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Abstract: This study proposes the use of satellite images and a vessel’s automatic identification
system (AIS) data to evaluate the congestion level at container ports for operational efficiency
analysis, which was never attempted in previous studies. The congestion level in container yards
is classified by developing a convolutional neural network (CNN) model and an annotation tool to
reduce the workload of creating training data. The annotation tool calculates the number of vertically
stacked containers and the reliability of each container cell in a detection area by focusing on the
shadows generated by the containers. Subsequently, a high-accuracy CNN model is developed for
end-to-end processing to predict congestion levels. Finally, as an example of dynamic efficiency
analysis of container terminals using satellite images, the relationship of the estimated average
number of vertically stacked containers in the yard with the elapsed time between the image capture
time and vessel arrival or departure time obtained from the automatic identification system data is
analyzed. This study contributes to representing a prototype for dynamically estimating the number
of vertically stacked containers and congestion level of container terminals using satellite images
without statistical information, as well as its relationship with the timing of vessel arrival acquired
from AIS data.

Keywords: container port; terminal congestion; satellite image analysis; automatic identification
system (AIS); annotation tool; convolutional neural network (CNN)

1. Introduction

With the increasing global competition in the port industry, improving container port
efficiency has become a critical issue in recent years. The operational efficiency at each port
and terminal is significant for determining which ports the shipping companies will use.
Efficient operation is also necessary from an environmental perspective as it will reduce
the time each vessel is in port; thus, the port industry can engage in sustainable economic
development by saving fuel and reducing emissions. Many factors influence port efficiency,
including the availability of quay and dock facilities, quality of connections to road and rail
services and their competitiveness, and total number of cranes and berth use at each port.
However, one challenge is the need for uniform criteria for evaluating efficiency among
different ports. Accordingly, many studies have been conducted to address this need.

Big data have been widely used in the maritime industry. One example is the automatic
identification system (AIS) in vessels [1]. Since the late 2000s, the development of satellites
and information technology has led to the expansion of AIS data and other information
about vessel movements. Moreover, the number of businesses that have accumulated and
used such data has increased. Several studies have used this data in logistics and maritime
economics, as summarized by [2–5]. Moreover, satellite images have been recently expected
to be useful in the maritime industry. Detecting vessels in satellite images is significant
for ocean observations and disaster relief. It has also gained substantial attention from a
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maritime security perspective, such as in the detection and monitoring of poaching and
maritime accidents involving vessels without an AIS. In addition, recent developments
in deep learning and computational technologies have enabled real-time and high-speed
large-scale image recognition, and resources for the quick image processing of vessels and
ports have been made available. This has led to more deep learning research on vessel
detection in images. However, owing to the lack of large datasets, most studies have
focused on vessel detection in images rather than port terminals, and few studies have
associated satellite images with AIS data.

To address these shortcomings, this study considers container yard congestion among
the factors affecting port efficiency and contributes to the literature by first proposing a
method for the dynamic assessment using satellite images and AIS data without statistical
information. Specifically, this study aims to classify the congestion of container yards
into several levels using a machine learning model. Container yard conditions change
momently and are significantly influenced by the season, day of the week, time of day, and
timing of vessel arrival and departure. Although counting the total number of containers in
the yard from satellite images is a direct approach, it requires considerable time, especially
for extracting the height information from stacked containers. Therefore, this study first
develops an annotation tool to generate training data by focusing on the shadows generated
by the containers. Subsequently, a convolutional neural network (CNN) is applied for the
end-to-end analysis of yard congestion classification. Finally, AIS data are used to analyze
the relationship between yard congestion and vessel arrival and departure times as an
example of dynamic efficiency analysis of container terminals using satellite images.

Various statistics and field surveys are necessary to investigate container yard conges-
tion for third parties who cannot obtain operational data directly from operators. However,
considering the current availability of inexpensive satellite images captured with high
frequency owing to the development of space technology [6], this study aims to serve
as a benchmark when satellite images are abundantly available. The remainder of this
paper is organized as follows: Section 2 summarizes the related literature and data used
in this study and positions this paper; Sections 3 and 4 describe an annotation tool and
CNN model with their estimation results, respectively; Section 5 analyzes the relationship
between yard congestion and vessel arrival and departure timing; and finally, Section 6
summarizes the conclusions of this paper.

2. Literature Review and Data
2.1. Literature Review

Many studies have used various explanatory variables and data to evaluate the effi-
ciency of port operations, including vessel capacity, container handling volume, berth use
rate [7], number of voyage days for cargo ships and tankers [8], and AIS data [9,10]. Some
studies have applied data envelopment analysis [11–13] or stochastic frontier analysis [14–16]
to evaluate the efficiency of port operations. However, most of these studies have been based
on statistical information and have not provided dynamic assessments [5]. Moreover, it is
impossible to analyze ports for which statistical data are unavailable.

Studies on ship detection using deep learning have increased in recent years. For
example, Liu et al. [17] presented a high-resolution ship dataset and proposed ship annota-
tion and some development tools based on Google Earth images. Yang et al. [18] proposed
rotation-dense feature pyramid networks applied to Google Earth images. Zhang and
Zhang [19] applied a CNN for ship classification and size detection using RADARSAT-2,
TerraSAR-X, and Sentinel-1 images. Wang et al. [20] used a CNN for highly accurate
ship detection in environments with different scales and backgrounds using Gaofen-3 and
Sentinel-1 images. Graziano et al. [21] improved the accuracy of matching synthetic aper-
ture radar (SAR) images and AIS data by estimating vessel speeds from TerraSAR-X images.
Štepec et al. [22] proposed a vessel detection method using Sentinel-2 and Planet Dove
images and evaluated it on a large-scale dataset that was collected and automatically anno-
tated with the help of AIS data. Hou et al. [23] proposed an automatic sea segmentation,



Remote Sens. 2024, 16, 1082 3 of 20

ship detection, and SAR-AIS matchup procedure and presented an extensible marine target
taxonomy of 15 primary ship categories, 98 sub-categories, and many non-ship targets using
high-resolution C-band SAR Gaofen-3. Ping et al. [24] detected vessels from daily Planet
Labs satellite images and related the number of vessels with the monthly cargo throughput
acquired from the port statistics. Suo et al. [25] proposed the port-use prosperity index and
applied it to six ports around the Bohai Sea, China, to evaluate the operational efficiency of
ports using high-resolution optical satellite images such as Tianhui-1, Ziyuan-3, Gaofen-1,
and Gaofen-2. They calculated the area occupied by cargo ships berthed along the coastline.
Xu et al. [26] proposed a method called Lite-YOLOv5 for onboard ship detection using
Sentinel-1 SAR images. Paolo et al. [27] classified Sentinel-1 SAR and Sentinel-2 optical
images using deep learning to detect vessels. These detected vessels were compared with
AIS data to determine whether the vessels were publicly tracked or not. Thus, many studies
have focused on vessel detection in images and developed analytical techniques.

However, image analysis studies focusing on port terminals are limited. Yong et al. [28]
applied high-resolution optical satellite images, such as Pleiades, WorldView-2, and Beijing-
2, to monitor container terminal construction from 2010 to 2017 at the ports of Colombo and
Hambantota in Sri Lanka. Li et al. [29] used Google Earth images and monitored the expan-
sion of the port of Ajmr in the Philippines from 2009 to 2018. Sengupta and Lazarus [30]
measured patterns of seaward expansion in 65 of the world’s top 100 container ports from
satellite imagery in Google Earth Engine during 1990–2020. Yao et al. [31] proposed pro-
cessing and analyzing procedures for large-scale SAR image annotation, including port
infrastructure as one of the classes using TerraSAR-X images. Liu et al. [32] estimated the
cargo handling capacity of ports using DMSP-OLS nighttime light data. Murata et al. [33]
identified the operational status of container terminals from high-resolution nighttime-light
satellite CE-SAT-IIB imagery. These studies focused on the container terminal as a field
rather than inside the terminal.

Meanwhile, the Japan Aerospace Exploration Agency [34,35] used ALOS-2 PALSAR-2
and Sentinel-1 images to observe the range of container storage areas periodically in the
port of Nagoya after the COVID-19 pandemic, although it focused only on spreading in the
planar direction. Yu et al. [36] also calculated the daily average change in the number of
containers in the container ports using Sentinel-2 optical images to predict the relationship
between port container numbers and economic activity. They counted the number of pixels
in each satellite image classified as containers and took this as a proxy for the number of
containers in the port; however, the number of layers could not be recognized precisely
due to the limited spatial resolution. In contrast, Johnsen [37,38] used TerraSAR-X images
to understand the stacked structure of containers on three container terminals at the port
of Oslo. The proposed method enables the detection of changes in the number of stacked
containers between two different dates.

In summary, to the best of the knowledge of the authors, no studies have been con-
ducted on evaluating port efficiency using satellite images and AIS data. The main reason
is that AIS data cannot be directly used as training data in port image analysis because it
does not contain any information on container movement at terminals, and other training
data are difficult to obtain. Therefore, this study fills the research gap by first applying
image analysis to estimate the port congestion level with an annotation tool to create the
training data and CNN. In particular, this study attempts to estimate the number of verti-
cally stacked containers from their shadows, which was not examined by previous studies.
Subsequently, the operation efficiency of container terminals is evaluated by combining the
estimated port congestion level with the departure and arrival times of vessels acquired
from AIS data as an example of dynamic efficiency analysis using the estimated values.

2.2. Data Used in This Study

This study uses satellite images because of their availability with third parties and
comparability among multiple ports and terminals, while other images, such as cable
cameras or drones, may allow for more detailed analysis. Among various satellite images
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that were applied, as summarized in Section 2.1, we use Google Earth Pro. Murata et al. [39]
mentioned that Google Earth imagery provides a more detailed spatial resolution than
high-resolution satellite imagery, such as WorldView-3 multispectral (1.6 m pixel resolution)
and panchromatic (0.4 m pixel resolution) images. Malarvizhi et al. [40] also recommended
Google Earth images as the best application for urban-related analyses.

This study uses satellite images of five berths of three terminals in the Oi Container Ter-
minals, port of Tokyo, which were collected for six days from 2018 to 2020 shown in Table 1
from Google Earth Pro. The Oi Container Terminals, the cores of the container terminals at
the port of Tokyo, are 2354 m long terminals with a continuous seven-berth deep-water
quay wall. There are four terminals, and the seven berths are equipped with 20 container
cranes, allowing 10,000 TEU-class large container vessels to berth at the terminal.

Table 1. Satellite images of the Oi Container Terminal used in this study.

Date Time (in Japan Time) Note

11 January 2018 9:00 a.m.

16 October 2018 9:00 a.m.
Excluded in the analysis of

Section 5 because of
non-correspondence with AIS data

30 November 2018 9:00 a.m.
1 January 2019 9:00 a.m.

25 October 2019 9:00 a.m.
16 December 2020 9:00 a.m.

This study also uses AIS data in Section 5 to confirm when vessels arrived and
departed at each berth immediately before and after each image was captured. AIS is
a communication system that transmits vessel dynamics, such as location, speed over
ground, and course over ground, and voyage-related information, such as vessel draft and
destination, at irregular intervals ranging from a few seconds to a few minutes, requiring
to be equipped for all oceangoing ships of 300 gross tons or more, all domestic ships of
500 gross tons or more, and all passenger ships. AIS data provides the time-series location
information (longitude and latitude) of each vessel; however, note that the average duration
of AIS data normally provided by commercial providers is about 1 h when a vessel stops,
while it is about 10 min when a vessel moves. We extract AIS data from the Seasearcher
database (Lloyd’s List Intelligence), as described in Appendix A for detail.

3. Developing an Annotation Tool
3.1. Overview of the Tool

Estimating the density of containers by quickly viewing satellite images is inadequate
in creating training data for classifying yard congestion levels using machine learning
because containers are stacked in the vertical direction in a yard. However, visually
counting the number of vertically stacked containers in a yard requires considerable time
and effort. Therefore, this study proposes a tool that automatically counts the number
of containers in the yard with annotation by a developer if necessary and outputs the
congestion level as training data.

Two primary container sizes (20 ft and 40 ft) are considered to create this tool, as
shown in Table 2. In detecting containers, several examples, such as [34–36], have focused
on detecting the number of containers spread over the storage area in the planar direction.
However, detecting the number of containers stacked in the vertical direction is more
challenging. This study focuses on the shadows, which were often used to estimate the
height of some objects [41], generated by containers to address this issue. Although adaptive
binarization and semantic segmentation can be introduced to extract shadows, this study
uses hue-saturation-value (HSV) models of the image. The HSV model is a nonlinear
transformation of the RGB color space, with hue indicating the color type, saturation
indicating the color vividness, and value indicating the color brightness.
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Table 2. External dimensions of primary ISO containers. (Source: International Standard Organization).

Type 20 Feet 40 Feet 40 Feet High Cube

Length 6058 mm 12,192 mm 12,192 mm
Width 2438 mm 2438 mm 2438 mm
Height 2591 mm 2591 mm 2896 mm

The number of containers in each detection area of a container yard is estimated by
focusing on the shadows generated by the containers. Figure 1 shows an image of the
proposed tool. The estimation reliability of each cell is calculated sequentially by setting
the cell corresponding to each container. The container occupancy rate and congestion level
are then calculated after manually adjusting low-reliability cells. The development process
of the tool is as follows:

Step 1: Set the detection area.
Step 2: Identify shadows by binarization using HSV values and preset the configuration.
Step 3: Set a cell for each container and calculate the average pixel value for each cell to

detect irregularities.
Step 4: Sequentially estimate the number of vertically stacked containers in each cell and

their reliability.
Step 5: Recalculate after adjusting low-reliability cells.
Step 6: Classify the congestion level based on the calculated container occupancy rates.
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Figure 1. Flows of the annotation tool. Figure 1. Flows of the annotation tool.

3.2. Detailed Description of the Tool
3.2.1. Step 1: Setting Detection Area

First, a container yard is divided into several detection areas to create the training data
and congestion classification. The user of the tool should visually set up the detection areas
for preparation, as shown in Figure 2.
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Figure 2. Example of detection area set in a container yard.

3.2.2. Step 2: Identifying Shadows by Binarization Using HSV Values and
Presetting Configuration

In the second step, shadows made by the containers are identified by setting the
threshold HSV values. Specifically, if all HSV values of a pixel are below the thresholds, it
is judged as a shadow pixel, and 0 is set as the pixel value. Otherwise, the pixel value is set
to 1. This study set the threshold HSV values on a trial-and-error basis, as shown in Table 3.
Figure 3 provides an example image after shadow extraction.

Table 3. Threshold HSV values. (Source: authors).

H S V

180 108 80
Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 3. Example of binarization using HSV values. 

 

Figure 4. Example of presetting configuration of 𝐿ሬ⃗ , 𝑊ሬሬሬ⃗ , 𝑆, 𝑠଴ሬሬሬ⃗ , NL, L_list, NW, and NV. 

3.2.3. Step 3: Setting a Cell for Each Container and Its Shadow and Calculating the  
Average Pixel Value for Each Cell to Detect Irregularities 

In the third step, a cell is set for each container in the image using the tool based on 
the obtained 𝐿ሬ⃗ , 𝑊ሬሬሬ⃗ , L_list, NW, and 𝑠଴ሬሬሬ⃗ . i and j are integers that take values from 0 to NL – 1 
and 0 to NW – 1, respectively, with Cellc(i, j) showing a container cell set. Subsequently, 
shadow cell Cells(i, j, k) is generated against a container cell Cellc(i, j) based on the relation-
ship among 𝐿ሬ⃗ , 𝑊ሬሬሬ⃗ , and 𝑆 using the tool. Figure 5 shows examples of setting up a con-
tainer and shadow cell. 

The average pixel value for each container and shadow cell is then calculated as fol-
lows. First, the average pixel value Dc(i, j) (0 ≤ Dc(i, j) ≤ 1) in the container cell Cellc(i, j) is 
calculated to determine whether the target cell is concave (i.e., whether the number of 
vertically stacked containers in the target cell is smaller than those in the neighboring 
cells). Notably, the average pixel value in Cellc(i, j) with a parallel quadrilateral domain is 
calculated by reducing the number of pixels, as shown in Figure 6, to reduce the calcula-
tion time. Specifically, the pixels and their neighboring pixels are extracted along the 
straight line passing through the intersection of the diagonal lines of the domain and par-
allel to the 𝑦-axis of the image. 

Subsequently, the average pixel value Ds(i, j, k) (0 ≤ Ds(i, j, k) ≤ 1) in the shadow cell 
Cells(i, j, k) is calculated starting from k = 1, and k0 is set to the first k where Ds(i, j, k) exceeds 

Figure 3. Example of binarization using HSV values.

Subsequently, the tool user defines a length direction vector (
→
L ), width direction vector

(
→
W), and shadow direction vector (

→
S ) per container for each type of container (20 ft and

40 ft), as well as the starting point of the tool (
→
s0) for each detection area by specifying the
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mouse pointer in the image, as shown in Figure 4. In addition, the number of containers
(NL) and their size (20 ft or 40 ft, L_list) in the length direction, the number of containers in
the width direction (NW), and the maximum number of stacked containers in the vertical
direction (NV) for each detection area are obtained visually.
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3.2.3. Step 3: Setting a Cell for Each Container and Its Shadow and Calculating the Average
Pixel Value for Each Cell to Detect Irregularities

In the third step, a cell is set for each container in the image using the tool based on the

obtained
→
L ,

→
W, L_list, NW, and

→
s0. i and j are integers that take values from 0 to NL – 1 and

0 to NW – 1, respectively, with Cellc(i, j) showing a container cell set. Subsequently, shadow
cell Cells(i, j, k) is generated against a container cell Cellc(i, j) based on the relationship

among
→
L ,

→
W, and

→
S using the tool. Figure 5 shows examples of setting up a container and

shadow cell.
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The average pixel value for each container and shadow cell is then calculated as
follows. First, the average pixel value Dc(i, j) (0 ≤ Dc(i, j) ≤ 1) in the container cell Cellc(i,
j) is calculated to determine whether the target cell is concave (i.e., whether the number
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of vertically stacked containers in the target cell is smaller than those in the neighboring
cells). Notably, the average pixel value in Cellc(i, j) with a parallel quadrilateral domain is
calculated by reducing the number of pixels, as shown in Figure 6, to reduce the calculation
time. Specifically, the pixels and their neighboring pixels are extracted along the straight
line passing through the intersection of the diagonal lines of the domain and parallel to the
y-axis of the image.
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Subsequently, the average pixel value Ds(i, j, k) (0 ≤ Ds(i, j, k) ≤ 1) in the shadow cell
Cells(i, j, k) is calculated starting from k = 1, and k0 is set to the first k where Ds(i, j, k) exceeds
a criterion. This study set the criterion as 0.5, representing the midst of pure shadow (Ds(i,
j, k) = 0) and non-shadow (Ds(i, j, k) = 1). Thereafter, the number of shadows S(i, j) created
by Cellc(i, j) is calculated according to Equation (1).

S(i, j) = k0 − 1 (1)

3.2.4. Step 4: Sequentially Estimating the Number of Vertically Stacked Containers in Each
Cell and Its Reliability

In the fourth step, the number of vertically stacked containers in Cellc(i, j), denoted
by N(i, j), and its reliability P(i, j) are determined sequentially from the first row for each
detection area according to Equation (2a,b). First, if the average pixel value Dc(i, j) in the
container cell is more than the criterion set in Step 3 (i.e., 0.5 in this study), this study
assumes that the cell is judged as “not concave”, and the number of vertically stacked
containers N(i, j) is determined by N(i − 1, j) and S(i, j). The reliability P(i, j) is defined as
the closeness of the average pixel value of each shadow cell to the criteria.

By contrast, if the cell is judged as concave (i.e., Dc(i, j) is less than or equal to the
criterion), the number of vertically stacked containers N(i, j) is randomly generated based
on the distribution of the observed data because determining it by visual inspection is
challenging. The reliability P(i, j) is set to 0.

(if Dc(i, j) > 0.5)


N(i, j) = S(i, j) ∀j (i = 1)

N(i, j) = N(i − 1, j) + S(i, j) ∀j (i ≥ 2)

P(i, j) = 1
k0

k0
∑

k=1

∣∣∣1 − Ds(i, j,k)
0.5

∣∣∣∀i, j
(2a)

(otherwise) 
N(i, j) = m ∀i, j
P(i, j) = 0 ∀i, j

(m : randomly generated from the observed data)
(2b)
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3.2.5. Step 5: Recalculating after Adjusting Low-Reliability Cells

In the fifth step, the above calculation is repeatedly applied to low-reliability container
cells, such that P(i, j) is less than the criteria (this study set it as 0.5, considering the criteria
introduced in Steps 3 and 4). Specifically, low-reliability cells are displayed in the image,
the number of vertically stacked containers in Cellc(i, j) is counted visually, the value is
updated, and recalculation is performed according to Step 4. This recalculation process is
repeated until no cells need revision (i.e., until P(i, j) for all cells is greater than or equal
to the criteria). The number of vertically stacked containers counted in this step is also
recorded as the observed data and fed back to a stochastic variable m in Equation (2b) in
the previous step.

3.2.6. Step 6: Classifying the Congestion Level Based on the Calculation Results

The last step calculates the container occupancy rate D for each detection area using
Equation (3). Furthermore, using the natural number z, the areas are classified into NV
classes (congestion level) with a width of 1/NV, as shown in Equation (4), which indicates
that z − 1 to z containers are stacked on average in the detection area classified as class z.
We define z as the congestion level of the container terminal.

D =
∑i ∑j N(i, j)

NL × NW × NV
(3)

class z : z−1
NV

≤ D < z
NV

(z : 1, 2, . . . , NV)
(4)

3.3. Evaluation of the Developed Tool

The tool developed in this study is evaluated from two perspectives: the calculation
time and estimation accuracy. For evaluation, 30 sample detection areas with 36 cells
(NL = NW = 6) are randomly selected.

Regarding the calculation time, Figure 7 shows the frequency distribution of the
percentage of low-reliability cells that must be corrected in Step 5 against 36 cells. The
average percentage of low-reliability cells is 0.17. Thus, the calculation time can be reduced
by less than one-fifth on average by introducing the annotation tool compared with the
case in which all containers are checked visually.
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Regarding estimation accuracy, the number of containers counted visually is consid-
ered the correct value and compared with the calculation results using the proposed tool.
Figure 8 compares the correct and predicted values of the container occupancy rate for each
detection area. The root-mean-squared error (RMSE) and mean absolute error (MAE) are
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0.0243 and 0.107, respectively. Many samples are overestimated, and some overestimate
container occupancy rates by more than 10%.
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3.4. Discussion of Estimation Results

This section develops an annotation tool to classify container yard congestion because
the correct data needs to be ascertained. By focusing on the shadows generated by con-
tainers, the number of vertically stacked containers and the reliability of each container
cell in the detection areas are sequentially estimated by binarization based on the HSV
values. The container occupancy rate in the detection area is estimated after manually
correcting low-reliability cells. The workload of this tool is approximately one-fifth of that
of the total number of containers counted visually, and the RMSE and MAE are 0.0243 and
0.107, respectively.

Container occupancy rates are calculated using the developed tool on 163 detected
areas (in six days of satellite data) in the Oi Container Terminals. The target images are
classified into four congestion levels according to Equation (4) because the maximum
number of vertically stacked containers in these images is four (NV = 4) in all cases. Figure 9
shows the frequency distribution and percentage of each congestion level, indicating that
most data belong to Class 3, followed by Class 4, Class 2, and Class 1.
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Table 4 summarizes the characteristics of the images, where the estimated container
occupancy rates differ significantly from the images, primarily for two reasons. The first
difference is observed in the detection areas close to the quayside, which significantly
overlaps with the quay cranes, as shown in Figure 10a. This issue cannot be solved without
visual correction because cranes hinder container images.

Table 4. Features and number of images with significantly different estimation results.

Estimated Congestion Level

Feature 1 2 3 4 Total

(1) Quay cranes are largely overlapped 0 0 0 1 1
(2) Ground is exposed in the detection area 1 0 3 0 4
Both (1) and (2) 0 0 1 3 4
Others 1 2 0 0 3

Total 2 2 4 4 12
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Figure 10. Example images of detected areas where the estimated container occupancy rates
differ significantly.

A second difference is observed if the ground is exposed in the detection area, as
shown in Figure 10b. This misclassification is caused by the storage area and surrounding
driving paths not being separated in the HSV binarization in Step 2. Although the number
of misclassifications is small because such sparse situations are rarely observed in the
dataset in this study, this issue should be addressed in the future. One possible solution is
to use semantic segmentation to classify the pixels into containers inside the container yard
and ground.

4. Image Classification by CNN
4.1. CNN Overview

The method described in the previous section (Section 3) requires acquiring prelimi-
nary information about detection areas, such as size, shadow direction, and container size
sequence, and repeating corrections based on reliability, which are time-consuming and re-
quire significant work. Therefore, this study applies machine learning to classify container
congestion levels end to end with the same accuracy as the annotation tool developed in
the previous section.

Specifically, a CNN is used as a machine learning model. A CNN is the most popular
method for deep learning of images, especially for object detection rather than segmentation,
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using convolution instead of matrix multiplication in at least one layer [42]. Feature
extraction is performed by combining convolutional and pooling layers to reduce the
number of parameters because it becomes large and requires considerable computation
time if the entire network consists of fully connected layers. A feature map is created by
convolving a kernel with the input image in the convolutional layer. The kernel size and
stride width are set in advance, and feature extraction is performed by shifting the kernels
to the input image. In the pooling layer, the dimensionality of the image is reduced while
retaining important features. Only the maximum value in the domain is output and passed
to the next layer while sliding the filter in the feature map. The pooling layer is typically
placed after the multiple convolutional layers.

This study uses a CNN model with four convolutional layers, two pooling layers, three
dropout layers, and two fully connected layers. The data for training and validation are
151 images (80% for training and 20% for validation), excluding the misclassified 12 images
in Section 3.4.

4.2. Estimation Results

Table 4 summarizes the three evaluation indices. In the table, the accuracy rate
represents the correct prediction rate, the recall rate is the rate of predictions that are correct
among those that are actually correct, and the precision rate is the rate of predictions that
are actually correct among those that are predicted to be correct. Table 5 also shows the
confusion matrix of the estimation results for 30 images of validation data.

Table 5. Metrics by congestion level.

Metrics
Congestion Level

1 2 3 4

Accuracy rate 1 0.93 0.7 0.47
Recall rate 1 1 1 0.24
Precision rate 1 0.6 0.53 1

Table 5 indicates that the accuracy and recall rates in Class 4 are lower than those in
the other congestion levels. Table 6 also shows 11 underpredicted data points for Class 4. In
addition to the insufficient network structure of the CNN and insufficient training samples,
the misclassification suggests poor decision accuracy of the annotation tool for Class 4.
Particularly, the complicated shape of container shadows if the terminal is congested may
affect the accuracy of both CNN and the annotation tool. The micro-average (the rate of
data for which the predicted levels match the correct ones to the total data) obtained from
Table 5 is 0.63. The macro-average (the average accuracy rate for each congestion level) is
0.78. The micro-average is used as a reference because the number of data points is skewed
among the congestion levels in this study. Therefore, it can be concluded that the output
obtained is consistent with the output of the annotation tool for 63% of the data.

Table 6. Confusion matrix of CNN.

Predicted Congestion Level

1 2 3 4 Total

Observed Congestion Level

1 1 0 0 0 1
2 0 3 0 0 3
3 0 0 10 0 10
4 0 2 9 5 16

Total 1 5 19 5 30

In summary, this section develops a CNN model for predicting the congestion level
from images to achieve end-to-end processing because classification using the proposed
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annotation tool in the previous section requires significant work. The validation results indi-
cate that the micro-mean accuracy rate is 0.63, and any misclassified item is underestimated.

5. Congestion Analysis with AIS Data

This section presents an example of the analysis of the relationship between the
estimated container occupancy rate in a yard in the previous section (Section 4) and vessel
arrivals and departures using AIS data because the congestion level of container terminals is
considered to fluctuate depending on the timing of arrival and departure of containerships.
Generally, export containers stacked at a yard are maximized right before the vessel arrivals,
while import containers stacked are maximized right after the vessel departures. This is
because the handling time discharging from and loading onto a vessel (normally, it is a
few hours to half a day) is sufficiently shorter than the duration time when all export and
import containers are carried in from and out outside the terminal by trucks (a few days to
more than one week).

Based on the AIS data of vessels arriving and departing from each terminal immedi-
ately before and after each image was captured, the average number of vertically stacked
containers in all detection areas for each terminal (NX for export and NM for import con-
tainers), calculated from the output of the annotation tool, is compared with the elapsed
time TX (or TM) until the arrival (from the departure) of the first (last) vessel after (before)
image capture from (until) the time of image capture. Figure 11 shows the definitions of the
elapsed times TX and TM. Note that if a vessel was berthed at image capture, the elapsed
time would be negative, as shown in the figure. Details about the estimation of the elapsed
times from the AIS data are described in the Appendix A. NX and NM are expected to be
higher (the more containers are expected to remain in the yard) as the absolute values of
TX and TM become smaller (the closer the time of image capture is to the vessel arrival or
departure time).
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Figure 11. Definition of elapsed time between the arrival time of the next vessel (or departure time of
the last vessel) and the time of image capture.

One issue in this analysis is that the export and import containers cannot be differ-
entiated using satellite images. Therefore, the yard layout and breakdowns of loaded,
unloaded, and empty containers for each detection area are obtained from Terminal X.
Notably, the timings of the numbers of loaded, unloaded, and empty containers obtained
differ from the image capture times. Thus, the general rate of export and import containers
(rX(a, b) and rM(a, b)) for each detection area a of berth b are estimated from the observed
data at multiple time points, as shown in Table 7 (note that most empty containers are
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exported from the port of Tokyo). Accordingly, the average numbers of vertically stacked
export and import containers for each terminal, NX and NM, can be calculated as

NX =
∑b ∑a{rX(a, b)·z(a, b)}

∑b ∑a rX(a, b)
, NM =

∑b ∑a{rM(a, b)·z(a, b)}
∑b ∑a rM(a, b)

, (5)

where z(a, b) is the congestion level of detection area a of berth b. Equation (5) assumes
that each terminal similarly uses all detection areas wherever the containership berths in
the terminal based on the current operation. For Terminals Y and Z, the same number of
vertically stacked containers in all detection areas is assumed for export and import because
the observed numbers of containers are not available for these terminals. The estimated
average number of vertically stacked containers in Terminal X does not differ significantly
between exports and imports, indicating that the estimation method for export and import
containers in this study is inadequate.

Table 7. Estimated rate of export and import containers for each terminal.

Detection Area

Terminal X Terminal Y Terminal Z

Berth 1 Berth 2 Berth 3 Berth 4 Berth 5

Export Import Export Import Export Import Export Import Export Import

1 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5

2 0.5 0.5 0.5 0.5

3 0 1 0 1

4 0.5 0.5 0.5 0.5

5 1 0 1 0

First, by checking the coherence between the satellite images and AIS data, the satellite
image data from one of the six days (as of 16 October 2018) used in the previous sections
are eliminated from the following analyses because of the contradiction that no berthing
vessels were found in the satellite image while the AIS indicated some vessel berthing,
possibly due to inaccuracy of the image capture date. Figure 12 shows the relationship
between the estimated average number of vertically stacked containers (NX or NM) and the
elapsed time of the arrival of the first vessel (TX) or departure of the last vessel (TM) at the
three terminals for the other five days. The figure indicates a negative correlation between
the maximum value of the average number of vertically stacked containers NX (or NM) and
the absolute value of the elapsed time |TX| (or |TM|), represented by the envelope curve
in the figure.

Although the above analysis focuses on the overall trends of the three terminals,
Figure 12 indicates that each terminal had different characteristics; for example, the number
of vertically stacked containers in Terminal X was generally smaller than those in other
terminals and not correlated with the elapsed time. In addition, it is generally known
that more containers are loaded and discharged onto/from the larger vessels. Therefore,
the relationships between the average numbers of vertically stacked containers NX and
NM and vessel size are investigated in Figure 13 with the group of the absolute value of
the elapsed time. The figure indicates that in Terminals X and Y, the average number of
vertically stacked containers NX (or NM) in the same elapsed time group was larger if the
vessel size was larger. In addition, the average number of vertically stacked containers NX
(or NM) was smaller in these terminals if the absolute value of the elapsed time |TX| (or
|TM|) was larger. However, these findings were not observed in Terminal Z.

Considering the results shown in both Figures 12 and 13, the average number of
vertically stacked containers correlated more with the elapsed time than with the vessel
size in Terminals Y and Z, although the sample size was insufficient. By contrast, it was
correlated more with the vessel size than with the elapsed time in Terminal X. One possible
explanation is that the difference in vessel size could be observed more clearly in Terminal
X because the average number of vertically stacked containers NX (or NM) was relatively
smaller (i.e., the terminal is not congested). By contrast, the changes in the number of
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vertically stacked containers were more dynamic in Terminals Y and Z because the more
severe time management of yard operation was necessary due to much congestion.

In conclusion, as an example of dynamic efficiency analysis of container terminals,
the relationship between the estimated average number of vertically stacked containers
and the elapsed time between image capture and vessel arrival or departure acquired from
the AIS data is investigated in this section. A negative correlation is observed between
the maximum value of the estimated average number of vertically stacked containers
and the absolute value of each elapsed time, although the number of samples used in the
analysis is insufficient. More specifically, because more severe time management of yard
operation is necessary for congested terminals, the closer the image capture time to the
vessel arrival or departure time, the greater the container occupancy rate of the terminal.
However, in the uncongested terminal, the average number of vertically stacked export
and import containers increases if the vessel size increases because more containers are
loaded and discharged onto/from the larger vessels. Since these discussions are based on a
very limited number of samples, increasing the sample size and timeliness are significant
issues. In addition, all satellite images were captured at the same time (9:00 AM), as shown
in Table 1; thus, the variation of time is necessary for further analysis because many vessels
arrived early morning (right before the time when the satellite image was captured) and
left midnight (several hours before the time when the satellite image was captured), as
can be observed from Figure 12, although these terminals operated throughout the day
in principle.
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6. Conclusions

This study proposed a method to dynamically estimate container occupancy rate in
container yards and classify their congestion level using satellite images by developing an
annotation tool to reduce the workload of creating the training data and end-to-end classifi-
cation model using machine learning. The relationship between the congestion level and
elapsed time until vessel arrival (or from vessel departure) was examined using AIS data
as an example of dynamic efficiency analysis of container terminals using satellite images.

This study proposed a prototype for dynamically estimating the number of vertically
stacked containers and congestion level of container terminals using satellite images with-
out statistical information, as well as examining the relationship between the congestion
level and timing of vessel arrival by combining with AIS data. The proposed method can
contribute to dynamic operational analyses in container terminals, which is particularly
beneficial for third parties who cannot obtain operational data directly from operators to
understand and compare the overall efficiency of terminal operations. While this study
aims to serve as a benchmark if satellite images with high resolution become abundantly
available, Google Earth images used in this study are not updated in real time, making
them unsuitable for monitoring daily status changes. However, 30 cm high-resolution and
higher revisit satellite constellations are planned to be built in the near future [6]; therefore,
if images with spatial resolution nearly comparable to Google Earth images are available
with high frequency, real-time monitoring of container terminals and measuring operation
efficiency by third parties would be realized. It can also be used to analyze container cargo
flows and congestion on land, such as trucks, railways, inland depots, and warehouses,
where comprehensive information about real-time movement of transport means, such as
an AIS, is unavailable for third parties. In addition, the findings regarding the relationships
among the yard congestion level, its fluctuation by time, and vessel size will improve
understanding of the essence of container yard operation.

However, some issues require additional investigation. First, the proposed annotation
tool could be improved further. For example, although this study evaluated the accuracy
of the tool by comparing it with the number of containers counted visually, it should be
better evaluated with observed data acquired from the terminals to ensure objectivity. More
advanced techniques for developing annotation tools, such as ensemble learning and active
learning (or optimal experimental design), which combine multiple learning processes and
automatically decide the direction of learning, can also be introduced. Moreover, semantic
segmentation can be applied to differentiate pixels with cranes or those without containers
(i.e., the ground area and driving path in the terminal) from vertically stacked containers to
reduce misclassified images. Validation of some criteria used in the tool is also necessary.

Increasing the sample size and timeliness are also significant issues, as discussed above.
If the development of satellite technology enables satellite image acquisition at a lower cost
and with higher frequency, more sophisticated models and analyses will become possible.
SAR images can also improve the precision of the analysis. More detailed analyses of the
relationship between yard congestion and vessel arrival or departure are also necessary by
increasing the sample size. By incorporating the dataset representing various situations
of container terminals, we can conduct the dynamic and real-time assessment of port
operation efficiencies, including comparative analysis with the current static assessment
using statistics.

Other methods of measuring the operational efficiency of container terminals using
satellite images are also possible, such as observing the operation of quay cranes using
vessel berthing information from the AIS. Another example is detecting the length of truck
queues outside the gates of container yards because yard congestion causes many problems
outside, including truck congestion. Future works should focus on detecting yard conges-
tion at its propagation destination and analyzing its relationship with yard congestion.
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Appendix A

Using AIS data, we identify a vessel that arrives and departs from each terminal
immediately before and after each image was captured, as follows. First, polygons were set
in the water area at the front of the target terminals, as shown in Figure A1. Subsequently,
AIS data of containerships with capacities of more than 300 TEU (i.e., not barge vessels),
which stopped in the polygon within one week before and after the date and time the
satellite image was captured. This study assumed the vessel stopped when its speed over
the ground was less than one knot in the polygon. Among these containerships, the first
vessel arriving at either berth of the terminal after the image was captured (for export
analysis) and the last vessel departing from either berth before the image was captured (for
import analysis) were determined.

If a containership stopped at either berth of the terminal when the image was captured,
the vessel was considered the first arrival and last departure vessel, as explained in Figure 11
of Section 5. However, as an exceptional case, if the vessel arrived within 1 h before image
capture, the vessel was considered the first arrival vessel but not the last departure vessel
(i.e., the previous vessel was considered to be the last departure vessel instead), because
of the lag between the times at which the vessel stopped and when the cargo discharge
started. Similarly, if the vessel departed within 1 h after image capture, the vessel was
considered the last departure vessel but not the first arrival vessel (i.e., the next vessel was
regarded as the first arrival vessel instead).
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