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Abstract: Band clustering has been widely used for hyperspectral band selection (BS). However,
selecting an appropriate band to represent a band cluster is a key issue. Density peak clustering (DPC)
provides an effective means for this purpose, referred to as DPC-based BS (DPC-BS). It uses two
indicators, cluster density and cluster distance, to rank all bands for BS. This paper reinterprets cluster
density and cluster distance as band local density (BLD) and band distance (BD) and also introduces
a new concept called band prominence value (BPV) as a third indicator. Combining BLD and BD with
BPV derives new band prioritization criteria for BS, which can extend the currently used DPC-BS to a
new DPC-BS method referred to as band density prominence clustering (BDPC). By taking advantage
of the three key indicators of BDPC, i.e., cut-off band distance bc, k nearest neighboring-band local
density, and BPV, two versions of BDPC can be derived called bc-BDPC and k-BDPC, both of which
are quite different from existing DPC-based BS methods in three aspects. One is that the parameter
bc of bc-BDPC and the parameter k of k-BDPC can be automatically determined by the number of
clusters and virtual dimensionality (VD), respectively. Another is that instead of using Euclidean
distance, a spectral discrimination measure is used to calculate BD as well as inter-band correlation.
The most important and significant aspect is a novel idea that combines BPV with BLD and BD
to derive new band prioritization criteria for BS. Extensive experiments demonstrate that BDPC
generally performs better than DPC-BS as well as many current state-of-the art BS methods.

Keywords: band density prominent peak clustering (BDPC); band distance (BD); band local density
(BLD); band prominence value (BPV); band selection (BS); hyperspectral image classification (HSIC);
k nearest neighbors (kNNs); shared nearest neighbor (SNN)

1. Introduction

With advances in remote sensing technology, hyperspectral imaging has become an
emerging technique in recent years to solve many issues that cannot be resolved by multi-
spectral imaging, such as subpixel detection, mixed pixel classification, spectral unmixing,
endmember finding, etc. [1]. However, such advantages also come with unnecessary abun-
dant spectral redundancy that can be removed without compromising data exploitation.
One effective means is data spectral dimensionality reduction (DR) [2] (chapter 6). Al-
though many DR techniques have been proposed over the past years, band selection (BS)
remains one of most widely used DR methods for hyperspectral data reduction due to the
fact that it can remove inter-band correlation resulting from very fine spectral resolution
while retaining data integrity provided by selected bands.
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1.1. Band Priorirtization for BS

Many BS methods have been developed in the past. Generally speaking, BS can be
performed by band prioritization (BP), which ranks all bands according to a BP criterion.
As a result, BP can be considered as unsupervised BS without requiring prior knowledge,
selecting bands in accordance with their priority scores with no reference to a specific ap-
plication, such as variance, entropy, information divergence, maximum variance principal
component analysis (MVPCA) [3], mutual information [4,5], constrained band selection
(CBS) [1,6], minimum estimated abundance covariance (MEAC) [7], etc. This type of BP is
easy to implement and has been extensively used for BS.

1.2. Band Selection via Search Strategies

As an alternative to BP, another type of BS involves selecting desired bands according
to a band search strategy, usually determined by a particular application, such as detection,
classification, spectral unmixing, etc. Consequently, such BS is generally supervised and
carried out by a specifically designed band search algorithm, such as sequential forward
selection (SFS) algorithm [8], sequential backward selection (SBS) algorithm, multitask spar-
sity pursuit (MTSP) [9], multigraph determinantal point process (MDPP) [10], dominant
set extraction BS (DSEBS) in [11], band subset (BSS) [12–14] for anomaly detection, linearly
constrained minimum variance-based BSS for classification [15], and also evolution-based
algorithms [16], using a variety of evolutionary computing strategies; for example, particle
swarm optimization (PSO) [17,18], firefly [19], and colony algorithm [20,21].

1.3. Band Clustering/Grouping for BS

In addition to the above-mentioned BP-based and BS strategy-based BS methods,
band clustering/grouping-based BS methods have also received considerable interest in
the past. For example, Wang et al. [22] developed an adaptive subspace partition strategy
(ASPS)-based band selection method by partitioning a hyperspectral image cube into
multiple sub-cubes by maximizing the ratio of interclass distance to intra-class distance.
In a follow-up work, Wang et al. [23] further developed a fast neighborhood grouping
method for hyperspectral band selection (FNGBS), which partitions a hyperspectral image
cube into several groups using a coarse-to-fine strategy, so that bands with the maximum
product of local density and information entropy in groups are selected as a band subset.
Most recently, Wang et al. [24] also developed an optimal neighborhood reconstruction
(ONR)-based BSS based on correlated neighborhood property (CNP) to exploit strong
correlations between neighboring bands. Interestingly, Baisantry et al. [25] developed
a feature extraction-based clustering BS method that uses sparse subspace clustering to
cluster similar bands into groups and prioritizes bands by a new metric called the combined
divergence-correlation index to select the most discriminative as well as least correlated
bands as cluster representatives.

1.4. Density Peak Clustering for BS

As noted above, band clustering/grouping-based methods cluster or group bands
according to band neighboring correlation without taking data spatial distribution into
account. To mitigate this dilemma, a new concept of density peak clustering (DPC) was
derived in [26], which introduces two indicators, local density that characterizes the spatial
distribution surrounding each data point and cluster distance of a data point from clusters
with densities higher than its density. By virtue of DPC, we not only can calculate the density
of each data point but also its distance to higher density clusters. Now, if we consider data
points as spectral bands, then for each spectral band, say Bi (with its expanded band vector,
denoted by bi), the data density can be interpreted as band local density (BLD), denoted by
ρi, which is determined by the cut-off band distance (BD), denoted by bc, and the cluster
distance as BD, denoted by δi of bi, from band images with their BLD higher than ρi. Then,
a DPC score is calculated by multiplying ρi with δi, referred to as γi = ρi × δi, to be used as
a BP criterion to rank all bands for BS, referred to as DPC-BS.
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1.5. Motivations

Although the above-mentioned DPC-BS methods have shown some success in BS,
three issues still remain. One is how to automatically determine the cut-off band distance
bc, which is crucial to calculate the BLD. It must be determined in advance or empirically.
Another is the used Euclidean distance, which generally measures the spherical distribution
of the data so that a data point is always assigned to the nearest center. However, as for
the bands of hyperspectral data, a better BD indicator should be a spectral discrimination
measure that captures spectral characteristics better than distance. Last but not least, there
is a lack of criteria for measuring inter-band correlation.

The motivation of this paper is to investigate an approach that can resolve the above
three issues. More specifically, we develop a novel DPC-BS method called band density
prominence clustering (BDPC), which introduces a new concept of band prominence
value (BPV) for each band, say BPV(bi), as a third indicator to take care of inter-band
correlation. Despite the fact that this idea is inspired from the band prominent peaks of
a curve calculated by self-mutual information (SMI) [5], it does not calculate prominent
peaks. Instead, it calculates the BPV for each band bi and then integrates the BPV(bi)
with the DPC score γi as a curve to produce a BDPC score, given by ηi = γi × BPV(bi),
which will be used to prioritize all bands for BS similarly to how γi plays the same role for
DPC-BS. Using this BDPC score, two versions of BDPC-BS can be further developed, to
be called bc-BDPC and k-BDPC. bc-BDPC is developed by fixing the cut-off band distance,
bc at a pre-determined value, while k-BDPC is developed by fixing the number of nearest
neighbors k at a pre-determined value. Particularly, bc-BDPC extends currently used
DPC-BS methods from using two indicators (BD, BLD) to three indicators (BD, BLD, and
BPV(bi)). On the other hand, k-BDPC is new and developed based on a given number
of k nearest neighboring bands to calculate the three indictors (BD, BLD, and BPV(bi)).
Unlike DPC-BS, which requires a pre-specified value for bc, the proposed bc-BDPC can
automatically determine the value of bc by the number of clusters, nclusters. Specifically, for
hyperspectral image classification (HSIC), nclusters can be determined by the number of
classes, nclasses. As for k-BDPC, the value of k can be determined by virtual dimensionality
(VD) [27,28].

Finally, to make BDPC more effective for hyperspectral BS, the Euclidean distance,
commonly used by DPC, is replaced by a spectral discrimination measure such as spectral
angle mapper (SAM) [27], spectral information divergence (SID) [29], or a joint SID with SAM
called SIDAM [30], etc., which can be used to calculate BD and also inter-band correlation.

1.6. Contributions

Several contributions are summarized as follows:

• A new concept of BPV is introduced into DPC as a third indicator to extend the
commonly used two-indicator DPC-BS, (BLD,BD)-DPC-BS, to a new three-indicator
BDPC-BS, (BLD,BD,BPV)-BDPC-BS.

• Using (BLD,BD,BPV)-BDPC-BS, two versions of BDPC-BS, bc-BDPC and k-BDPC are
developed. Specifically, bc-BDPC can be considered as an extension to DPC-BS.

• Automatic rules are particularly derived to determine the value of the cut-off band
distance, bc, for bc-BDPC and the number of nearest neighboring bands, k, for k-BDPC.

• Spectral discrimination measures are used in BDPC-BS to replace Euclidean distance
in DPC-BS to better capture BD and spectral inter-band correlation.

The remainder of this paper is organized as follows: Section 2.1 reviews DPC-related
works, while Section 2.2 discusses the most recent DPC-BS-based methods. Section 2.3
develops new variants of DPC-BS methods. Section 2.4 introduces the concept of BPV to
explore inter-band correlation to extend DPC-BS to BDPC-BS, where two versions of BDPC
BS methods, bc-BDPC and k-BDPC, are derived in great detail. In particular, the automatic
rules for determining the cut-off band distance, bc, and the k nearest neighbors are also de-
rived. Section 3.1 describes three hyperspectral images used for classification experiments.
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Section 3.2 conducts extensive experiments for HSIC along with their discussions. Section 4
describes the novelties of this paper and draws some conclusions.

2. Methods

DPC was originally proposed by Rodriguez and Laio for data point clustering and
has received considerable interest in pattern recognition [26]. In [31] Wei et al. presented
an overview on DPC to first analyze the theory of DPC and its performance advantages
and disadvantages and then summarizes the improvement of DPC in recent years through
the improvement effect via experiments and new ideas for improving DPC algorithm
in the future. Most recently, Tobin and Zhang [32] provided theoretical properties that
characterize DPC and further develops a clustering algorithm, called Component-wise
Peak-Finding (CPF) to deal with detection of erroneous points with high density and
large distance to points of higher density as well as incoherent cluster assignment caused
by noise.

2.1. DPC

The idea of DPC assumes that a cluster center is surrounded by its neighboring data
points, with local density measured by the number of its neighbors, and each cluster has a
relatively large distance from other clusters. More specifically, DPC designs two indicators
to cluster data points. One is local density, defined by:

ρi = ∑j ̸=i χdc(dc − dij) (1)

where dc is the predetermined cut-off distance, dij is the Euclidean distance between two
data points xi and xj, and

χdc(dc − dij) =

{
1; if dc − dij > 0
0; otherwise

(2)

The other is the cluster distance defined by:

δi = minρj>ρi dij (3)

which is calculated by minimizing the distance between data points xi and xj with local
density ρj higher than ρi.

For the data point with the highest local density, δmax
i , it is defined as:

δmax
i = maxjdij (4)

Thus, a point with relatively high ρi and large δi can be considered a cluster center.
These two quantities are then multiplied together to yield a quantity for a data point xi,
given by:

γi = ρi × δi (5)

which can be used to define a DPC score of xi. Those points that have larger γi are more
likely to be distinguished as cluster centers. With this in mind, (5) can be used to rank the
cluster centers.

On many occasions, the discrete value of the local density in (1) is generally replaced
by a continuous value, as follows:

ρi = ∑dij<dc
exp

(
−
(dij

dc

)α
)

(6)

where α is an adjusting factor.
One crucial issue arising from DPC is the determination of dc. Xu et al. [33] introduced

density–distance clustering (DDC) to develop an improved automatic density peaks clus-
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tering (ADPC) algorithm that could automatically select the suitable cut-off distance, dc,
and acquires the optimal number of clusters without additional parameters. Also, DPC
generally makes an assumption that cluster centers are often surrounded by data points
with lower local density and are far away from other data points with higher local density.
However, this assumption is not necessarily true. To address this issue, Wang et al. [34]
developed a variational density peak clustering (VDPC) algorithm, which is designed to
systematically and autonomously perform the clustering task on datasets with various
types of density distributions.

2.1.1. k-Nearest Neighbors-Based DPC

It is interesting to note that the concept of local density, ρi is actually very closely
related to k-nearest neighbors (kNNs). Du et al. [35] utilized kNNs to calculate ρi to derive
DPC-KNN. Since then, many works along this line have been reported [36–39]. Specifically,
local density is very closely related to kNNs. For each data point xi, kNN(xi) is defined as
the set of k data points that are the nearest neighbors close to xi. Three kNN-based DPC
methods are of particular interest.

2.1.2. DPC-KNN

Due to the fact that the global data structure may lead DPC to miss many clusters, Du
et al. [34] proposed a DPC based on kNNs (DPC-KNN) by including kNNs into DPC to
address this issue. Additionally, in high-dimensional data spaces, DPC is likely to generate
an incorrect number of clusters. To cope with this problem, DPC-KNN also includes
principal component analysis (PCA) into DPC-KNN to derive DPC-KNN-PCA. However,
two issues that have significant impacts on DPC performance were not addressed, that is:
how to determine the value of k and the number of principal components, both of which
were determined empirically. However, for multi-density data scenarios, one parameter
cannot satisfy all data sets. So, clustering often cannot achieve good results. To resolve
this issue, Yin et al. [40] extended the DPC algorithm to deal with multi-density data. The
cut-off distance dc was selected using KNN to sort the neighbor distances of each data point
to draw a line graph of the KNN distance and found the global bifurcation point to divide
the data with different densities.

2.1.3. G-DPC-KNN

Compared to DPC-KNN, which empirically determined the value of k, Jiang et al. [41]
developed a method called G-DPC-KNN to calculate the cutoff distance dc based on the
Gini coefficient and then used kNNs to find cluster centers. Most recently, Anandarao and
Chellasamy [42] also addressed the issue of the random selection of the cut-off distance
parameter, dc, by using the Gini index or Gaussian function to make a valid guess of dc.
Unfortunately, the same issue arising from DPC-KNN in how to determine an appropriate
value of k for G-DPC-KNN remains challenging. Wang et al. [43] developed a novel density
peak clustering algorithm for the automatic selection of clustering centers based on K-
nearest neighbors (AKDPC) to remedy manual determination of cluster centers and poor
performance on complex datasets with varying densities.

2.1.4. Shared Nearest Neighbors (SNNs)

Since kNNs generally run into an issue where two data points may share certain
nearest neighbors (SNNs), it results in double accounts for these shared nearest neighbors.
To alleviate this dilemma, shared nearest neighbor (SNN)-based clustering methods were
developed. For example, a very early attempt was made by Jarvis and Patrick [44], who
introduced a nonparametric clustering algorithm using the concept of similarity based on
the sharing of near neighbors. Liu et al. [45] proposed the SNN-based fast search clustering
algorithm for finding density peaks, which is based on three newly defined indicators:
SNN similarity, local density ρ, and distance from the nearest larger density point δ, to
take the information from the nearest neighbors and the shared neighbors into account
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so as to self-adapt to local surroundings. Specifically, it introduced a two-step allocation
method that can accurately recognize and allocate points by counting the number of shared
neighbors between the two points and also assign remaining points by finding the clusters
to which more neighbors belong. Lv et al. [46] proposed a fast-searching density peak
clustering algorithm based on shared nearest neighbors and an adaptive clustering center
(DPC-SNNACC) algorithm to automatically determine the number of knee points in the
decision graph according to the characteristics of different datasets and the number of
clustering centers without human intervention.

2.2. DPC-BS

Applications of DPC to BS in hyperspectral imaging have been recently explored.
Several recent works related to using DPC to develop BS techniques have emerged in
the literature.

First of all, in order for DPC to be applied to BS, we need to interpret each data sample
point xi as a band vector, bi. In this case, the data sample set {xi}N

i=1 is replaced with
the full band set, {bl}L

l=1, where bl = (bl1, bl2, · · · , blL)
T is the lth band image and can be

considered as a band vector with L spectral band components. So, the sample distance
between two data points, xi and xj, dij = d(xi, xj) now becomes the band distance (BD)
between two bands, bi and bj, d(bi, bj), which is measured by the Euclidean distance.

bij = d(bi, bj) =

∣∣∣∣∣∣∣∣bi − bj

∣∣∣∣∣∣∣∣2 = ∑L
l=1

∣∣∣∣∣∣bil − bjl

∣∣∣∣∣∣2 (7)

Using (7), four DPC-based BS methods were recently developed and are described in
detail, as follows.

2.2.1. Exemplar Component Analysis (ECA)

An early DPC-BS method was developed by Sun et al. [47], who considered BS as
exemplar component analysis (ECA) of hyperspectral bands with high local density and
large distances from bands with higher densities. An early attempt to extend DPC to
hyperspectral BS is exemplar component analysis (ECA) proposed by Sun et al. [47], which
defines local density in (6) as:

ρES(bi) ≡ ρES
i = ∑L

j=1,j ̸=i exp
(
−bij/2σ2

)
(8)

where α in (6) is set to 1 and γi in (5), as follows:

γES(bi) ≡ γES
i = ρES

i × δES
i (9)

where ES is the exemplar score, and δES(bi) ≡ δES
i is defined by (3). The γES

i in (9) is then
used as a BP criterion to prioritize all bands in descending order and then select the first
nBS largest γES

i scores as the desired band subset.

2.2.2. Enhanced Fast Density-Peak Clustering (E-FDPC)

To improve ECA’s ability to find bands as cluster centers in small regions, Jia et al. [48]
developed an enhanced fast density-peak clustering (E-FDPC) method by adopting weights
to use DPC scores for BS. A second DPC-BS method is the enhanced fast density-peak
clustering (E-FDPC) proposed by Jia et al. [48], which is defined as:

sij =

∣∣∣∣∣∣∣∣bj − bi

∣∣∣∣∣∣∣∣2 = ∑L
l=1

∣∣∣∣∣∣bjl − bil

∣∣∣∣∣∣2 (10)

bE−FDPC
ij =

√
sij/L (11)

ρE−FDPC(bi) ≡ ρE−FDPC
i = ∑L

j=1,j ̸=i exp
(
−(bE−FDPC

ij /bE−FDPC
c )

2)
(12)
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and
bE−FPDC

c = binitial/ exp(nBS/L) (13)

where binitial is an initial value of the cut-off threshold, which can be empirically determined
as binitial = 2%× L× (L− 1)th smallest value of

{
sij
}

i,j. Then, an E-FDPC score is calculated

by multiplying the two indicators, ρE−FPDC
i in (12) and δE−FPDC(bi) ≡ δE−FPDC

i in (13),
together as:

γE−FPDC(bi) ≡ γE−FPDC
i = ρE−FPDC

i ×
(

δE−FPDC
i

)2
(14)

where ρE−FPDC
i and δE−FPDC

i are determined by bE−FDPC
ij and bE−FPDC

c , respectively.

2.2.3. Information-Assisted Density Peak Index (IaDPI)

ECA and E-FDPC rank bands by their calculated DPC scores to locate cluster center
bands with larger ranking scores. Recently, Luo et al. [49] developed the information-
assisted density peak index (IaDPI) method by including band entropy as an additional
indicator to further improve E-FDPC. Recently, Luo et al. [49] developed IaDPI to include
band entropy as an additional indicator to further improve E-FDPC, where the entropy of a
band image bl is defined as:

Hi = H(bi) = −∑L
l=1 pil log pil (15)

with pi = (pi1, pl2, · · · , piL)
T defined as the probability vector of the band image bl and

pil =
bil

∑L
l=1 bil

. The local density for IaDPI is then defined as:

ρIaDPA(bi) ≡ ρIaDPA
i =

∑bij<bc exp
(
−
(
bij/bc

)α1 + (Hi/Hc)
α2 +

(
(
∣∣Hi − Hj

∣∣/Hc
)α2
) (16)

where α1 is an adjusting factor set to 2, and α2 is set to 1. Furthermore, it also defines:

Tbij = bα1
ij · Hα2

j (17)

to derive:
δIaDPA(bi) ≡ δIaDPA

i = (α1+α2)
√

Tbα1
ij · Hα2

j (18)

where j is determined by:
j = arg

{
minj:ρj>ρi Tbij

}
(19)

Finally, the IaDPA score is calculated by:

γIaDPA(bi) ≡ γIaDPA
i = ρIaDPA

i × δIaDPA
i (20)

2.2.4. Shared Nearest Neighbors Network (SNNC)

Because kNN(bi) and kNN(bj) may share the same nearest neighbors, Li et al. [50]
proposed an efficient SNN clustering (SNNC) method for hyperspectral optimal BS, which
can obtain the local density of each band using SNN to more accurately reflect the local
distribution characteristics. In other words, the local density of each band obtained by
SNN can more accurately reflect the similarities in the local distribution characteristics,
measured by:

SNN(bi, bj) =
∣∣kNN(bi) ∩ kNN(bj)

∣∣ (21)

From (21), an SNN-based local density can now be defined as:

ρk−SNNC(bi) ≡ ρk−SNNC
i = ∑bj∈kNN(bi)

exp

(
−

d(bi, bj)

SNN(bi, bj) + 1

)
(22)
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where d(bi, bj) = ∑L
l=1 (bil − bjl)

2.

δk−SNNC(bi) ≡ δk−SNNC
i =

{
minjd(bi, bj) if ρk−SNNC

i < ρk−SNNC
j

maxjd(bi, bj) otherwise
(23)

In addition, to acquire a band subset containing a large amount of information, the
information entropy was proposed to be used as one of the weight factors. More specifically,
an entropy-based BP criterion for SNNC is derived by combining (22) and (23) with the
information entropy of band bi defined in (15), referred to as Hk−SNNC(bi) ≡ Hk−SNNC

i ,
as follows:

γk−SNNC(bi) ≡ γk−SNN
i = ρk−SNNC

i × δk−SNNC
i × Hk−SNNC

i (24)

which corresponds to γi in (5).
Finally, SNNC also developed a method for automatically selecting the optimal band

subset, designed based on the slope change.

2.3. New Variations of DPC-BS

While DPC has shown potential and promise in BS for hyperspectral BS, there are
several issues that remain unsolved. The first issue is the use of the Euclidean distance,
which may not effectively capture spectral correlation compared to the use of a spectral
discrimination measure. The second issue is the lack of a mechanism to address inter-band
correlation. It should be noted that although IaDPI and SNNC use band information
entropy as an additional indicator, it only measures the uncertainty of each band without
considering inter-band spectral correlation. The third issue is determining the value of
the cut-off BD, bc, or the number of nearest neighboring band images, k. This is because
DPC-BS performance is heavily determined by its BLD, ρi and BD, δi, which are actually
calculated using either bc or k. Unfortunately, these two parameters, bc and k, are indeed
inter-correlated and cannot be determined independently. In other words, one parameter
determines the other. To address this issue, we further derive two versions of DPC-BS,
namely bc-DPC-BS and k-DPC-BSD PC-BS, by manipulating bc or k.

2.3.1. bc-DPC-BS

The bc-DPC-BS to be developed in this section is similar to ECA, E-FDPC, and IaDPA
in the sense that the cut-off band distance bc is determined and fixed at a certain value a
priori. It can be considered as a variant of DPC-BS wherein the Euclidean distance used to
calculate the BLD, ρi and BD, δi is replaced with a spectral discrimination measure, m. In
this case, dc is replaced by bc and ρi in (1) becomes:

ρBLD
i = ∑j ̸=i χbc(bc − bij) (25)

where bc is the predetermined band distance (BD) threshold, bij is the spectral distance
between bi and bj, defined as:

bij = m(bi, bj) (26)

where m can be any type of spectral measure, such as SAM, SID, or SIDAM. In this case,
Equations (2) and (3) are modified and re-defined as:

χbc(bc − bij) =

{
1; if bc − bij < 0
0; otherwise

(27)

δbc−BD(bi) ≡ δbc−BD
i = minρBLD

j >ρBLD
i

bij (28)
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For the band with the highest band local density, δmax−BD
i in (5) is re-defined as:

δmax−BD(bi) ≡ δmax−BD
i = maxjbij (29)

Analogous to (6), (25) can also be modified as kernel-based BLD. ρbc−BLD
i is defined as:

ρbc−BLD(bi) ≡ ρbc−BLD
i = ∑L

j=1, ̸=i exp
(
−
( bij

bc

)α)
(30)

where α is set to 2 for our experiments. Combining (30) with (28), we can define the bc-DPC
score as:

γbc−DPC(bi) ≡ γbc−DPC
i = ρbc−BLD

i × δbc−BD
i (31)

which corresponds to γi in (5).

2.3.2. k-DPC-BS

The k-DPC-BS presented in this subsection is similar to DPC based on k-nearest
neighboring bands. But, it introduces a new aspect by interchanging the roles played
by BLD and BD in bc-DPC-BS compared to k-DPC-BS. Specifically, it assumes that the
value of k is yielded a priori to calculate the BD of bi, δk−BD

i , which embraces k bands
surrounding bi. Then, ρbc−BLD

i can be further calculated by δk−BD
i . It is a sequential process

of k → δk−BD
i → ρbc−BLD

i . In this case, we consider a cluster centered at a band vector bi
and expand its range until the cluster contains k bands surrounding bi according to their
spectral similarities.

For each bi, let the set contain the k nearest neighboring bands surrounding bi, denoted
by Bk

i . Then, we can define a criterion similar to ρi in (1) as:

ρk−BLD(bi) ≡ ρk−BLD
i = maxbj∈Bk

i
m(bi, bj) (32)

The minimum distance of bi from all other bands bj with ρk−BLD
j greater than ρk−BLD

i ,

denoted by δk−BD
i is defined as:

δk−BD(bi) ≡ δk−BD
i = min

ρk−BLD
j >ρk−BLD

i
m(bi, bj) (33)

Finally, a k-DPC score, denoted by γk−DPC(bi), can be defined by γk−DPC
i in correspon-

dence to γi in (5) as:

γk−DPC(bi) ≡ γk−DPC
i = ρk−BLD

i × δk−BD
i (34)

2.4. BDPC-BS

According to (31) and (34), the bc-DPC-BS and k-DPC-BS scores do not take into
account the inter-band correlation, and neither do ECA, E-FDPC, IaDPA, or k-SNNC. So,
to address this issue, a new concept derived from prominent band peaks proposed in [5],
called band prominence value (BPV), BPV(bi) for each band vector bi is introduced into
DPC as a third indicator. By incorporating BPV into BLD, ρi, and BD, δi, we can further
extend the two-indicator (BLD,BD)-DPC-BS and bc-DPC-BS and k-DPC-BS in Section 2.3
to three indicator (BLD,BD,BPV)-DPC-BS, bc-BDPC-BS, and k-BDPC-BS. This is similar to
SNNC, which includes a third indicator, information entropy Hk−SNNC

i in (24).
The concept of BPV can be applied to any DPC method. It plots DPC scores obtained

by (9) for ECA, (14) for E-FDPC, (20) for IaDPA, (24) for k-SNNC, (31) for bc-DPC-BS, and
(34) for k-DPC-BS, etc., as a curve where each point on the curve corresponds to the band
prominence value (BPV) of one band. For example, for band C, BPV(C) is calculated and
illustrated in Figure 1, which shows that the band prominence value of the peak C can
be calculated.
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To better understand how BPV is calculated according to Figure 1, a detailed step-by-step
implementation for calculating BPV is summarized in Algorithm 1. As a matter of fact, how to
calculate the prominence of a peak is available in Matlab and can be performed by findpeaks on
https://www.mathworks.com/help/signal/ug/prominence.html (accessed on 5 March 2024).

Algorithm 1: Algorithm for Calculating Prominence Scores of Bands

1. Input: Let the local minimum (LM) points set be ΩLM =
{

bjl

}nLM

l=1
and

~
Ω = Ω − ΩLM,

where Ω is the full bands set.

2. For bi ∈
~
Ω, calculate the prominence by the following procedure:

a. Extend a horizontal line from point bi to the left and the right until the line either

• crosses the curve because there is a higher point
or
• reaches the left or right end of the curve.
Then, the left interval and right interval of bi are defined.

b. Let γi be either γbc−BDPC
i or γk−BDPC

i . We can find the BPV of bi, BPV(bi), as follows:

i Find the minimum point bl in the left interval. Let ςl = γl if γl < γi.
Otherwise, let ςl = 0.

ii. Find the minimum point bj in the right interval. Let ς j = γj if γj < γi.
Otherwise, let ς j = 0.

iii. Output BPV(bi) = γi − max(ςl , ς j

)

Once {BPV(bi)}L
i=1 for all band vectors {bi}L

i=1 are calculated by the above algorithm,
we can multiply BPV(bi) with γbc−BDPC

i in (31) or γk−BDPC
i in (34) to yield new BPV-based

BP criteria for bc-BDPC-BS, defined as:

ηbc−BDPC
i = γbc−BDPC

i × BPV(bi) (35)

and for k-BDPC BS, defined as:

ηk−BDPC
i = γk−BDPC

i × BPV(bi) (36)

Assuming nBS is the number of bands to be selected, bc-BDPC and k-BDPC can use
(35) and (36) to select the bands with the first nBS largest values of ηbc−BDPC

i and ηk−BDPC
i

as desired bands for BS, respectively.

https://www.mathworks.com/help/signal/ug/prominence.html
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A final remark is noteworthy. The key difference between the idea used in BDPC-BS
and SMI-BS in [5] is that BDPC-BS calculates BPV for each band as an indicator jointly used
with BLD and BD for BS, compared to SMI-BS, which find prominent peaks for BS.

2.4.1. Determination of bc and k

Now, we come to the last issue, which is how to determine the values of the two
parameters, bc and k, which have significant impacts on the performance of DPC-BS and
BDPC-BS methods. Unfortunately, these two parameters were generally determined a
priori or empirically in the past. This section discusses several approaches to determine
appropriate values of bc and k for BDPC automatically.

2.4.2. Determination of bc

As noted above, when DPC is applied to BS, the total number of data samples, N, is
now replaced by L, the total number of bands. In [35], bc is determined by:

bc = b⌈Ld×p%/100⌉ (37)

where the b⌈Ld×p%/100⌉
th distance is selected according to an ascending order among all

possible distances between two band vectors. In (37), ⌈x⌉ is the upper ceiling of x, defined
by the smallest integer equal to or greater than x, and Ld = L(L − 1)/2 is the total number
of distances, and p% is a pre-specified percentage.

As an alternative to (37), IaDPI [49] selects:

bc = Vd(⌈2% × L × (L − 1)⌉)/ exp(k/L) (38)

where Vd(x) is the xth smallest distance among all possible distances between two data
samples, with L being the total number of bands.

In [41], it assumed that the potential energy in the data domain was similar to the
local density of the points in the dataset. As a result, the potential energy of each point can
be used as an indicator of the overall distribution of the dataset to estimate the potential
energy of the whole dataset. In this case, we can define the potential energy of each band
image bi as:

δi(σ) = ∑L
j=1,ji exp

(
−
(∣∣∣∣bj − bi

∣∣∣∣/σ
)2
)

(39)

where σ plays a similar role as dc does in (1). So, calculating the potential energy of band
sets is equivalent to calculating the local density of band sets. In doing so, it introduces the
Gini coefficient, denoted by:

G(σ) = 1 − ∑L
i=1(δi(σ)/Z) (40)

where:
Z = ∑L

i=1 δi(σ) (41)

is the total potential energy of all band images. We then define:

σopt = minσG(σ) (42)

which determines the desired bc as:
bc = σopt (43)

Interestingly, (37), (38) and (43), which are used to determine bc, have nothing to do
with the number of clusters, nclusters, which is supposed to be the key parameter of BDPC.
To address this issue, we developed an automatic algorithm to determine nclusters-based
bc, which is very easy and simple to implement. Its idea is to first use the well-known
K-means clustering method, also known as ISODATA [51], to group a dataset into nclusters,
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{
Cj
}nclusters

j=1 . Then, for each cluster Cj, we calculated its cluster center,
{
µj

}nclusters

j=1
, by its

mean. Finally, we found bc bc = minj,r∈Cj m(r,µj).
Despite the fact that ISODATA and K-means methods are essentially the same al-

gorithm, ISODATA is used to avoid confusion between K-means and kNNs because the
uppercase “K” used by the K-means method is the number of clusters, while the lowercase
italic “k” used by kNNs is the number of nearest neighbors.

Unlike DPC, which determines dc empirically, bc-BDPC automatically determines bc
by the number of clusters, nclusters. So, if we assume that each class is specified by one
cluster, then bc is in turn determined by the number of classes, nclasses of interest. Once bc is
determined, ρbc−BLD

i can be determined accordingly, i.e., bc → ρbc−BLD
i .

2.4.3. Determination of k

As an alternative to using bc to determine the value of k, we can directly use the
value of k to calculate local density and BD without appealing to bc. For example, k can be
selected as:

k =
p%
100

× L (44)

with p% predetermined empirically. Such selection is a trial-and-error and not practical.
To resolve this issue, virtual dimensionality (VD) introduced in [27,28] can be used for

this purpose. It is first used to estimate the number of bands to be selected, and then k can
be determined by:

kBS = 2 ×
⌈

L
nBS

⌉
(45)

where “2” is included to take the adjacent bands on both sides.

2.4.4. Determination of nBS

It should be noted that in addition to VD in (45) to determine the value of k, [50] also
developed an automatic rule for selecting an optimal band subset using the slope change,
defined as follows:

p = { i||ki|−|ki+1|≥ γ} for i = 1, 2, · · · , L − 2 (46)

where:
q = ∑L−1

i=1 ||ki|−|ki+1|| and γ = q/(L − 2) (47)

nBS = max{p} (48)

3. Experiments
3.1. Images to Be Used for Experiments

Three popular hyperspectral images that have been studied extensively for HSIC were
used for experiments.

3.1.1. Purdue Indiana Indian Pines

The first image is the Purdue Indiana Indian Pines test site with an aerial view, shown
in Figure 2a, along with its ground truth of 17 class maps in Figure 2b and their class labels
in Figure 2c. Table 1 tabulates the number of data samples in each class, where there are
four small classes with less than 10 samples: classes 7, 9, 1, 16, and three classes with more
than 1000 samples: classes 14, 2, and 11. So, this scene clearly has an imbalanced class issue
in classification. It is an airborne visible/infrared imaging spectrometer (AVIRIS) image
scene and has a size of 145 × 145 × 220 pixel vectors, with water absorption bands (bands
104–108 and 150–163, 220). So, a total of 220 bands were used for experiments. It should
be noted that in many reports, 200 bands were used by excluding water absorption bands.
However, for BS, it is believed that a full set of 220 bands should be used for band integrity.
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Figure 2. AVIRIS image scene: Purdue Indiana Indian Pines test site. (a) Band 186 (2162.56 nm). (b) 
Ground truth map. (c) Classes by colors. 

Table 1. Class labels of Purdue Indiana Indian Pines with number of data samples in each class. 

class 1 (46) Alfalfa class 7 (28) grass/pasture-mowed class 13 (205) wheat 
class 2 (1428) corn-notill class 8 (478) hay-windrowed class 14 (1265) woods 

class 3 (830) corn-min class 9 (20) oats class 15 (386) bldg-grass green-
drives 

class 4 (237) corn class 10 (972) soybeans-notill class 16 (93) stone-steel towers 
class 5 (483) grass/pasture class 11 (2455) soybeans-min 
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Figure 2. AVIRIS image scene: Purdue Indiana Indian Pines test site. (a) Band 186 (2162.56 nm).
(b) Ground truth map. (c) Classes by colors.

Table 1. Class labels of Purdue Indiana Indian Pines with number of data samples in each class.

class 1 (46) Alfalfa class 7 (28) grass/
pasture-mowed class 13 (205) wheat

class 2 (1428) corn-notill class 8 (478) hay-windrowed class 14 (1265) woods

class 3 (830) corn-min class 9 (20) oats class 15 (386) bldg-grass
green-drives

class 4 (237) corn class 10 (972) soybeans-notill class 16 (93) stone-steel towers
class 5 (483) grass/pasture class 11 (2455) soybeans-min

class 17 (10,249) BKGclass 6 (730) grass/trees class 12 (593) soybeans-clean

3.1.2. Salinas

A second image dataset is Salinas in Figure 3a, which is also an AVIRIS scene. It was
collected over Salinas Valley, California, with a spatial resolution of 3.7 m per pixel with
a spectral resolution of 10 nm. It has a size of 512 × 217 × 224, with 20 water absorption
bands, 108–112, 154–167, and 224. So, a total of 224 bands were used for experiments.
Figure 3b,c shows the color composite of the Salinas image along with the corresponding
ground truth class labels. Unlike the Purdue data, the Salinas scene does not have the issue
of imbalanced classes, as tabulated in Table 2, where the smallest class is class 13 with
916 data samples.

Table 2. Class labels of Salinas with number of data samples in each class.

class 1 (2009) Brocoli_green_weeds_1 class 10 (3278) Corn_senesced_green_weeds
class 2 (3726) Brocoli_green_weeds_2 class 11 (1068) Lettuce_romaine_4wk
class 3 (1976) Fallow class 12 (1927) Lettuce_romaine_5wk
class 4 (1394) Fallow_rough_plow class 13 (916) Lettuce_romaine_6wk
class 5 (2678) Fallow_smooth class 14 (1070) Lettuce_romaine_7wk
class 6 (3959) Stubble Class 15 (7268) Vinyard_untrained
class 7 (3579) Celery class 16 (1807) Vinyard_vertical_trellis

class 8 (11,271) Grapes_untrained class 17 (56,975) BKG
class 9 (6203) Soil_vinyard_develop
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Figure 3. Ground-truth of Salinas scene with 16 classes. (a) Salinas scene. (b) Ground-truth image.
(c) Classes by colors.

3.1.3. University of Pavia

A third hyperspectral image dataset used for experiments was the University of Pavia
image shown in Figure 4, which is an urban area surrounding the University of Pavia,
Italy. It was recorded by the ROSIS-03 satellite sensor over an urban area surrounding the
University of Pavia, Italy. It has a size of 610 × 340 × 115 with a spatial resolution of 1.3 m
per pixel and a spectral coverage ranging from 0.43 to 0.86 µm with a spectral resolution of
4 nm (the 12 most noisy channels were removed before experiments). Figure 4b provides
its ground-truth map of nine classes along with color class labels in Figure 4c. Table 3
also tabulates the number of data samples in parentheses collected for each class. Like
the Salinas scene, this scene also has very large classes, with only one small class having
less than 1000 data samples: class 9 with 947 samples. However, this scene has a more
complicated BKG than the other two studied scenes, as already shown in [15,16], where the
precision rate of this scene was much lower than the other two scenes.
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Table 3. Class labels of University of Pavia with number of data samples in each class.

class 1 (6631) Asphalt class 5 (1345) Painted metal sheets Class 9 (947) Shadows
class 2 (18,649) Meadows class 6 (5029) Bare Soil Class 10 (164,624) BKG
class 3 (2099) Gravel class 7 (1330) Bitumen
class 4 (3064) Trees class 8 (3682) Self-Blocking Bricks

3.2. Experimental Results and Discussions

In order to conduct credible experiments for a comparative analysis, three crucial
elements are considered and investigated:

(a) Number of bands needed to be selected, nBS.

Since BS is unsupervised, nBS must be determined without prior knowledge. In this
case, VD was used for this purpose.

(b) Classifiers used for HSIC.

There are many classifiers available and reported in the literature. Selecting a good
candidate to be used for HSIC will be a challenge. In this paper, its selection is based on
three aspects. One is that it should be effective and perform reasonably well compared to
many existing state-of-the-art classifiers. Another is that it should be simple enough to be
implemented so that those who are interested in our work can repeat experiments. A third
one is that it does not require too many parameters to be tuned, unlike many deep learning-
based HSIC methods. It turns out that spectral-spatial classifiers meet these requirements
and are preferred to deep learning-based classifiers when it comes to experiments. This
is because bc-BDPC and k-BDPC methods are steady with the parameters bc and k being
determined automatically. In this case, spectral-spatial classifiers are more appropriate to
be used as classifiers than deep learning-based classifiers, which require a number of model
parameters to be tuned empirically. Specifically, the Iterative EPF (IEPF) method in [52] was
selected as the classifier for experiments because it has been shown to significantly improve
EPF-based methods [53]. There were four IEPF methods proposed in [52] that performed
similarly. The IEPF-G-g was chosen as its representative for our comparison because
IEFP-G-g used guided filters, as opposed to IEPF-B-g, which used bilateral filters [5]. The
IEPF-G-g was implemented with the selection of training samples for each class, which
followed the same procedure that was used in [52]. Table 4 tabulates the number of training
samples selected for each class across the three datasets, and the remaining data samples
were used as test data samples.

Table 4. Number of training samples of each class for three datasets.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

Purdue 25 91 80 65 68 73 14 70 11 81 111 70 66 84 69 47 1025
Salinas 67 67 67 67 68 67 69 69 67 69 67 67 67 68 68 69 1083

U. of Pavia 100 100 100 100 100 100 100 100 100 900

(c) BS methods selected for comparison

There are two classes of BS methods of interest. One comprises DPC-based BS methods:
ECA, E-FDPC, IaDPI, DPC-KNN, G-DPC-KNN, and Shared Nearest Neighbor Network
(SNNC) [50]. The other class is made up of the most recently developed BS methods,
such as sequential CCBSS (SQ-CCBSS) [14], successive CCBSS (SC-CCBSS) [14], ref. [8],
MDPP [11], DSEBS [12], Linearly Constrained Minimum Variance Sequential Feedforward
Band Selection (LCMV-SFBS) [15], Linearly Constrained Minimum Variance Sequential
Backward Band Selection (LCMV-SBBS) [15], Feedforward Class Signature-Constrained
Band Prioritization (FCSCBS-BP) [16], and Backward Class Signature-Constrained Band
Prioritization (BCSCBS-BP) [16]. Since Self-Mutual Information (SMI)-BS was shown in [5]
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to perform better than the above-mentioned BS methods, it is sufficient to choose SMI-BS
for comparison.

With all things considered, this section compares six DPC-based methods, bc-BDPC
and k-BDPC, against ECA, E-FDPC, IaDPI, DPC-KNN, G-DPC-KNN, SNNC, and BP-based
SMI-BS using three spectral discrimination measures: SAM, SID, and SIDAM. Table 5
lists the parameter setting used for all compared BS methods along with the computer
environment: Intel® Core(TM) i7-9750H CPU 2.6 GHz with RAM: 16 G.

Table 5. Parameter setting for compared DPC-BS methods.

DPC Methods k bc

bc-BDPC nclusters
IaDPI 2% × L × (L − 1)/exp(nBS/L)

k-BDPC kBS = 2 × ⌈L/nBS⌉
DPC-kNN kNN = p% × N

G-DPC-kNN emperical selection Gini coefficient
SNNC k = 3

3.2.1. Purdue Indian Pines

According to [15,16], VD was estimated to be 18. Figures 5 and 6 plot ηbc−BDPC
i in

(39) and ηk−BDPC
i in (40), which were produced by bc-BDPC and k-BDPC using (a) SID,

(b) SAM, and (c) SIDAM for the Purdue Indian Pines scene, respectively, where the red dots
are 18 selected bands according to the peaks of BPV, as tabulated in Table 6. In addition,
Table 6 also includes 18 bands selected by SMI-BS, ECA, E-FDPC, IaDPI, DPC-kNN, G-DPC-
kNN, SNNC, and Uniform BS, where parameters used by various methods are specified in
Table 5.
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Table 6. 18 bands selected for the Purdue data.

Selected Bands (nVD = 18)

bc-BDPC-SID 219 67 191 88 28 134 48 211 16 24 1 35 123 34 36 78 37 8
bc-BDPC-SAM 136 68 178 29 122 211 28 96 95 26 189 52 23 21 35 18 19 34

bc-BDPC-SIDAM 189 68 28 88 136 159 15 50 21 213 22 122 1 20 35 34 23 36
k-BDPC-SID 29 35 42 1 36 122 37 77 99 2 32 75 34 132 3 31 27 4

k -BDPC-SAM 29 42 35 1 36 120 37 77 98 2 63 132 3 32 166 4 31 34
k-BDPC-SIDAM 29 35 42 1 36 121 37 77 99 34 2 32 63 31 3 132 27 25

SMI-BS 59 117 125 38 40 180 173 20 168 31 34 12 114 192 160 108 95 92
ECA 164 129 67 83 193 52 14 197 28 110 147 103 112 111 149 208 165 107

E-FDPC 194 32 2 100 98 61 1 36 35 99 60 31 101 76 62 13 58 59
IaDPI 171 115 8 208 87 58 142 46 77 135 31 176 97 190 15 92 54 160

DPC-KNN (kBS) 150 136 187 146 147 119 145 116 103 110 114 101 112 115 125 111 205 208
DPC-KNN
(k = 2%L) 37 36 2 75 46 1 57 61 42 4 7 100 32 3 47 35 62 183

G-DPC-KNN (kBS) 204 206 203 205 148 202 112 207 209 167 201 65 69 70 126 129 132 133
G-DPC-KNN

(k = 10) 1 101 81 100 37 117 61 145 46 76 60 36 58 75 78 3 4 79

SNNC (kBS) 104 3 1 37 77 58 38 2 61 119 60 5 6 100 82 76 40 36
SNNC (k = 3) 180 49 84 65 132 10 6 81 77 142 21 2 1 88 82 207 57 76
uniform BS 1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 220

In order to demonstrate the effectuveness of BDPC, HSIC was used to illustrate
its application, where IEPF-G-g was implemented as the desired classifier. Figure 7a–r
shows the classification maps produced by (a) full bands, (b) UBS, (c) bc-BDPC-SID,
(d) bc-BDPC-SAM, (e) bc-BDPC-SIDAM, (f) k-BDPC-SID, (g) k-BDPC-SAM, (h) k-BDPC-
SIDAM, (i) SMI-BS, (j) ECA, (k) E-FDPC, (l) IaDPI, (m) DPC-KNN(kBS), (n) DPC-KNN
(k = 2%L), (o) G-DPC-KNN (kBS), (p) G-DPC-KNN (k = 10), (q) SNNC(kBS), and (r) SNNC
(k = 3), respectively. Upon visual inspection, all the methods seemed to perform reasonably
well on classification.
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Figure 7. IEPF-G-g classification maps produced by different BS methods for Purdue data. (a) Full
bands (OA = 95.71%), (b) UBS (OA = 96.81%), (c) bc-BDPC-SID (OA = 98.08%),(d) bc-BDPC-SAM
(OA = 98.12%), (e) bc-BDPC-SIDAM (OA =97.70%), (f) k-BDPC-SID (OA = 97.53%), (g) k -BDPC-SAM
(OA = 97.91%), (h) k-BDPC-SIDA (OA = 97.78%), (i) SMI-BS (OA = 97.57%), (j) ECA (OA = 96.87%),
(k) E-FDPC (OA = 97.80%), (l) IaDPI (OA = 97.59%), (m) DPC-KNN (kBS) (OA = 91.77%), (n) DPC-
KNN (k = 2%L) (OA = 98.05%), (o) G-DPC-KNN (kBS) (OA = 89.33%), (p) G-DPC-KNN (k = 10)
(OA = 97.65%), (q) SNNC (kBS) (OA = 97.14%), (r) SNNC(k = 3) (OA = 97.66%).

However, there are some subtle and appreciable differences in the classification of
class 2 (highlighted in blue), class 10 (highlighted in yellow), and class 11 (highlighted in
purple), where different methods misclassified different data samples. So, assessing which
one performs better on these classes is a challenge. This is because the classification maps
in Figure 7 only provide qualitative analyses, and it is still very difficult to evaluate the
overall effectiveness of different methods based only on their classification maps.

To address this issue, Table 7 tabulates the classification results of bc-BDPC and k-BDPC
using SID, SAM, and SIDAM, along with the results produced by full bands and uniform BS
for quantitative comparison. The commonly used overall accuracy (OA), average accuracy
(AA), and Kappa coefficient were used as evaluation criteria, with the best results boldfaced
in red and the second best boldfaced in black. As we can see, the best result was produced
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by bc-BDPC using SID, which also outperformed using full bands and uniform BS. Most
impressively, all the various versions of bc-BDPC and k-BDPC performed better than full
bands and uniform BS, albeit at the expense of additional computer running time (seconds),
documented at the bottom row of Table 7 for reference.

Table 7. Quantitative comparative analysis of classification for the Purdue data among bc-BDPC
and k-BDPC using, SID, SAM, and SIDAM along with full bands and uniform BS, with the best and
second-best results highlighted and boldfaced in red and black, respectively.

IEPF-G-g

Class bc-BDPC-
SID

bc-BDPC-
SAM

bc-BDPC-
SIDAM

k-BDPC-
SID

k-BDPC-
SAM

k-BDPC-
SIDAM

Uniform
BS Full Bands

1 1.0000 0.9957 1.0000 1.0000 1.0000 1.0000 0.9978 0.9957
2 0.9646 0.9660 0.9644 0.9590 0.9637 0.9568 0.9293 0.9302
3 0.9886 0.9833 0.9865 0.9857 0.9877 0.9883 0.9839 0.9619
4 0.9975 0.9987 0.9979 0.9983 0.9992 0.9987 1.0000 0.9899
5 0.9783 0.9799 0.9783 0.9762 0.9785 0.9756 0.9764 0.9627
6 0.9996 0.9993 0.9999 0.9996 0.9997 0.9993 0.9986 0.9947
7 0.9929 0.9893 0.9964 0.9929 0.9929 0.9929 0.9893 0.9893
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.9697 0.9786 0.9643 0.9770 0.9773 0.9731 0.9551 0.9399
11 0.9656 0.9654 0.9527 0.9446 0.9559 0.9530 0.9411 0.9224
12 0.9921 0.9874 0.9892 0.9914 0.9917 0.9921 0.9916 0.9855
13 0.9976 0.9961 0.9971 0.9976 0.9971 0.9976 0.9966 0.9966
14 0.9962 0.9975 0.9972 0.9963 0.9972 0.9963 0.9962 0.9837
15 0.9969 0.9940 0.9982 0.9951 0.9953 0.9953 0.9969 0.9886
16 0.9968 0.9978 0.9978 0.9989 0.9978 0.9989 0.9989 0.9957

POA 0.9808 0.9812 0.9770 0.9753 0.9791 0.9768 0.9681 0.9571
PAA 0.9898 0.9893 0.9887 0.9883 0.9896 0.9886 0.9845 0.9773

Kappa 0.9779 0.9786 0.9740 0.9721 0.9763 0.9736 0.9638 0.9514

time (s) 27 3 85 42 7 69

To further conduct a comparative analysis, Table 8 also tabulates the (OA, AA, Kappa)
classification results obtained by the existing DPC-based BS methods: ECA, E-FDPC, IaDPI,
DPC-KNN, G-DPC-KNN, and SNNC, where the best and second-best results are boldfaced
in red and black, respectively, with running time (seconds) included at the bottom row
for reference. Since SMI-BS has been shown to perform better than many existing BS
methods in [5], SMI-BS results are also included in Table 8 for comparison. As shown in
Table 8, E-FDPC and DPC-KNN using k = 2%L were the best. Nevertheless, SMI-BS, IaDPI,
and SNNC also performed very well, with nearly the same performance as E-FDPC and
DPC-KNN. Now, if we compare Table 7 to Table 8, we can see that bc-BDPC using SID
performed better than the best results of E-FDPC and DPC-KNN in Table 7.

3.2.2. Salinas

The VD estimated for Salinas was 21 [15,16]. Table 9 also includes 21 bands selected by
SMI-BS, ECA, E-FDPC, IaDPI, DPC-kNN, G-DPC-kNN, SNNC, and uniform BS for compar-
ison, where parameters used by various methods are specified in Table 5. Figures 8 and 9
plot ηbc−BDPC

i and ηk−BDPC
i produced by bc-BDPC and k-BDPC using (a) SID, (b) SAM,

and (c) SIDAM for Salinas, respectively, where the red dots are the selected bands and are
tabulated in Table 9.
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Table 8. Quantitative comparative analysis of classification for the Purdue data among SMI-BS,
ECA, E-FDPC, IaDPI, DPC-KNN, G-DPC-KNN, and SNNC, with the best and second-best results
highlighted and boldfaced in red and black, respectively.

IEPF-G-g

Class SMI-BS ECA E-FDPC IaDPI
DPC-
KNN
(kBS)

DPC-
KNN

(k = 2%L)

G-DPC-
KNN
(kBS)

G-DPC-
KNN

(k = 10)

SNNC
(kBS)

SNNC
(k = 3)

1 1.0000 1.0000 0.9978 0.9978 1.0000 0.9957 0.9609 0.9978 0.9957 0.9957
2 0.9575 0.9440 0.9629 0.9538 0.8965 0.9723 0.8763 0.9567 0.9502 0.9491
3 0.9851 0.9800 0.9841 0.9878 0.9167 0.9898 0.8848 0.9837 0.9855 0.9887
4 0.9987 0.9987 0.9975 0.9975 0.9764 0.9975 0.9435 0.9992 0.9970 0.9970
5 0.9797 0.9783 0.9762 0.9816 0.9482 0.9723 0.8874 0.9716 0.9712 0.9789
6 0.9993 0.9981 0.9984 0.9989 0.9296 0.9970 0.8788 0.9964 0.9968 0.9989
7 0.9929 0.9893 0.9964 0.9929 1.0000 0.9857 0.9750 0.9857 0.9857 0.9964
8 1.0000 1.0000 1.0000 1.0000 0.9862 0.9998 0.9427 1.0000 1.0000 1.0000
9 1.0000 1.0000 1.0000 1.0000 0.9650 1.0000 0.9350 1.0000 1.0000 1.0000
10 0.9679 0.9531 0.9779 0.9723 0.9032 0.9767 0.8606 0.9677 0.9629 0.9660
11 0.9505 0.9374 0.9545 0.9509 0.8727 0.9604 0.9124 0.9576 0.9431 0.9598
12 0.9922 0.9921 0.9921 0.9934 0.9290 0.9931 0.8663 0.9944 0.9933 0.9907
13 0.9951 0.9971 0.9966 0.9961 0.9815 0.9976 0.9444 0.9980 0.9980 0.9980
14 0.9963 0.9947 0.9968 0.9947 0.9435 0.9957 0.8736 0.9960 0.9942 0.9953
15 0.9953 0.9974 0.9917 0.9959 0.9733 0.9876 0.9254 0.9899 0.9878 0.9959
16 0.9989 1.0000 0.9968 0.9978 0.9645 0.9925 0.9570 0.9978 0.9957 0.9978

POA 0.9757 0.9687 0.9780 0.9759 0.9177 0.9805 0.8933 0.9765 0.9714 0.9766
PAA 0.9881 0.9850 0.9887 0.9882 0.9491 0.9883 0.9140 0.9870 0.9848 0.9880

Kappa 0.9723 0.9644 0.9751 0.9724 0.9071 0.9779 0.8798 0.9734 0.9677 0.9734

time (s) 36 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.4 0.7

Table 9. 21 bands selected for Salinas.

Selected Bands (nVD = 21)

bc-BDPC-SID 91 141 157 156 155 70 159 108 192 164 160 165 31 111 166 110 163 154 224 18 52
bc-BDPC -SAM 92 135 156 70 162 187 161 109 165 110 111 166 154 31 112 52 18 108 159 107 153

bc-BDPC
-SIDAM 92 156 155 157 164 159 163 160 161 165 108 135 111 154 166 192 70 110 112 224 31

k-BDPC-SID 157 160 159 164 155 108 163 165 110 162 111 154 166 224 1 112 222 107 167 113 2
k -BDPC -SAM 156 164 108 160 155 154 109 165 159 110 166 111 157 163 112 224 153 162 167 107 1

k-BDPC
-SIDAM 156 164 159 160 155 157 108 163 165 162 110 111 154 166 224 112 222 107 167 1 113
SMI-BS 15 32 34 40 63 117 150 157 184 206 223 22 41 64 71 94 118 151 176 185 202

ECA 109 184 88 68 136 211 32 194 218 55 215 96 153 93 118 204 224 160 161 166 180
E-FDPC 193 61 104 5 4 103 78 64 81 102 9 39 105 2 36 83 38 3 80 106 84

IaDPI 154 38 107 194 8 65 140 19 89 167 101 112 159 136 96 33 85 133 175 170 162
DPC-KNN

(kBS) 111 24 89 73 197 129 104 5 17 105 64 2 63 210 81 3 37 15 36 106 103
DPC-KNN
(k = 6%L) 159 156 157 158 163 162 164 108 165 110 111 155 154 112 222 212 137 220 92 161 217

G-DPC-KNN
(kBS) 204 205 202 150 209 206 207 119 203 118 117 170 36 22 23 24 27 21 17 15 25

G-DPC-KNN
(k = 7) 38 64 57 49 6 134 133 63 108 109 5 104 45 43 78 8 87 38 64 57 49

SNNC (kBS) 39 121 4 22 3 117 123 41 104 63 85 43 64 1 2 65 8 39 121 4 22
SNNC (k = 3) 183 5 130 14 18 173 24 4 84 3 66 96 82 193 10 2 54 183 5 130 14
Uniform BS 1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 224

Figure 10a–r shows the classification maps produced by (a) full bands, (b) UBS,
(c) bc-BDPC-SID, (d) bc-BDPC-SAM, (e) bc-BDPC-SIDAM, (f) k-BDPC-SID, (g) k-BDPC-
SAM, (h) k-BDPC-SIDAM, (i) SMI-BS, (j) ECA, (k) E-FDPC, (l) IaDPI, (m) DPC-KNN, (kBS)
(n) DPC-KNN (k = 2%L), (o) G-DPC-KNN (kBS), (p) G-DPC-KNN (k = 10), (q) SNNC (kBS),
and (r) SNNC (k = 3), respectively. Like the Purdue data, all the methods seemed to perform
comparably on classification except for the two largest classes: class 8 (highlighted in
dark blue) and class 15 (highlighted in brown), where different methods showed visible
differences. In particular, (c) bc-BDPC-SID, (p) G-DPC-KNN (k = 10), and (r) SNNC (k = 3)
were among the best performers for the classification of classes 8 and 15. However, this
was not true when the overall performance was considered.
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Figure 9. ηk−BDPC
i values by k-BDPC for Salinas using (a) SID, (b) SAM, (c) SIDAM.

Table 10 tabulates the (OA, AA, Kappa) classification results of bc-BDPC and k-BDPC
using, SID, SAM, and SIDAM, along with the results produced by full bands and uniform
BS for quantitative comparison, where the best and second-best results are boldfaced in
red and black, respectively. As shown in Table 10, the best results were produced by
bc-BDPC using SAM and full bands. Interestingly, unlike the Purdue data, all the various
versions of bc-BDPC and k-BDPC did not perform as well as full bands and uniform BS.
The quantitative results in Table 10 demonstrated that the qualitative visual inspection in
Figure 10 was not reliable.

To further conduct a comparative analysis, Table 11 also tabulates the (OA, AA, Kappa)
classification results obtained by ECA, E-FDPC, IaDPI, DPC-KNN, G-DPC-KNN, and
SNNC, where the best and second-best results are boldfaced in red and black, respectively,
with running time (seconds) included at the bottom row for reference. Since SMI-BS has
been shown to perform better than many existing BS methods in [5], SMI-BS results are
also included in Table 11 for comparison.

As shown in Table 11, SNNC (k = 3) was the best, followed by DPC-KNN using
kBS as the second-best. Interestingly, SNNC (k = 3) not only outperformed all the DPC-
based methods in Table 11 but also performed better than using full bands. According
to Tables 10 and 11, it is worth noting that all the methods had difficulty with classifying
classes 8 and 15, which are adjacent each other. This is particularly true for k-BDPC.
Because of the poor classification of these two largest classes, k-BDPC did not perform well
compared to other methods.
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Figure 10. Classification maps produced by IEPF-G-g using different BS criterion for Salinas data.
(a) Full bands (OA = 96.24%), (b) UBS (OA = 95.69%), (c) bc-BDPC-SID (OA = 95.28%), (d) bc-
BDPC-SAM (OA = 96.32%), (e) bc-BDPC-SIDAM (OA = 96.09%), (f) k-BDPC-SID (OA = 91.89%),
(g) k -BDPC-SAM (OA = 90.09%), (h) k-BDPC-SIDAM (OA = 90.50%), (i) SMI-BS (OA = 95.32%),
(j) ECA (OA = 96.32%), (k) E-FDPC (OA =96.47%), (l) IaDPI (OA = 95.86%), (m) DPC-KNN (kBS)
(OA =96.86%), (n) DPC-KNN (k = 2%L) (OA = 95.16%), (o) G-DPC-KNN (kBS) (OA = 95.05%),
(p) G-DPC-KNN (k = 10) (OA = 95.81%), (q) SNNC (kBS) (OA = 95.29%), (r) SNNC (k = 3)
(OA = 96.91%).

Table 10. Quantitative comparative analysis of classification for Salinas among bc-BDPC and k-BDPC
using SID, SAM, and SIDAM, along with full bands and uniform BS, with the best and second-best
results highlighted and boldfaced in red and black, respectively.

IEPF-G-g

Class bc-BDPC-
SID

bc-BDPC-
SAM

bc-BDPC-
SIDAM

k-BDPC-
SID

k-BDPC-
SAM

k-BDPC-
SIDAM UBS Full Bands

1 0.9990 0.9979 0.9983 0.9924 0.9855 0.9795 0.9998 1.0000
2 0.9909 0.9914 0.9937 0.9837 0.9749 0.9612 0.9964 0.9967
3 0.9989 0.9978 0.9935 0.9945 0.9907 0.9844 0.9997 0.9986
4 0.9945 0.9944 0.9963 0.9919 0.9896 0.9851 0.9986 0.9973
5 0.9872 0.9886 0.9851 0.9757 0.9801 0.9786 0.9916 0.9899
6 0.9961 0.9962 0.9946 0.9983 0.9997 0.9937 0.9988 0.9978
7 0.9943 0.9926 0.9920 0.9940 0.9944 0.9806 0.9963 0.9958
8 0.8876 0.9058 0.9048 0.7649 0.7155 0.7559 0.8886 0.8944
9 0.9946 0.9929 0.9848 0.9934 0.9903 0.9893 0.9957 0.9964

10 0.9868 0.9883 0.9739 0.9738 0.9702 0.9612 0.9889 0.9820
11 0.9934 0.9925 0.9944 0.9949 0.9966 0.9829 0.9982 0.9960
12 0.9992 0.9977 0.9982 0.9866 0.9955 0.9853 1.0000 1.0000
13 0.9893 0.9902 0.9880 0.9988 0.9979 0.9848 0.9927 0.9936
14 0.9874 0.9904 0.9880 0.9931 0.9857 0.9859 0.9932 0.9894
15 0.8968 0.9084 0.9098 0.8127 0.7621 0.7646 0.8728 0.9098
16 0.9878 0.9826 0.9776 0.9872 0.9925 0.9877 0.9903 0.9901

POA 0.9582 0.9632 0.9609 0.9189 0.9009 0.9050 0.9569 0.9624
PAA 0.9802 0.9817 0.9796 0.9647 0.9576 0.9538 0.9814 0.9830

Kappa 0.9537 0.9529 0.9567 0.9106 0.8911 0.8955 0.9523 0.9583

time (s) 139 8 275 228 48 278
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Table 11. Quantitative comparative analysis of classification for Salinas among SMI-BS, ECA, E-FDPC,
IaDPI, DPC-KNN, G-DPC-KNN, and SNNC, with the best and second-best results highlighted and
boldfaced in red and black, respectively.

IEPF-G-g

Class SMI-BS ECA E-FDPC IaDPI
DPC-
KNN
(kBS)

DPC-
KNN

(k = 2%L)

G-DPC-
KNN
(kBS)

G-DPC-
KNN
(k = 7)

SNNC
(kBS)

SNN
(k = 3)

1 0.9998 0.9999 1.0000 1.0000 0.9999 0.9959 0.9940 0.9999 1.0000 0.9999
2 0.9947 0.9948 0.9979 0.9989 0.9977 0.9857 0.9977 0.9973 0.9979 0.9976
3 0.9996 0.9991 0.9992 0.9992 0.9999 0.9920 0.9879 0.9990 0.9997 0.9997
4 0.9979 0.9981 0.9966 0.9985 0.9958 0.9946 0.9951 0.9981 0.9976 0.9961
5 0.9909 0.9874 0.9896 0.9879 0.9929 0.9825 0.9771 0.9884 0.9882 0.9926
6 0.9982 0.9978 0.9994 0.9987 0.9990 0.9930 0.9922 0.9990 0.9993 0.9987
7 0.9955 0.9960 0.9968 0.9963 0.9963 0.9907 0.9928 0.9956 0.9961 0.9963
8 0.8611 0.9004 0.8997 0.8773 0.9178 0.8784 0.9037 0.8710 0.8652 0.9160
9 0.9945 0.9950 0.9998 0.9963 0.9960 0.9867 0.9880 0.9977 0.9993 0.9968
10 0.9822 0.9824 0.9829 0.9884 0.9854 0.9678 0.9803 0.9855 0.9864 0.9882
11 0.9961 0.9947 0.9963 0.9970 0.9978 0.9898 0.9890 0.9965 0.9971 0.9970
12 1.0000 0.9996 1.0000 0.9999 1.0000 0.9884 0.9934 1.0000 1.0000 0.9999
13 0.9936 0.9940 0.9963 0.9976 0.9931 0.9922 0.9956 0.9944 0.9951 0.9942
14 0.9915 0.9920 0.9951 0.9933 0.9918 0.9841 0.9873 0.9928 0.9917 0.9931
15 0.8946 0.9091 0.9121 0.9026 0.9154 0.8946 0.8393 0.9095 0.8763 0.9201
16 0.9912 0.9883 0.9918 0.9888 0.9907 0.9736 0.9869 0.9939 0.9951 0.9900

POA 0.9532 0.9632 0.9647 0.9586 0.9686 0.9516 0.9515 0.9581 0.9529 0.9691
PAA 0.9801 0.9830 0.9846 0.9826 0.9856 0.9744 0.9750 0.9824 0.9803 0.9860

Kappa 0.9483 0.9591 0.9609 0.9541 0.9652 0.9464 0.9462 0.9536 0.9478 0.9657

time (s) 149 1.8 1.8 2.1 1.9 1.8 1.7 1.7 1.9 1.9

3.2.3. U. of Pavia

Once again, the VD estimated for U. of Pavia was 14 [15,16]. Figures 11 and 12 plot
ηbc−BDPC

i and ηk−BDPC
i produced by bc-BDPC and k-BDPC, using (a) SID, (b) SAM, and (c)

SIDAM for the U. of Pavia scene, respectively, where the red dots are the selected bands
and are tabulated in Table 12. Table 12 also includes 14 bands selected by SMI-BS, ECA,
E-FDPC, IaDPI, DPC-kNN, G-DPC-kNN, SNNC, and uniform BS.

Table 12. 14 bands selected for U. of Pavia.

Selected Bands (nVD = 14)

bc-BDPC-SID 93 62 1 2 3 71 4 70 32 5 72 69 6 7

bc-BDP-SAM 91 55 31 19 84 1 2 82 58 50 72 59 3 81
bc-BDPC-
SIDAM 91 61 1 2 3 71 70 4 32 72 5 69 19 6

k-BDPC-SID 1 72 2 3 4 5 30 6 15 71 70 7 73 69
k -BDPC-SAM 1 72 2 3 4 27 5 71 73 70 74 6 69 16

k-BDPC-SIDAM 1 72 2 3 4 5 30 16 6 71 70 73 69 7
SMI-BS 22 41 91 9 18 21 37 40 48 57 66 82 92 94

ECA 61 88 53 46 33 62 56 63 49 60 92 47 57 54
E-FDPC 50 93 24 84 82 2 4 3 68 5 67 69 1 6

IaDPI 74 32 5 98 84 45 51 41 94 76 75 73 77 72
DPC-KNN (kBS) 58 93 16 35 1 2 3 4 82 69 84 77 5 52

DPC-KNN
(k = 2%L) 60 63 61 57 53 47 64 51 49 45 89 32 91 55

G-DPC-KNN
(kBS) 28 27 29 26 30 31 36 35 33 34 32 79 78 77

G-DPC-KNN
(k = 7) 75 71 72 68 67 76 74 69 73 60 58 56 50 53

SNNC (kBS) 82 5 2 49 1 3 4 7 29 9 6 93 11 86
SNNC (k = 5) 92 59 1 7 2 3 4 17 5 100 6 75 8 9
Uniform BS 1 9 17 25 33 41 49 57 65 73 81 89 97 103
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Figure 12. ηk−BDPC
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Figure 13a–r shows the classification maps produced by (a) full bands, (b) UBS,
(c) bc-BDPC-SID, (d) bc-BDPC-SAM, (e) bc-BDPC-SIDAM, (f) k-BDPC-SID, (g) k-BDPC-
SAM, (h) k-BDPC-SIDAM, (i) SMI-BS, (j) ECA, (k) E-FDPC, (l) IaDPI, (m) DPC-KNN(kBS),
(n) DPC-KNN (k = 2%L), (o) G-DPC-KNN (kBS), (p) G-DPC-KNN (k = 10), (q) SNNC (kBS),
and (r) SNNC (k = 3), respectively. Overall, all the methods performed reasonably well
upon visual inspection, except for the classification of the second largest class: class 6
(highlighted in brown), which had subtle differences.

However, to evaluate overall performance, it is extremely difficult to name which
method is the best. In this case, Table 13 tabulates the (OA, AA, Kappa) classification results
of bc-BDPC and k-BDPC using SID, SAM, and SIDAM, along with the results produced
by full bands and uniform BS for quantitative comparison with the best results boldfaced
in red and the second-best results boldfaced in black. As we can see, the best results
were produced using full bands, followed very closely by bc-BDPC using SIDAM with
only differences within 0.2%. Table 14 also tabulates the (OA, AA, Kappa) classification
results obtained by ECA, E-FDPC, IaDPI, DPC-KNN, G-DPC-KNN, and SNNC, where the
best and second-best results are boldfaced in red and black, respectively, with computer
running time in seconds included at the bottom row for reference. As shown in Table 14,
E-FDPC was the best, followed by the second best DPC-KNN using kBS. If we compare
Table 13 to Table 14, bc-BDPC using SAM and SIDAM performed slightly better in OA than
E-FDPC but slightly worse in AA than E-FDPC. As a matter of fact, bc-BDPC generally
outperformed all other BS methods in Table 14.
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(d) bc-BDPC-SAM (OA = 97.83%), (e) bc-BDPC-SIDAM (OA = 98.13%), (f) k-BDPC-SID (OA = 89.12%), 
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Figure 13. Classification maps produced by IEPF-G-g using different BS criterion for University of
Pavia data. (a) Full bands (OA = 98.23%), (b) UBS (OA = 96.87%), (c) bc-BDPC-SID (OA = 97.82%),
(d) bc-BDPC-SAM (OA = 97.83%), (e) bc-BDPC-SIDAM (OA = 98.13%), (f) k-BDPC-SID (OA = 89.12%),
(g) k -BDPC-SAM (OA = 9707%), (h) k-BDPC-SIDA (OA = 96.63%), (i) SMI-BS (OA = 97.46%),
(j) ECA (OA = 95.76%), (k) E-FDPC (OA =97.95%), (l) IaDPI (OA = 97.00%), (m) DPC-KNN (kBS)
(OA = 97.79%), (n) DPC-KNN (k = 2%L) (OA = 96.07%), (o) G-DPC-KNN (kBS) (OA = 96.93%),
(p) G-DPC-KNN (k = 10) (OA = 96.79%), (q) SNNC (kBS) (OA = 97.39%), (r) SNNC (k = 3)
(OA = 96.30%).

Table 13. Quantitative comparative analysis of classification for U. of Pavia among bc-BDPC and
k-BDPC using SID, SAM, and SIDAM, along with full bands and uniform BS, with the best and
second-best results highlighted and boldfaced in red and black, respectively.

IEPF-G-g

Class bc-BDPC-
SID

bc-BDPC-
SAM

bc-BDPC-
SIDAM

k-BDPC-
SID

k-BDPC-
SAM

k-BDPC-
SIDAM

Uniform
BS Full Bands

1 0.9765 0.9811 0.9845 0.9064 0.9861 0.9877 0.9827 0.9816
2 0.9708 0.9658 0.9751 0.8574 0.9558 0.9452 0.9434 0.9738
3 0.9784 0.9881 0.9842 0.9041 0.9818 0.9817 0.9874 0.9915
4 0.9887 0.9874 0.9865 0.9079 0.9803 0.9805 0.9929 0.9870
5 0.9992 0.9995 0.9996 0.9320 0.9989 0.9988 0.9977 0.9984
6 0.9919 0.9940 0.9898 0.8931 0.9771 0.9727 0.9832 0.9967
7 0.9998 0.9996 0.9999 0.9265 1.0000 0.9999 0.9969 0.9997
8 0.9706 0.9812 0.9712 0.9747 0.9685 0.9734 0.9881 0.9816
9 0.9982 0.9995 0.9992 0.9235 0.9955 0.9962 0.9960 0.9998

POA 0.9782 0.9783 0.9813 0.8912 0.9707 0.9663 0.9683 0.9823
PAA 0.9860 0.9885 0.9878 0.9140 0.9826 0.9818 0.9854 0.9900

Kappa 0.9713 0.9715 0.9754 0.8602 0.9616 0.9558 0.9584 0.9767

time (s) 85 14 118 165 38 189
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Table 14. Quantitative comparative analysis of classification for U. of Pavia among SMI-BS, ECA, E-
FDPC, IaDPI, DPC-KNN, G-DPC-KNN, and SNNC, with the best and second-best results highlighted
and boldfaced in red and black, respectively.

IEPF-G-g

Class SMI-BS ECA E-FDPC IaDPI
DPC-
KNN
(kBS)

DPC-
KNN
(k =

2%L)

G-DPC-
KNN
(kBS)

G-DPC-
KNN
(k = 7)

SNNC
(kBS)

SNNC
(k = 5)

1 0.9782 0.9701 0.9833 0.9777 0.9844 0.9766 0.9723 0.9703 0.9823 0.9783
2 0.9613 0.9360 0.9684 0.9508 0.9658 0.9353 0.9559 0.9559 0.9584 0.9403
3 0.9879 0.9791 0.9884 0.9834 0.9841 0.9860 0.9870 0.9731 0.9871 0.9809
4 0.9933 0.9901 0.9898 0.9895 0.9898 0.9891 0.9876 0.9883 0.9919 0.9875
5 0.9967 0.9991 0.9991 0.9984 0.9980 0.9983 0.9984 0.9987 0.9981 0.9949
6 0.9873 0.9568 0.9922 0.9851 0.9923 0.9687 0.9705 0.9792 0.9847 0.9692
7 0.9972 0.9937 0.9992 0.9979 0.9987 0.9958 0.9968 0.9981 0.9986 0.9950
8 0.9733 0.9688 0.9784 0.9807 0.9751 0.9765 0.9769 0.9600 0.9758 0.9802
9 0.9957 0.9939 0.9987 0.9988 0.9961 0.9931 0.9974 0.9946 0.9971 0.9937

POA 0.9746 0.9576 0.9795 0.9700 0.9779 0.9607 0.9693 0.9679 0.9739 0.9630
PAA 0.9857 0.9764 0.9886 0.9847 0.9871 0.9799 0.9825 0.9798 0.9860 0.9800

Kappa 0.9666 0.9446 0.9730 0.9606 0.9709 0.9486 0.9598 0.9579 0.9656 0.9516

time(s) 92 1.1 1.1 1.8 1.0 1.1 1.0 1.1 1.4 1.4

3.2.4. Discussions

The experiments in this section yield several interesting observations and findings.

• Experimental results showed that the three datasets exhibited different characteristics,
which resulted in different performances of various BS methods and classifiers. For
example, the Purdue data had four small classes with less than 100 data samples and
three large classes with more than 1000 data samples, compared to Salinas and U. of
Pavia, both of which had classes with more than 900 data samples. So, the Purdue
data ran into an imbalanced class issue. As a result, full bands are generally good for
balanced classes and performed better than all the test BS methods for Salinas and U.
of Pavia but performed worse than SMI-BS and most DPC-based BS methods for the
Purdue data.

• Also, interestingly, both bc-BDPC and k-BDPC performed very well and better than
full bands for the Purdue data. This indicates that bc-BDPC and k-BDPC may perform
better for datasets with imbalanced classes. However, bc-BDPC and k-BDPC did not
perform as well as full bands for Salinas and U. of Pavia. Nevertheless, bc-BDPC still
managed to perform comparably to full bands. Surprisingly, k-BDPC did not perform
well as expected, specifically for Salinas, as its performance significantly degraded
due to the classification of classes 8 and 15.

• Since BDPC combines the advantages of the two indicators of DPC, cluster density
ρ and cluster distance δ, and the band prominent peaks of SMI-BS, BPV, it performs
better than DPC-based BS and SMI-BS, as expected.

• According to experiments, bc-BDPC generally performed better than k-BDPC for all
the three datasets. This means that the cut-off distance, bc, is more crucial than the k
nearest neighbors in designing DPC-BS. More specifically, bc → ρbc−BLD

i → δk−BD
i is

more effective than k → δk−BD
i → ρbc−BLD

i .
• DPC-KNN using kBS performed better than DPC-KNN using k = 2%L for Salinas

and U. of Pavia but worse for the Purdue data. This demonstrates that DPC-KNN
using kBS works well for large datasets compared to DPC-KNN using k = 2%L, which
performs better for small datasets. In addition, G-DPC-KNN using kBS performed
better than DPC-KNN using k = 2%L for U. of Pavia but worse for the Purdue and
Salinas data scenes.
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• It is notewothy that experiments showed that DPC-KNN and G-DPC-KNN using kBS
did not perform as well as DPC-KNN and G-DPC-KNN did for the Purdue data, but
did perform better than DPC-KNN and G-DPC-KNN for U. of Pavia. This indicates
that DPC-KNN and G-DPC-KNN may work well for datasets mixed with small and
large classes, while DPC-KNN and G-DPC-KNN using kBS may work well for datasets
with large classes. As for the Salinas data, they all performed comparably.

• Analogously to DPC-KNN and G-DPC-KNN with/without using kBS discussed above,
SNNC using kBS performed better than SNNC using (48) for U. of Pavia but worse
for the Purdue and Salinas data scenes. Nevertheless, both methods performed
very closely.

• According to [54], the evaluation metrics, OA, AA, and Kappa coefficient used to
evaluate classification performance are referred to as a priori measures or producer’s
accuracy, based on ground truth. There is another type of evaluation metric, called
precision rate (PR), referred to as a posteriori measure or user’s accuracy, based on
classified data samples and addresses classification with background [55,56]. Since
PR is generally used to evaluate object detection coupled with recall rate in computer
vision, its usage and discussions are beyond the scope of this paper. So, no discussions
of PR are included.

• As shown by experiments, our proposed k-BDPC may not be the best. However,
overall, bc-BDPC is generally the best, even if some improvements in accuracy may
not be significant. There are two reasons for this. One is that most compared methods
reported in the literature have chosen or tuned their parameters based on empirical
performance. As a result, there would be little room to improve these methods
significantly. Another reason is that our proposed methods, bc-BDPC or k-BDPC,
determine their parameters, bc and k, automatically, without the need for manual
tuning. But, the major advantage is that there is no need for tuning these parameters;
thus, no robustness issues need to be addressed.

• It should be noted that our developed bc-BDPC and k-BDPC are indeed steady algo-
rithms that do not require parameters to be tuned. More specifically, the parameter bc
used in bc-BDPC and the parameter k used in k-BDPC are both determined automati-
cally in Section 2.4.1 without the need for empirical tuning. In this case, there are no
robustness issues.

• While BDPC-BS methods have shown promise in BS, there are also some weaknesses.
One is that the parameters, bc for bc-BDPC and k for k-BDPC, determined by the
proposed automatic rules may not be optimal, as shown in the conducted experiments.
Another weakness is that, according to experimental results, k-BDPC generally does
not perform as well as bc-BDPC. This may be closely related to the value of k. In this
case, an alternative automatic rule needs be developed for k-BDPC.

4. Conclusions

This paper presents two BDPC-based BS methods, bc-BDPC and k-BDPC, both of
which extend current existing DPC-based BS methods. The innovation and originality of
this paper can be derived from the following novelties:

(a) The first and foremost novelty is the introduction of the new concept of band promi-
nence value (BPV) as a third indicator for DPC, which has never been explored in the
literature. It can be combined with BLD and BD to yield a new BDPC score, calculated
by η = BLD × BD × BPV, which can better rank bands for BS. Experimental results
also demonstrate that BPV indeed enhances and further improves BS performance
compared to methods that only use BLD and BD for band prioritization.

(b) A BDPC-BS method, bc-BDPC, is developed. Specifically, an automatic rule is derived
for bc-BDPC so that the cut-off band distance bc can be determined without prior
knowledge and empirical determination. In particular, bc is determined by the number
of clusters corresponding to the nclasses used for HSIC.
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(c) Analogous with bc-BDPC, another BDPC-BS method, k-BDPC, is developed, where an
automatic rule is also derived for k-BDPC so that the number of nearest neighboring
bands, k, can be determined by the number of selected bands, nBS, which is in turn
determined by VD.

(d) In order for BDPC-BS to better capture spectral characteristics, the commonly used
Euclidean distance for calculating distance between data points is replaced by three
types of spectral discrimination measures, namely SAM, SID, and SIDAM, to calcu-
late spectral correlation among bands. This task cannot be accomplished by DPC-
BS methods.

As a final remark, it is interesting to note that the three performance indicators, ρiin (1)
and δi in (3) used by DPC, coincidentally correspond to Fisher’s ratio, within-class distance,
and inter-class distance. According to recent work [57], ρi in (1), δi, and γi in (5) can be
reinterpreted as three class features: intra-class feature (Intra-CF), which measures class
variability within a class; inter-class feature (Inter-CF), which measures class separability
between classes; and γi in (5) total class feature (TCF), which multiples Intra-CF and Inter-
CF, respectively, for hyperspectral image classification (HSIC). As a consequence, a new
concept of Fisher’s ratio-based DPC can be derived for HSIC. Efforts along this direction
are currently underway.
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