedling Tillering Elongation Booting

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

mND705 0.52 ** 0.17 0.42 * 0.32 0.88 ** 0.15 0.51 ns 0.45
SR 0.50 ** 0.17 0.40 * 0.32 0.66 * 0.26 0.10 ns 0.60

MSR 0.51 ** 0.17 0.48 * 0.30 0.67 * 0.25 0.42 ns 0.49
RVI 0.51 ** 0.17 0.38 * 0.33 0.71 * 0.24 0.10 ns 0.60

WDRVI 0.47 * 0.18 0.37 * 0.33 0.76 * 0.22 0.62 * 0.39
SAVI 0.49 * 0.17 0.56 ** 0.28 0.63 * 0.27 0.59 * 0.41
NDVI 0.45 * 0.18 0.34 * 0.34 0.73 * 0.23 0.54 ns 0.43

GNDVI 0.49 * 0.17 0.45 * 0.31 0.83 ** 0.18 0.50 ns 0.45
* Significant at 0.05%. ** Significant at 0.01%. ns: non-significant.

At the seedling stage, a strong correlation between LAI and mND705 (R2 = 0.52 **) was
observed that indicated the best-fit model followed by MSR and RVI (R2 = 0.51 **). Other
VIs viz., SR, WDRVI, SAVI, NDVI, and GNDVI, have a significant correlation and have
R2 values ranging from 0.45 to 0.50. At the tillering stage, SAVI (R2 = 0.56 **), followed by
MSR (R2 = 0.48 *), proved best fit with field LAI. Other Vis which are statistically significant
include GNDVI (R2 = 0.45 *), mND705 (R2 = 0.42 *), SR (R2 = 0.40 *), WDRVI (R2 = 0.37 *),
RVI (R2 = 0.38 *), and NDVI (R2 = 0.34 *). The best estimation of LAI was noticed at the
elongation stage (R2 = 0.63–0.88). The best-fit model with strong correlation was noticed
between LAI and mND705 which had maximum R2 (0.88 **), followed by GNDVI (0.83 **).
The performance of Vis, viz., WDRVI, NDVI, and RVI, were better (R2 ≧ 0.70 *) compared
to MSR, SR, and SAVI (R2 ≦ 0.70 *) at the elongation stage. At the booting stage, only two
VIs viz., WDRVI (0.62 *) and SAVI (0.59 *) were found to be strongly correlated with LAI,
and the rest of the VIs were non-significant. The satellite images of the best-performing VIs
for LAI estimation of the selected fields, viz., mND705, SAVI, and WDRVI, were depicted in
Figure 8, respectively.

Our results showed that RMSE values also differed with phenological stages. The
lower RMSE values were observed at the seedling (0.17–0.18) and elongation stages
(0.15–0.27) compared to tillering (0.28–0.34) and booting (0.39–0.60). The models with
the least RMSE value will predict better. Thus, the seedling stage can be estimated better
followed by the elongation stage. The estimation of LAI with VIs at the booting stage was
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not significantly correlated when compared to the other three phenological stages. Hence,
most of the indices performed better at later phenological stages (elongation stage, the
canopy was fully exposed) compared to early stages (seedling and tillering).
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4. Discussion

This study aims to estimate the rice LAI at different phenological stages, viz., seedling,
tillering, elongation, booting, heading, flowering, and maturity, using AVIRIS-NG hy-
perspectral data and ground-measured LAI data. The results indicated that the rela-
tionship of LAI with vegetation indices at different phenological stages was distinct
(Figure 6, Table A2 in Appendix A). Rice plant undergoes distinct changes in the canopy
at different phenological stages during the growing season. As the rice plants grow from
seedling to booting, the growth flourishes. Once the plant enters the reproductive stage
(heading stage), the panicles start emerging, bringing changes in the canopy architec-
ture. Our findings revealed that LAI increased up to heading, and thereafter decreased
(Table 3). The similar changes in LAI at different growth phases of rice has been reported
earlier [12,53,54].

The reflectance data of both ground-based hyperspectral radiometry and AVIRIS-NG
showed marked variations between phenological stages, and an identical trend was noticed
in both the ground-based and airborne hyperspectral data (Figure 4). The results further
sowed that the spectral reflectance increased, reached peak value at booting, and reduced
thereafter at ripening phase. The canopy reflectance is governed by biophysical characteristics
of vegetation, architecture of the canopy, atmospheric absorption, and scattering, direction of
incidence radiation, and soil backgrounds [55]. As higher photosynthetic activity takes place
during vegetative stage of rice, the plants absorb more photosynthetically active radiation
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from the visible region [56], and variations in the reflectance in visible region was low during
this stage when compared to heading stage, where the panicles start emerging on the top of
canopy (Figure 4b). Contrarily, in the NIR region, the canopy reflectance of rice from ripening
stages (heading to maturity) tend to be higher compared to the vegetative stages (Figure 4b).
During the early vegetative stage of rice, the canopy reflectance was reduced due to slow
growth and increased exposure to soil and water. As the crop advances to reproductive
stage, the growth hastens, and increased reflectance was noticed from elongation to flowering,
probably due to increased leaf area and reduced exposure of soil [34,57]. Spectral reflectance
in the visible region is mainly influenced by pigment absorption, while the reflectance in NIR
region is determined by canopy structure, and the changes in leaf orientation from horizontal
to vertical at critical stages owes to the overlapping of leaves and chlorotic and necrotic
turning during senescence [29,58–61]. The SAM spectral matching score of a avalue close to
1 indicates the best match and higher confidence in the spectral similarity [50]. The SAM score
was more than 0.75 at all the growth stages of rice, which indicates the better matching of both
ground-based and AVIRIS-NG spectra.

The vegetation indices tested in this study were calculated based on the ratio or
difference between NIR and visible reflectance, having a distinct response at different
phenological stages. These vegetation indices have been used in the past for estimating
biophysical parameters, viz., LAI, chlorophyll, and biomass, in several crops [39,62,63]. Our
findings revealed that there was significant correlation between LAI and VIs at different
phenological stages (Figure 6, Table A2 in Appendix A), and these results are in accordance
with previous studies [64,65]. The ground-measured LAI was best fitted with the VIs at the
elongation stage (R2 = 0.51–0.74, p < 0.05) and tillering (R2 = 0.30–0.52, p < 0.05), followed
by the booting stage (R2 = 0.52 to 0.67, p < 0.05), suggesting that rice LAI can be predicted
better at the elongation stage. This shows that the 51–74% variability in vegetation indices
could be explained by LAI, while the remaining 26–49% variation could probably attribute
to different agronomic management practices, viz., crop variety, fertilizer management,
planting time, etc. Validation of LAI with vegetation indices at different phenological stages
showed that the performance was low at seedling (R2 = 0.45–0.52), tillering (R2 = 0.34–0.56),
and booting (R2 = 0.10–0.62), whereas better performance was observed at the elongation
stage (R2 = 0.63–0.88). The LAI of rice crop at vegetative stages was up to 3.0 and indices,
viz., mND705, SR, MSR, RVI, WDRVI, SAVI, NDVI, and GNDVI, better predicted LAI across
all the stages from seedling to booting, with few exceptions (Table 5), whereas from heading
to maturity, there was no relationship between LAI and VIs.

The best-performing VIs for LAI have bands at green, red, blue, and NIR regions.
These findings agreed with the earlier reports by Thenkabail et al. [65], Darvishzadeh
et al. [66], and Herrmann et al. [67], suggesting that the red-edge and NIR bands are
important for LAI assessment and possess strong influence to strengthen the relationship
between spectral reflectance and LAI. At seedling and elongation stages, the mND705
accurately predicted the LAI, which consists of the combination of red-edge, blue, and NIR
bands, suggesting that blue bands can also have influence in LAI estimation [68–70]. This
index effectively reduces the impact of differences in leaf surface reflectance and improves
the sensitivity of pigment content estimation [71]. At the tillering stage, SAVI with red
and NIR bands predicted LAI better, and similar reports were observed by He et al. [72].
This could be because, in contrast to the NDVI, SAVI increases the linearity between the
index, and LAI and normalizes the soil-induced changes from spectral vegetation indices
without affecting the vegetation measures [21]. At the booting stage, WDRVI with red
and NIR bands predicted better LAI with a strong relationship, and explained 62% of the
variation in LAI. This might be due to the higher sensitivity of WDRVI to moderate-to-high
LAI (between two and six) that aid in monitoring the vegetation status and precision
farming [73]. Earlier studies also established the WDRVI vegetation index for accurate
estimation of LAI in maize, soybean, wheat, and potato [74,75]. The distinct variation of VIs
for LAI at different phenological stages was likely due to the leaf angle within the canopy,
rather than individual leaf reflectance properties [63,76].
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5. Conclusions

In this study, LAI of rice at different growth stages was measured using ground-
based data which were compared with the estimations from AVIRIS-NG hyperspectral
data. Among 29 hyperspectral vegetation indices evaluated for estimating rice LAI at
different growth stages, 8 indices were found promising at seedling, tillering, elongation,
and booting stages. Among the stages selected, LAI at the elongation stage was the best
predicted using AVIRIS-NG airborne hyperspectral sensors. The findings revealed different
vegetation indices for different phenological stages. The SAM spectral matching score was
more than 0.75 at all the rice growth stages, indicating the better match between ground-
based and AVIRIS-NG spectra. Red-edge, Blue, and NIR bands were found sensitive for
seedling and elongation stages, whereas Red and NIR bands were best for the tillering and
booting stages. The results revealed that the best suitable hyperspectral vegetation indices
for mapping and estimating LAI in rice were mND705 at the seedling and elongation stages,
and SAVI at tillering and WDRVI at the booting stage. The feasibility of using AVIRIS-NG
airborne hyperspectral sensors with very high spatial resolution for the precise mapping of
LAI from rice crops is demonstrated in the present study.
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MTCI 0.58 ± 0.32 1.27 ± 0.49 2.80 ± 0.84 3.32 ± 1.33 6.26 ± 0.54 3.80 ± 0.83 1.69 ± 0.76 

MTVI2 0.17 ± 0.06 0.20 ± 0.05 0.30 ± 0.06 0.34 ± 0.06 0.47 ± 0.06 0.40 ± 0.04 0.21 ± 0.11 
PLS 1.40 ± 0.42 1.53 ± 0.33 2.07 ± 0.49 2.41 ± 0.38 3.26 ± 0.31 2.74 ± 0.37 1.99 ± 0.46 
RVI 3.83 ± 1.49 4.84 ± 1.22 10.83 ± 4.54 12.71 ± 5.72 21.75 ± 3.91 11.95 ± 2.90 4.30 ± 2.73 
DVI 0.14 ± 0.04 0.15 ± 0.03 0.22 ± 0.05 0.25 ± 0.04 0.35 ± 0.04 0.31 ± 0.03 0.21 ± 0.06 
PRI 0.13 ± 0.03 0.09 ± 0.02 0.05 ± 0.03 0.04 ± 0.03 0.00 ± 0.01 0.04 ± 0.02 0.09 ± 0.02 

WDRVI 0.50 ± 0.19 0.64 ± 0.14 0.98 ± 0.20 1.03 ± 0.20 1.27 ± 0.06 1.06 ± 0.10 0.51 ± 0.31 
VOG1 1.06 ± 0.09 1.19 ± 0.12 1.53 ± 0.19 1.62 ± 0.25 2.11 ± 0.09 1.72 ± 0.15 1.26 ± 0.19 

mND705 0.16 ± 0.10 0.31 ± 0.10 0.52 ± 0.09 0.56 ± 0.11 0.74 ± 0.02 0.60 ± 0.07 0.29 ± 0.16 

Figure A1. Map of India representing the study area.
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Table A1. Vegetation indices at different crop growth stages of rice estimated from AVIRIS-NG.

VI Seedling Tillering Elongation Booting Heading Flowering Maturity

WI 1.80 ± 0.93 1.63 ± 0.69 1.24 ± 0.19 1.22 ± 0.18 1.18 ± 0.02 1.13 ± 0.03 1.07 ± 0.07
NDWI 0.26 ± 0.28 0.26 ± 0.20 0.14 ± 0.11 0.14 ± 0.08 0.15 ± 0.01 0.11 ± 0.03 0.04 ± 0.07
NDII 0.56 ± 0.20 0.54 ± 0.17 0.43 ± 0.11 0.44 ± 0.06 0.51 ± 0.01 0.46 ± 0.04 0.29 ± 0.14

SLAIDI 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
NDVI 0.54 ± 0.14 0.64 ± 0.08 0.80 ± 0.08 0.82 ± 0.08 0.91 ± 0.02 0.84 ± 0.03 0.53 ± 0.21
OSAVI 0.38 ± 0.10 0.44 ± 0.07 0.58 ± 0.07 0.62 ± 0.08 0.74 ± 0.04 0.67 ± 0.04 0.43 ± 0.15
GNDVI 0.41 ± 0.09 0.49 ± 0.07 0.64 ± 0.08 0.67 ± 0.09 0.78 ± 0.02 0.71 ± 0.03 0.53 ± 0.11

RVSI −0.01 ± 0.00 −0.01 ± 0.00 −0.01 ± 0.00 −0.01 ± 0.01 0.01 ± 0.00 −0.00 ± 0.00 −0.01 ± 0.00
REP 735.60 ± 64.56 728.59 ± 8.77 725.35 ± 1.64 725.43 ± 2.45 729.34 ± 0.54 727.22 ± 1.09 742.50 ± 16.60
SR 3.78 ± 1.43 4.89 ± 1.31 10.64 ± 4.44 12.01 ± 4.70 20.79 ± 3.97 11.82 ± 2.88 4.28 ± 2.68

RDVI 0.27 ± 0.07 0.31 ± 0.05 0.42 ± 0.06 0.45 ± 0.06 0.56 ± 0.04 0.50 ± 0.03 0.33 ± 0.11
SAVI 0.82 ± 0.21 0.97 ± 0.13 1.20 ± 0.12 1.23 ± 0.12 1.36 ± 0.03 1.26 ± 0.05 0.80 ± 0.32
MSR 0.91 ± 0.37 1.19 ± 0.30 2.19 ± 0.70 2.40 ± 0.70 3.54 ± 0.43 2.42 ± 0.41 0.98 ± 0.65
TVI 7.15 ± 2.86 8.00 ± 2.18 12.01 ± 2.47 13.69 ± 2.33 17.95 ± 2.07 15.94 ± 1.54 9.75 ± 4.18

MNLI −0.41 ± 0.05 −0.40 ± 0.05 −0.47 ± 0.05 −0.50 ± 0.04 −0.60 ± 0.04 −0.57 ± 0.03 −0.51 ± 0.04
MTCI 0.58 ± 0.32 1.27 ± 0.49 2.80 ± 0.84 3.32 ± 1.33 6.26 ± 0.54 3.80 ± 0.83 1.69 ± 0.76

MTVI2 0.17 ± 0.06 0.20 ± 0.05 0.30 ± 0.06 0.34 ± 0.06 0.47 ± 0.06 0.40 ± 0.04 0.21 ± 0.11
PLS 1.40 ± 0.42 1.53 ± 0.33 2.07 ± 0.49 2.41 ± 0.38 3.26 ± 0.31 2.74 ± 0.37 1.99 ± 0.46
RVI 3.83 ± 1.49 4.84 ± 1.22 10.83 ± 4.54 12.71 ± 5.72 21.75 ± 3.91 11.95 ± 2.90 4.30 ± 2.73
DVI 0.14 ± 0.04 0.15 ± 0.03 0.22 ± 0.05 0.25 ± 0.04 0.35 ± 0.04 0.31 ± 0.03 0.21 ± 0.06
PRI 0.13 ± 0.03 0.09 ± 0.02 0.05 ± 0.03 0.04 ± 0.03 0.00 ± 0.01 0.04 ± 0.02 0.09 ± 0.02

WDRVI 0.50 ± 0.19 0.64 ± 0.14 0.98 ± 0.20 1.03 ± 0.20 1.27 ± 0.06 1.06 ± 0.10 0.51 ± 0.31
VOG1 1.06 ± 0.09 1.19 ± 0.12 1.53 ± 0.19 1.62 ± 0.25 2.11 ± 0.09 1.72 ± 0.15 1.26 ± 0.19

mND705 0.16 ± 0.10 0.31 ± 0.10 0.52 ± 0.09 0.56 ± 0.11 0.74 ± 0.02 0.60 ± 0.07 0.29 ± 0.16
MSR705 0.71 ± 0.09 0.74 ± 0.05 0.86 ± 0.05 0.86 ± 0.06 0.91 ± 0.01 0.88 ± 0.02 0.79 ± 0.10

SIPI 1.27 ± 0.21 1.13 ± 0.08 1.05 ± 0.03 1.04 ± 0.05 1.01 ± 0.01 1.04 ± 0.02 1.41 ± 0.30
DDN −0.20 ± 0.04 −0.21 ± 0.05 −0.32 ± 0.07 −0.37 ± 0.07 −0.54 ± 0.06 −0.46 ± 0.05 −0.41 ± 0.02
DD −0.05 ± 0.01 −0.01 ± 0.02 0.04 ± 0.03 0.06 ± 0.04 0.13 ± 0.02 0.08 ± 0.02 0.00 ± 0.04

VOG2 −0.02 ± 0.01 −0.04 ± 0.02 −0.11 ± 0.04 −0.13 ± 0.07 −0.28 ± 0.03 −0.16 ± 0.04 −0.05 ± 0.04

The values are Mean ± Standard deviation.
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Table A2. Best fit models for estimating LAI using different Vegetation Indices (VI) at different crop growth stages of rice.

VI
Seedling

VI
Tillering

VI
Elongation

VI
Booting

VI
Heading

VI
Flowering

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SR 0.66 *** 0.28 VOG2 0.52 *** 0.38 REP 0.74 ** 0.29 WDRVI 0.67 ** 0.49 NDII 0.10 ns 0.47 PRI 0.44 ns 0.37
MSR 0.65 *** 0.28 PRI 0.47 ** 0.41 MSR705 0.70 ** 0.31 NDVI 0.65 ** 0.52 WI 0.08 ns 0.48 REP 0.36 ns 0.39
RVI 0.65 *** 0.28 mND705 0.44 ** 0.42 NDVI 0.69 ** 0.31 SAVI 0.65 ** 0.51 SIPI 0.08 ns 0.48 mND705 0.36 ns 0.39

WDRVI 0.64 *** 0.28 NDVI 0.42 ** 0.42 SAVI 0.69 ** 0.31 MSR 0.64 ** 0.52 MSR705 0.07 ns 0.48 SIPI 0.35 ns 0.39
SAVI 0.60 ** 0.29 SAVI 0.42 ** 0.42 WDRVI 0.68 ** 0.32 SIPI 0.62 ** 0.53 RVSI 0.05 ns 0.48 MTCI 0.33 ns 0.40
NDVI 0.59 ** 0.30 WDRVI 0.42 ** 0.42 MSR 0.66 ** 0.33 MSR705 0.60 ** 0.55 REP 0.03 ns 0.49 VOG2 0.32 ns 0.40
RVSI 0.59 ** 0.30 MSR 0.41 ** 0.42 SR 0.65 ** 0.33 SR 0.59 ** 0.55 SR 0.02 ns 0.49 RVSI 0.26 ns 0.42

OSAVI 0.57 ** 0.31 RVI 0.41 ** 0.43 SIPI 0.64 * 0.34 mND705 0.59 ** 0.55 MSR 0.01 ns 0.50 VOG 0.25 ns 0.42
RDVI 0.56 ** 0.31 SIPI 0.41 ** 0.43 RVI 0.60 * 0.36 OSAVI 0.58 ** 0.56 TVI 0.01 ns 0.50 NDVI 0.24 ns 0.42

GNDVI 0.55 ** 0.32 SR 0.40 ** 0.43 GNDVI 0.58 * 0.37 GNDVI 0.54 * 0.58 MNLI 0.01 ns 0.50 SR 0.24 ns 0.42
MTVI2 0.55 ** 0.32 VOG 0.40 ** 0.43 mND705 0.57 * 0.37 RDVI 0.54 * 0.58 PLS 0.01 ns 0.50 SAVI 0.24 ns 0.42

TVI 0.53 ** 0.32 MTCI 0.38 ** 0.44 PRI 0.55 * 0.38 MTVI2 0.53 * 0.59 RVI 0.01 ns 0.49 MSR 0.24 ns 0.42
mND705 0.52 ** 0.32 GNDVI 0.32 * 0.46 VOG 0.54 * 0.38 RVI 0.53 * 0.59 DVI 0.01 ns 0.50 WDRVI 0.24 ns 0.42

PLS 0.48 ** 0.34 DD 0.30 * 0.46 MTCI 0.51 * 0.39 DD 0.52 * 0.60 mND705 0.01 ns 0.50 DD 0.24 ns 0.43

* Significant at 0.05%. ** Significant at 0.01%. *** Significant at 0.001%. ns: non-significant.
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