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Abstract: Utilizing multi-modal data, as opposed to only hyperspectral image (HSI), enhances
target identification accuracy in remote sensing. Transformers are applied to multi-modal data
classification for their long-range dependency but often overlook intrinsic image structure by directly
flattening image blocks into vectors. Moreover, as the encoder deepens, unprofitable information
negatively impacts classification performance. Therefore, this paper proposes a learnable transformer
with an adaptive gating mechanism (AGMLT). Firstly, a spectral–spatial adaptive gating mechanism
(SSAGM) is designed to comprehensively extract the local information from images. It mainly contains
point depthwise attention (PDWA) and asymmetric depthwise attention (ADWA). The former is
for extracting spectral information of HSI, and the latter is for extracting spatial information of
HSI and elevation information of LiDAR-derived rasterized digital surface models (LiDAR-DSM).
By omitting linear layers, local continuity is maintained. Then, the layer Scale and learnable transition
matrix are introduced to the original transformer encoder and self-attention to form the learnable
transformer (L-Former). It improves data dynamics and prevents performance degradation as the
encoder deepens. Subsequently, learnable cross-attention (LC-Attention) with the learnable transfer
matrix is designed to augment the fusion of multi-modal data by enriching feature information.
Finally, poly loss, known for its adaptability with multi-modal data, is employed in training the
model. Experiments in the paper are conducted on four famous multi-modal datasets: Trento (TR),
MUUFL (MU), Augsburg (AU), and Houston2013 (HU). The results show that AGMLT achieves
optimal performance over some existing models.

Keywords: hyperspectral image (HSI); light detection and ranging (LiDAR) data; convolutional
neural network (CNN); vision transformer; cross-attention

1. Introduction

Data from multiple remote sensing imaging devices in the same geographic area
are available, which makes it possible to analyze land cover material using multi-modal
data. Various remote sensing imaging sensor technologies can effectively capture different
features of land cover materials. For example, hyperspectral imagers can acquire reflected
spectral information while acquiring ground spatial information [1], and light detection and
ranging (LiDAR) can measure the elevation information of ground objects [2]. Integrating
multi-modal data allows for the construction of a more detailed and comprehensive feature
representation of ground objects.

Since the late 20th century, hyperspectral imaging has emerged as a pivotal detection
technique in remote sensing, which employs an imaging spectrometer to precisely seg-
ment the spectrum across visible near-infrared, short-wave infrared, and even long-wave
infrared ranges. This process generates tens to hundreds of spectral bands for imaging
ground objects simultaneously. It captures the spectral details of various ground objects
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alongside their spatial distribution, thereby merging image and spectral information effec-
tively. Therefore, hyperspectral image (HSI) is widely used in land-cover classification [3],
ecosystem measurement [4], military reconnaissance [5], target detection [6], and many
other fields [7–9]. Among them, land cover classification, also known as hyperspectral
image classification (HSIC), is particularly important in HSI processing tasks.

HSIC uses spectral dimension information and spatial dimension information to
assign a category identifier to each pixel [10]. Early HSIC tasks mainly relied on data from a
single mode. Roy et al. [11] integrated the three-dimensional convolutional neural network
(3DCNN) and the two-dimensional convolutional neural network (2DCNN) to design a
hybrid convolutional neural network (CNN) for spectral–spatial feature representation.
Sun et al. [12] designed a classification model with heterogeneous spectral–spatial attention
convolutional neural blocks, which simultaneously extracted the three-dimensional (3D)
features from HSI. Although CNN has excellent performance, it has some limitations
when dealing with long sequence properties of spectral features due to its inherent network
backbone structure. Due to the power of the vision transformer, Hong et al. [13] developed a
spectral transformer for extracting spectral discriminative features from bands of HSI. While
transformer networks excel at simulating global interactions between token embeddings via
self-attention (SA) mechanisms, they fall short in effectively disseminating local information
among tokens [14]. Therefore, Sun et al. [15] combined the CNN module with a transformer
encoder to form a new spectral–spatial feature tokenization transformer for representing
sequential relations and high-level semantic features. Wang et al. [16] proposed a new
spectral–spatial kernel combined with an improved visual transformation method to extract
spectral–spatial features of HSI together.

For HSI, the spectral features of identical ground objects may vary, and, conversely,
similar spectral features can correspond to different ground objects [17]. Therefore, it
is necessary to supplement the ground object information with the multi-modal remote
sensing data in the same area. LiDAR-DSM data, which primarily contain terrain vari-
ations and the feature heights of surface objects [18], are often employed in conjunction
with HSI for joint classification, thereby enhancing classification accuracy. Compared
with HSI alone, the advantage of multi-modal image collaborative classification is that it
can fully describe the features of the target and make a more accurate judgment of the
target. Consequently, numerous research initiatives have been undertaken to harness
the complementary information between HSI and LiDAR-DSM. Pedergnana et al. [19]
combined morphological extended attribute profiles on HSI and LiDAR-DSM data with
raw spectral data from HSI for classification. However, directly stacking high-dimensional
features can trigger the Hughes phenomenon, especially when training samples are scarce.
Rasti et al. [20] utilized extinction profiles to derive spatial and elevation information from
HSI and LiDAR-DSM data and integrate them with spectral information through a feature
fusion method based on Orthogonal Total Variation Component Analysis (OTVCA), which
facilitates the processing of fusion features in the lower-dimensional space.

However, traditional methods rely heavily on prior information, so it is difficult to
improve the classification accuracy while maintaining robustness. Deep learning can learn
high-level semantic information from data using the end-to-end pattern [21]. Roy et al. [22]
proposed a joint feature learning fusion mechanism based on CNN and spatial morpho-
logical blocks to generate high-precision land cover maps. Song et al. [23] proposed a new
hash-based deep metric learning approach that focuses on sample correlations between
single-source and cross-source data. Xu et al. [24] used two-branch CNN to extract spatial
and spectral information of HSI and a cascaded network to extract elevation information
of LiDAR-DSM and carried out block-level fusion and classification. Although CNN
has excellent performance, due to its inherent network backbone structure, it has certain
limitations in processing long sequence attributes of features. Therefore, inspired by the
classification of HSI, researchers have applied the fusion model of CNN and transformer
to the joint classification task of HSI and LiDAR-DSM. Ding et al. [25] introduced the
Global–Local Transformer Network (GLT-Net), designed to capture the global–local cor-
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relation features from inputs, effectively enhancing classification outcomes. This method
only concatenated features from HSI and LiDAR-DSM without deep information fusion
learning. Zhang et al. [26] developed the Local Information Interaction Transformer (LIIT),
addressing the challenge of redundant or deficient complementary information between
HSI and LiDAR-DSM data by dynamically integrating multi-modal features via the trans-
former, also achieving promising results. However, it has some shortcomings in extracting
fine-grained information from images. Xu et al. [27] proposed a transformer with multi-
branch interaction to extract spectral, spatial, and elevation information simultaneously.
Its spectral and spatial information is learned independently before being concatenated,
rather than interactive learning on multi-modal data. Roy et al. [28] proposed a transformer
backbone to extract feature representations from multiple sources of data and use class
tokens for final classification. Zhao et al. [29] proposed a novel dual-branch approach,
combining a hierarchical CNN with a transformer network, designed to fuse multi-modal
heterogeneous information and enhance joint classification performance. While these two
methods enable the interactive learning of multi-modal data, feature extraction using a
shallow CNN is relatively simplistic, lacking local fine-grained detail, and the feature
dynamics within the fusion structure are inadequate.

To fully extract the local fine-grained features in HSI and LiDAR-DSM data and im-
prove classification performance, a novel adaptive joint classification method based on
the adaptive gating mechanism and learnable transformer (AGMLT) is designed. The
dual-branch spectral–spatial adaptive gating mechanism (SSAGM) is engineered to concur-
rently extract spectral–spatial features from HSI and elevation features from LiDAR-DSM.
Additionally, the layer scale and learnable transition matrices are incorporated into the
original transformer encoder to enhance training dynamics. Learnable transition matrices
are further applied to cross-attention, augmenting the attention graphs across various
levels. The model training utilized poly loss, ultimately leading to improved classification
performance. The key contributions of AGMLT are summarized as follows.

1. The Gated Spatial Attention Unit (GSAU) [30] is introduced into the joint classification
of HSI and LiDAR-DSM, which is improved to design a dual-branch SSAGM fea-
ture extraction module. SSAGM encompasses the point depthwise attention module
(PDWA) and the asymmetric depthwise attention module (ADWA). The PDWA pri-
marily aims at extracting the spectral features from HSI, while the ADWA focuses on
extracting spatial information from HSI and elevation information from LiDAR-DSM.
This approach allows for the omission of the linear layer to emphasize local continuity
without compromising complexity.

2. The learnable transformer (L-Former) is designed to enhance data dynamics and
mitigate performance decline as the depth of the transformer increases. The layer
scale is incorporated into the output of each residual block, with different output
channels being multiplied by distinct values to further refine the features. Concur-
rently, a learnable transition matrix is integrated into the self-attention (SA) to develop
learnable self-attention (LS-Attention, LSA), which addresses the issue of centralized
decomposition and facilitates the training of deeper transformers.

3. The learnable transition matrix is integrated into cross-attention, forming learnable
cross-attention (LC-Attention). This integration diminishes the similarity among
attention maps, thereby augmenting the diversity of the features.

4. Poly loss is implemented for classifying to improve the model training. Remote sensing
datasets frequently exhibit uneven distributions and potential overlaps among samples
of the same type. Furthermore, the features of data differ across various modalities. Poly
loss is a versatile loss function suited for multi-modal data fusion classification.

The rest of this paper is arranged as follows. Section 2 expounds on the relevant theory
of the proposed method AGMLT. Section 3 presents the four well-known multi-modal
datasets, experimental settings, and various experiments on the datasets. In Section 4,
the ablation analysis and performance of different percentages of training samples are
discussed. Finally, Section 5 concludes the paper.
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2. Methodology

The AGMLT proposed in this paper is shown in Figure 1. Firstly, SSAGM is designed
to enhance feature extraction. Then, the L-Former with two learnable matrixes is proposed
to increase the data dynamics and prevent performance degradation as the transformer
deepens. At the same time, LC-Attention with a learnable matrix enriches the feature
information of multi-modal fusion. Finally, poly loss is the loss function for AGMLT, which
is more suitable for data with different modes.
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Figure 1. Structure for proposed AGMLT model. The SSAGM is proposed to exclude the linear layer 
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Figure 1. Structure for proposed AGMLT model. The SSAGM is proposed to exclude the linear
layer and capture local continuity while considering complexity. L-Former is designed to increase
the data dynamics and prevent performance degradation as the transformer deepens. LC-Attention
is designed for enriching the feature information. Poly loss is a flexible loss function suitable for
multi-modal data fusion classification.

From Algorithm 1, the original input data of AGMLT could be represented as
XHSI

IN ∈ RH×W×B and XLiDAR
IN ∈ RH×W , where height is H, width is W, and spectra

are B. HSI has a large number of spectral bands, which can provide rewarding information
but also significantly increases the cost of computing. Principal component analysis (PCA)
is used to reduce the spectral number of hyperspectral images. The data after PCA would
be reshaped to XHSI

PCA ∈ RH×W×L, of which L is the number of bands after PCA. Since HSI
is the 3D data, XHSI

PCA is sent to 3DCNN to extract 3D features XHSI
3DCNN . XHSI

3DCNN is reshaped
to XHSI

2D to make the data dimension match the subsequent attention module. Put XHSI
2D into

the PDWA to focus on extracting spectral features. The output XHSI
PDWA is sent to 2DCNN

for simple extracting the features. Then, the outputs of 2DCNN are sent to ADWA to
extract the spatial information and get the output features XHSI

ADWA. LiDAR-DSM is the
two-dimensional (2D) data, so it could calculate directly with 2DCNN. The outputs are sent
to ADWA for the extraction of the elevation information and to gain the output. XLiDAR

ADWA.
Next, the reshaped XHSI

ADWA and XLiDAR
ADWA are integrated into the Fusion Module. The Fusion

Module may loop N times. Then, the outputs XHSI
LLF and XLiDAR

LLF of the L-Former in the Fu-
sion Module are put into LC-Attention for information fusion of multi-modal data. Finally,
the outputs XHSI

LCA and XLiDAR
LCA are fed into the multi-layer perceptron (MLP) separately for

the final classification. Poly loss is used to measure the degree of inconsistency between
the predicted labels YP and the true labels YL.
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Algorithm 1 The algorithm flow of AGMLT

Input HSI: XHSI
IN ∈ RH×W×B, LiDAR-DSM: XLiDAR

IN ∈ RH×W , Labels: YL ∈ RH×W , Patches = 11 × 11, PCA = 30.

Output Prediction: YP.

1: Initialize: batch size = 64, epochs = 100, learning rate depends on datasets.

2: PCA: XHSI
PCA ∈ RH×W×L.

3:
Create all sample patches from XHSI

PCA, XLiDAR
IN , and divide them into the training sets Dtrain and the test sets Dtest.

(Dtrain contains the labels, and Dtest does not contain the labels).

4: Training AGMLT (begin)

5: for epoch in range(epochs):

6: for i, (DHSI
train,DLiDAR

train ,YL) in enumerate (Dtrain):

7: XHSI
PCA

3DCNN→ XHSI
3DCNN

reshape→ XHSI
2D

PDWA→ XHSI
PDWA

2DCNN→ XHSI
2DCNN

ADWA→ XHSI
ADWA

reshape→ XHSI
1D

8: XLiDAR
IN

2DCNN→ XLiDAR
2DCNN

ADWA→ XLiDAR
ADWA

reshape→ XLiDAR
1D

9: XHSI
1D

LL−Former→ XHSI
LLF , XLiDAR

1D
LL−Former→ XLiDAR

LLF

10: XHSI
LLF , XLiDAR

LLF
LC−Attention→ XHSI

LCA, XLiDAR
LCA

11: XOUT = MLP
(
XHSI

LCA
)
+ MLP

(
XLiDAR

LCA

)
12: Poly loss(XOUT , YL)

13: Training AGMLT (end) and test AGMLT

14: YP = AGMTLtrained(Dtest)

2.1. SSAGM

Although the transformer networks can simulate global interactions between token
embeddings through the SA, they are less capable of extracting fine grained local feature
patterns [31]. Based on the superior ability of CNNs to model spatial context features, it
performs exceptionally well in HSI classification tasks. Simultaneously, many applications
have proved that CNNs can extract the deep features of LiDAR-DSM [32]. Therefore,
we introduce a CNN to extract features from input data. To further enhance feature
representation, we are inspired by GSAU [30] to design the SSAGM. The key components
of SSAGM are PDWA and ADWA, which enable the linear layer to be excluded and local
continuity to be captured while considering complexity.

PDWA is used to extract spectral features from HSI, which is shown on the left side of
Figure 2. PDWA includes pointwise convolution (PWConv), point depthwise convolution
(PDWConv), multiplication operation, and residual connection. ADWA is mainly used to
extract spatial feature information of HSI and elevation information of LiDAR-DSM. Its
structure is shown on the right of Figure 2.
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Figure 2. Structure for proposed SSAGM. PDWA is used to extract spectral features from HSI. ADWA
is used to extract spatial features from HSI and elevation information from LiDAR-DSM.

The input data of the PDWA are divided into XP1 and XP2 evenly. XP1 is sent to the
PWConv layer to obtain XPP1. Feed XPP1 into the PDWConv with 1 × 1 convolution kernel
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to yield the output XPD. Groups in the PDWConv layer are equal to the channels of XPP1.
Since the convolution kernel size is 1× 1 and the number of groups is the same as the input,
it achieves the role of focusing on the channel information. XP2 also obtains XPP2 using
a PWConv. To preserve partial original information, there are no operations performed
on XPP2. The data obtained by multiplying XPD and XPP2 are connected with XPin via a
residual connection. Then, it is sent to the PWConv layer to obtain the output XPout. The
PWConv contains a 1× 1 convolution kernel whose purpose is to adjust the data dimension
for element-by-element multiplication and residual connection. The main process of PDWA
is as follows:

PDWA(XP1, XP2) = FPDW(XP1)⊗ XP2, (1)

where XP1 and XP2 represent the feature data of the two branches in PDWA, respectively.
FPDW(·) and ⊗ represent the PDWConv and multiplication.

ADWA mainly includes the PWConv, two asymmetric depthwise convolution (AD-
WConv) layers, multiplication operation, and residual connection. This module changes
the PDWConv in PDWA to two ADWConv with 3 × 1 and 1 × 3 convolution kernels, and
other operations are unchanged. The main processes of ADWA are calculated as follows:

ADWA(XA1, XA2) = FADW2(FADW1(XA1))⊗ XA2, (2)

where XA1 and XA2 represent the features of the two branches in ADWA. FADW1(·) and
FADW2(·) represent two ADWConv.

2.2. L-Former

Figure 3 shows the structural details of the proposed L-Former. Transformer encoders
are used to model the deep semantic relationships between tokens of features, which could
map the input of L-Former to a sequence of vectors. A class token is embedded in the head
of the vector sequence, which obtains the overall sequence. Then, we embed n position
encodings into the sequence to obtain multiple tokens. The more proximate the information,
the more similarly is encoded. Then, we enter multiple tokens into the transformer encoder.
The output of learnable attention (L-Attention) is classified using MLP, which consists
of one layer norm (LN) and two fully connected layers. The Gaussian Error Linear Unit
(GELU) [33] activation function is used for classification to obtain the final classification
result. The above operations are stacked repeatedly N times. As the model goes deep, the
attention graphs of the deeper blocks become more similar, which means that adding more
blocks to a deep transformer may not improve model performance [34].
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Therefore, we introduce the layer scale from cait attention [35] into the transformer
encoder. The layer scale adds a learnable diagonal matrix to the output of each residual
block, which initialize to near 0. Applying distinct multiplication factors to different
channels of the output from SA or MLP refines the features, enhancing their expression
quality in the model. It could train deeper volumes. The formulas are as follows:

x′ l = xl + diag(λl,1, · · · , λl,d)× SA(η(xl)), (3)

xl+1 = x′ l + diag
(
λ′

l,1, · · · , λ′
l,d
)
× MLP

(
η
(
x′ l
))

, (4)

where η is the layer norm and MLP is the feedforward network used in L-Former. λl,1 and
λ′

l,1 are learnable weights for SA and MLP. The diagonal values are all initialized to the
fixed small value σ. When the depth is within 18, σ is set as 0.1, σ = 5 × 10−3 is used to the
depth within 24, and σ = 5 × 10−6 is adopted in the deeper networks.

In order to learn the relationship between feature tokens, Wq, Wk, and Wv learnable
weights are pre-defined for SA. Multiply the feature tokens with the three learnable weights
and linearly package them into three different matrices (queries Q, keys K, and values V). The
softmax function converts the scores into weight probabilities. And SA is written as follows:

SA(Q, K, V) = So f tmax

(
QKT
√

dK

)
V, (5)

where dK represents the dimension of K.
At the same time, the learnable transition matrix M ∈ RN×N from re-attention is intro-

duced into SA to obtain LSA, which overcomes the problem of concentration breakdown
and allows for training a deeper transformer [34].

LS − Attention(Q, K, V) = MT

(
So f tmax

(
QKT
√

dK

))
V, (6)

where the transformation matrix M is multiplied by the self-attentional mapping of the
head dimension. The softmax function is applied to the rows of comparable matrices.
Relationships between tokens are modeled by projecting similarities between pairs of Q
and K, and an attention score is acquired.

We adopt multiple groups of weights to form L-Attention, which is like multi-head
attention (MHSA). L-Attention has multiple learnable SA (LSA), and all of these LSA scores
are tied together. The expression is as follows:

L − Attention(Q, K, V)= Concat(LSA1, LSA2, . . . , LSAh)W, (7)

Here, h is the number of attention heads and W is the parameter matrix.

2.3. LC-Attention

Figure 4 shows the schematic diagram of the fusion encoding module for HSI feature
representations and LiDAR-DSM feature representations, respectively.

Taking the fusion encoding module of HSI feature representations as an example, the
class token XHSI

cls of HSI is spliced with the pixel tokens of LiDAR-DSM data first, and the
formulas are

X′HSI
cls = FHSI

(
XHSI

cls

)
, (8)

XHSI
L =

[(
X′HSI

cls

)
∪
(

XLiDAR − XLiDAR
cls

)]
, (9)

where XHSI
cls is the class token of HSI feature representations, and XLiDAR

cls is the class
token of LiDAR-DSM feature representations. FHSI(·) is a linear mapping function for
dimensional alignment. X′HSI

cls represents the transformed class token that is consistent with
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the XLiDAR
cls dimension. XHSI

L is represented the new LiDAR-DSM feature representations,
where the original XLiDAR

cls is replaced by X′HSI
cls .
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Then, LC-Attention with the learnable transition matrix M ∈ RN×N is used to encode
between X′HSI

cls and XHSI
L . X′HSI

cls is the only query vector for attention operations. Feature
fusion representations based on LC-Attention are expressed as follows:

Q = X′HSI
cls Wq

K = XHSI
L Wk

V = XHSI
L Wv

, (10)

LC − Attention
(

XHSI
L

)
= MT

(
So f tmax

(
QKT
√

C/H

))
V, (11)

where Wq, Wk, and Wv are the weight matrices of learning updates, C is the embedded
dimension, and H is the number of attention heads.

The time and space complexity of creating the attention diagram is linear because it is
only used in the query vector, which makes the entire computation more efficient. Similar
to the MHSA, LC-Attention also uses multiple heads, namely MHLCA. After layer norm
and residual connection, the formula of LC-Attention is expressed as follows:

Y′HSI
cls = X′HSI

cls + MHLCA
(

LN
(

XHSI
L

))
, (12)

YHSI
cls = GHSI

(
Y′HSI

cls

)
, (13)

X′HSI
=
[
YHSI

cls ∪
(

XHSI − XHSI
cls

)]
, (14)

where Y′HSI
cls is the class token obtained by learning fusion features. Y′HSI

cls is consistent
with the class token dimensions of LiDAR-DSM. YHSI

cls indicates a class token with the same
dimension as the class token of HSI, which is obtained by linear mapping GHSI(·). At the
same time, GHSI(·) is used for dimensional alignment.
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The same processing is used for fusion processing in LiDAR-DSM feature representa-
tions. The output after fusion is X′LiDAR, and the class token obtained by feature learning
is YLiDAR

cls . The new class tokens obtained using feature fusion learning are fed into the
classifier for classification.

2.4. Poly Loss

Cross-entropy loss (CE) and focal loss (FC) are the most common choices for training
classification networks. However, a good loss function should take a more flexible form
for tailoring to different tasks and datasets [36]. For remote sensing datasets, the sample
distribution of the same class may be uneven, and some different samples will even overlap.
This makes the classification effort more difficult.

Leng et al. [36] proposed poly loss, which decomposed the commonly used classifi-
cation loss function into a series of weighted polynomial bases through Taylor expansion.
CE and FC are decomposed into a series of weighted polynomial bases with polynomial
coefficients as the predicted probabilities labeled with class labels. Each polynomial base is
weighted by the corresponding polynomial coefficient. Poly loss adjusts the polynomial
coefficients for different tasks and datasets, and its formulas are as follows:

LPC = − log(Pt) +
N

∑
j=1

ε j(1 − Pt)
j, (15)

LPF = −(1 − Pt)
γ log(Pt) +

N

∑
j=1

ε j(1 − Pt)
j+γ, (16)

where j represents the power of the polynomial basis and γ represents the power shift of the
polynomial term. ε j ∈ [−1/j, ∞] is the perturbation term. It allows us to pinpoint the first
N polynomial without worrying about infinitely many higher-order (j > N + 1) coefficients.
The predicted probability of the model for the target class is shown as Pt. Adjusting the first
polynomial term gives the most significant gain, so the poly loss formulas can be reduced
to the following:

LPC = − log(Pt) + ε1(1 − Pt), (17)

LPF = −(1 − Pt)
γ log(Pt) + ε1(1 − Pt)

1+γ (18)

3. Experimental Results
3.1. Data Description

The performance of the proposed AGMLT method in this paper is evaluated on four
public multi-modal datasets: Trento (TR), MUUFL (MU) [37,38], Augsburg (AU), and
Houston2013 (HU). Details of all datasets are described as follows.

1. TR

The TR dataset covers a rural area surrounding the city of Trento, Italy. It includes
HSI and LiDAR-DSM data with 600 × 166 pixels, and six categories. The HSI has 63 bands
in the wavelength range from 420.89 to 989.09 nm. The spectral resolution is 9.2 nm, and
the spatial resolution is 1 m. The LiDAR-DSM data consist of a single-channel image
containing the altitude of the corresponding ground position, and its image size is the same
as that of HSI. The pseudo-color image of HSI, the grayscale image of LiDAR-DSM, and
the ground-truth image are shown in Figure 5. The color, class name, training samples, and
test samples for the TR dataset are presented in Table 1.
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Table 1. Details on TR dataset.

No. Color Class Name Training Samples Test Samples

1 Apple Trees 129 3905

2 Buildings 125 2778

3 Ground 105 374

4 Woods 154 9896

5 Vineyard 184 10,317

6 Roads 122 3052

Total 819 29,395

2. MU

Both HSI and LiDAR data from the MU dataset were collected in one flight using a
flight platform equipped with the CASI-1500 hyperspectral imager and Gemini LiDAR. The
MU dataset covers the University of Southern Mississippi Gulf Park Campus, Long Beach,
Mississippi, USA. The dataset was acquired in November 2010 with a spatial resolution of
1 m per pixel. The original dataset is 325 × 337 pixels with 72 bands, and the imaging
spectral range is between 380 nm and 1050 nm. Due to the influence of imaging noise,
the first four and last four bands were removed, and 64 bands were ultimately used. The
invalid area on the right of the original image was removed, and the 325 × 220 pixels
were retained. A DSM image was generated using LiDAR data, and its spatial resolution
was 1 m per pixel. Objects in the imaging scene were labeled into eleven categories. The
pseudo-color image of HSI, the grayscale image of LiDAR-DSM, and the ground-truth
image are shown in Figure 6. The details of MU dataset are presented in Table 2.
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Table 2. Details on MU dataset.

No. Color Class Name Training Samples Test Samples

1 Trees 150 23,096

2 Mostly Grass 150 4120

3 Mixed Ground Surface 150 6732

4 Dirt and Sand 150 1676

5 Road 150 6537

6 Water 150 316

7 Buildings Shadow 150 2083

8 Buildings 150 6090

9 Sidewalk 150 1235

10 Yellow Curb 150 33

11 Cloth Panels 150 119

Total 1650 52,037

3. AU

The AU dataset was captured over the city of Augsburg, Germany. The HSI was
obtained using a DAS-EOC HySpex sensor [39], and the LiDAR-DSM data were collected
using the DLR-3 K system [40]. The spatial resolutions were down sampled to a unified
resolution of 30 m for managing the multi-modal data adequately. The HSI has 180 bands
from 0.4 to 2.5 µm, while LiDAR-DSM data have a single raster. The pixel size of AU is
332 × 485, with seven different land cover classes being depicted. The pseudo-color image
of HSI, the grayscale image of LiDAR-DSM, and the ground-truth image are shown in
Figure 7. Details on the AU dataset are presented in Table 3.
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Table 3. Details on AU dataset.

No. Color Class Name Training Samples Test Samples

1 Forest 675 12,832

2 Residential Area 1516 28,813

3 Industrial Area 192 3659

4 Low Plants 1342 25,515

5 Allotment 28 547

6 Commercial Area 82 1563

7 Water 16 1454

Total 3911 74,383

4. HU

The HU dataset was provided by IEEE GRSS for the 2013 Data Fusion Competition.
The scene covers the University of Houston and its surrounding area in Texas, USA. It
includes HSI and LiDAR-DSM data with 340 × 1905 pixels, and fifteen categories. The HIS
has 144 bands in the wavelength range of 0.38 to 1.05 µm and with a spatial resolution of
2.5 m per pixel. The spatial resolution of LiDAR-DSM data is also 2.5 m per pixel. The
pseudo-color image of HIS, the grayscale image of LiDAR-DSM, and the ground-truth
image are shown in Figure 8. The color, class name, training samples, and test samples for
the HU dataset are shown in Table 4.
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Table 4. Details on HU dataset.

No. Color Class Name Training Samples Test Samples

1 Healthy Grass 198 1053

2 Stressed Grass 190 1064

3 Synthetic Grass 192 505

4 Trees 188 1056

5 Soil 186 1056

6 Water 182 143

7 Residential 196 1072

8 Commercial 191 1053
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Table 4. Cont.

No. Color Class Name Training Samples Test Samples

9 Road 193 1059

10 Highway 191 1036

11 Railway 181 1054

12 Parking Lot l 192 1041

13 Parking Lot 2 184 285

14 Tennis Court 181 247

15 Running Track 187 473

Total 2832 12,197

3.2. Experimental Setting

The experiments related to this paper were conducted on a computer with Windows 11,
Intel Core i9 CPU with 32 GB memory, and NVIDIA RTX 3090Ti graphics with 24 GB GPU
memory, which were coded with Python 3.8 under pytorch 1.12.0. The sizes of the input
images, batch size, and epochs were set to 11 × 11, 64, and 100, respectively. The number
of principal components chosen by PCA was set as 30. In order to improve the reliability of
the experimental results, training samples and test samples were randomly selected for TR,
MU, AU and HU datasets. Since the baseline algorithm in this paper is HCT, the choices
of training samples and test samples are consistent with the HCT [29]. Tables 1–4 list the
number of training samples and test samples of the four datasets. All experiments were
conducted five consecutive times, and the final classification results are average values of
the five times. The evaluation index overall accuracy (OA), average accuracy (AA), and
statistical kappa coefficient (K), which are commonly used in classification experiments,
are chosen as the key evaluation indexes of this paper.

To obtain the best accuracy, it is necessary to compare the experimental results of
different experimental parameters. The initial learning rate of Adam, the heads for attention,
the depth of encoders and the depth of the Fusion Module are tested on all datasets.
The control variable method is used in the experiments, that is, the input size, epochs,
experiment times, the number of training samples and test samples are consistent.

3.2.1. Initial Learning Rate

Table 5 shows the influence of initial learning rates for Adam on the experimental
results. Initial learning rates of 0.001, 0.0005, and 0.0001 are selected in the experiments.
The results show that the best accuracy could be obtained by setting the initial learning
rate as 0.0005 on TR and AU datasets, 0.001 on MU dataset, and 0.0001 on HU dataset.

Table 5. OA of different learning rate on each dataset (the bold represents the optimum accuracy).

Datasets
Initial Learning Rate

0.001 0.0005 0.0001

TR 99.66 ± 0.04 99.72 ± 0.04 99.58 ± 0.09

MU 90.16 ± 1.49 87.44 ± 1.89 87.82 ± 1.03

AU 97.60 ± 0.16 97.80 ± 0.06 97.50 ± 0.11

HU 99.65 ± 0.06 99.70 ± 0.05 99.93 ± 0.02

3.2.2. Depth and Heads

Figure 9 depicts the synergistic effect of the number of attention heads, the depth of
encoders, and the depth of the Fusion Module. The number of heads for L-Attention and
LC-Attention are identical, and the depth of each encoder and the Fusion Module are the
same. The experiments selected four combinations of 4 + 2, 4 + 1, 8 + 2, and 8 + 1, which
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concluded that the best accuracy could be obtained by setting the heads for the attention,
and the depth for encoders and the Fusion Module as 4 and 2 on all datasets.
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3.3. Performance Comparison

In this section, the proposed AGMLT is compared with DMCN [41], SpectralFormer [13],
SSFTT [15], morpFormer [42], CoupledCNN [32], MFT_PT [28], MFT_CT [28], and HCT [29]
for validating the classification performance. The initial learning rates for the baseline HCT
are consistent with the original paper, which for the TR and HU are 0.001, for the MU is
0.0001, and for the AU is 0.0005. The depth for the Fusion Encoder of HCT on all datasets
is 2, the depth in the transformer encoder and cross-attention is 1, and the attention heads
for TR, MU, AU, and HU are 4, 8, 8, and 8 based on the source code. The initial learning
rates for DMCN, SpectralFormer, SSFTT, and CoupledCNN are consistent with AGMLT for
obtaining optimal performance, and for morpFormer, MFT_PT, and MFT_CT are 0.0005
as in the original papers. The classification results and classification maps on all datasets
of the methods are outlined in Section 3.3.1, and Section 3.3.2 shows the comparison of
consumption and computational complexity for all methods.

3.3.1. Experimental Results

The classification results of the proposed AGMLT and all the comparison methods are
shown in Tables 6–9. It could be seen that the proposed AGMLT achieves the best results on
evaluation indicators, with the OA reaching 99.72%, 90.16%, 97.80%, and 99.93%, AA reaching
99.57%, 92.47%, 89.35%, and 99.95%, and K × 100 reaching 99.62%, 87.14%, 96.85%, and 99.93%
on the TR, MU, AU and HU datasets, respectively. For evaluating the classification performance.
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1. TR dataset

As shown in Table 6, SpectralFormer has the worst classification results, because
it directly flattens the image block into the vector, which destroys the internal structure
information of the image. Coupled CNN is the second worst because its structure is
relatively simple and the ability to extract features is relatively weak. The proposed AGMLT
improves 0.37%, 1.73%, 0.54%, 0.70%, 1.33%, 0.61%, 0.27%, and 0.10% on OA compared
to DMCN, SpectralFormer, SSFTT, morpFormer, Coupled CNN, MFT_PT, MFT_CT, and
HCT. At the same time, the proposed AGMLT improves 0.70%, 3.03%, 0.87%, 1.08%, 2.19%,
0.90%, 0.54%, and 0.26% on AA, and improves 0.49%, 2.31%, 0.72%, 0.93%, 1.77%, 0.81%,
0.36%, and 0.13% on K × 100, respectively. In addition, it could be found that the accuracy
of the categories SSFTT, morpFormer, HCT, and the proposed AGMLT reached 100%. The
accuracy of the categories SSFTT, morpFormer, and the proposed AGMLT also reached
100%. This is because the distribution of these two samples is simple, which is means that
it is easy to learn the feature information. From Figure 10, the salt-and-pepper noise of
AGMLT is the least compared to the comparison methods.

Table 6. Classification results of all methods on TR dataset (the bold represents the optimum accuracy).

No.
HSI Input HSI and LiDAR-DSM Input

DMCN SpectralFormer SSFTT morp-
Former

Coupled
CNN MFT_PT MFT_CT HCT AGMLT

1
Mean 99.65 99.1 98.84 97.89 99.18 97.65 98.2 99.57 99.47

Std 0.35 0.72 0.61 0.75 0.61 0.45 0.44 0.37 0.14

2
Mean 99.74 94.49 98.01 96.49 92.92 97.93 98.74 98.85 98.81

Std 0.49 0.39 0.5 2.57 6.24 0.48 0.64 0.28 0.37

3
Mean 99.44 97.54 100 100 99.68 99.73 98.88 99.41 100

Std 0.56 0.58 0 0 0.32 0.27 1.12 0.59 0

4
Mean 99.99 99.92 100 100 99.96 99.91 99.99 100 100

Std 0.01 0.08 0 0 0.04 0.09 0.01 0 0

5
Mean 99.97 99.65 99.99 99.97 99.84 99.92 99.96 99.99 99.97

Std 0.03 0.23 0.01 0.02 0.16 0.08 0.04 0.01 0.02

6
Mean 96.42 88.51 95.38 96.58 92.71 96.87 98.38 98.01 99.14

Std 1.12 5.55 2.23 2.84 5.06 1.46 0.9 0.98 0.2

OA (%)
Mean 99.35 97.99 99.18 99.02 98.39 99.11 99.45 99.62 99.72

Std 0.17 0.64 0.12 0.28 1.28 0.19 0.1 0.14 0.04

AA (%)
Mean 98.87 96.54 98.7 98.49 97.38 98.67 99.03 99.31 99.57

Std 0.35 0.51 0.22 0.42 1.94 0.3 0.32 0.32 0.07

K × 100
Mean 99.13 97.31 98.9 98.69 97.85 98.81 99.26 99.49 99.62

Std 0.58 0.49 0.17 0.38 1.72 0.12 0.14 0.18 0.05
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Figure 10. Classification images of different methods on TR. (a) Ground-truth image; (b) DMCN
(99.35%); (c) SpectralFormer (97.99%); (d) SSFTT (98.18%); (e) morpFormer (99.02%); (f) Coupled
CNN (98.39%); (g) MFT_PT (99.11%); (h) MFT_CT (99.45%); (i) HCT (99.62%); (j) AGMLT (99.72%).
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2. MU dataset

As shown in Table 7, Coupled CNN has the worst classification results, and MFT_PT is
the second worst. This is because MFT_PT only carries out convolutional feature extraction
on HSI. The OA of the proposed AGMLT increased by 2.77%, 3.08%, 3.10%, 5.20%, 6.49%,
5.83%, 5.35%, and 2.22% compared to DMCN, SpectralFormer, SSFTT, morpFormer, Cou-
pled CNN, MFT_PT, MFT_CT, and HCT. Meanwhile, the AA increased by 2.38%, 3.17%,
3.29%, 4.90%, 5.21%, 5.70%,5.28%, and 3.11%, and K × 100 increased by 3.54%, 4.00%,
3.95%, 6.53%, 8.28%, 7.38%, 6.77%, and 2.90%, respectively. The uneven and complex
sample distribution of the MU dataset presents a significant challenge for classification
accuracy across various methods. The AGMLT stands out due to its ability to harness
rich dynamic feature information, resulting in a superior classification effect compared to
other algorithms. This advantage is likely attributed to the sophisticated design of AGMLT,
enabling it to effectively harness the complexities of sample distribution for the MU dataset.
From Figure 11, the classification image of AGMLT is closest to the ground-truth image.

Table 7. Classification results of all methods on MU dataset (the bold represents the optimum accuracy).

No.
HSI Input HSI and LiDAR-DSM Input

DMCN SpectralFormer SSFTT morp-
Former

Coupled
CNN MFT_PT MFT_CT HCT AGMLT

1 Mean
Std

87.76
2.37

88.62
0.36

88.16
0.57

85.14
2.26

86.29
0.78

86.42
1.22

86.26
2.91

90.04
3.34

90.52
2.43

2 Mean
Std

84.85
6.81

78.01
9.75

84.27
9.82

79.49
6.40

87.09
2.12

81.96
3.20

77.81
13.68

82.84
1.45

90.56
1.81

3 Mean
Std

78.90
3.35

81.75
8.58

79.53
3.86

81.83
2.22

76.96
1.58

77.24
0.99

79.82
2.12

77.69
3.65

82.46
1.23

4 Mean
Std

96.42
1.54

94.88
2.49

93.89
7.73

96.30
0.65

94.93
2.56

92.79
1.91

92.96
1.96

94.44
2.74

96.76
0.73

5 Mean
Std

88.05
3.91

88.62
0.36

84.34
3.17

79.83
5.17

77.89
3.72

79.12
1.07

78.89
2.45

86.28
2.47

89.69
1.63

6 Mean
Std

99.84
0.16

99.43
0.57

99.68
0.32

99.56
0.38

99.84
0.19

99.24
0.76

99.24
0.76

99.40
0.60

99.87
0.15

7 Mean
Std

92.44
3.04

91.38
2.04

94.30
2.57

90.16
2.72

92.06
0.96

91.22
2.59

91.54
3.61

92.99
2.98

95.10
1.74

8 Mean
Std

94.56
2.32

92.28
0.85

93.03
1.47

92.82
2.00

77.03
8.71

90.24
1.98

93.18
2.58

94.27
1.28

94.62
2.76

9 Mean
Std

75.45
3.57

76.79
0.93

78.93
1.39

76.16
6.12

75.30
6.98

67.32
6.02

70.99
5.25

75.67
3.28

83.61
0.66

10 Mean
Std

94.24
5.76

93.94
6.06

86.68
10.92

83.03
10.43

92.12
1.21

87.88
12.12

90.30
0.61

95.0
1.31

93.93
9.38

11 Mean
Std

99.24
0.76

99.50
0.52

98.32
1.68

98.99
0.34

97.82
2.18

98.99
1.01

98.15
1.85

90.00
9.00

100
0.00

OA (%) Mean
Std

87.39
1.12

87.08
1.24

87.06
0.85

84.96
1.10

83.67
1.46

84.33
0.76

84.81
1.34

87.94
0.48

90.16
1.49

AA (%) Mean
Std

90.09
0.99

89.30
1.12

89.18
1.64

87.57
0.80

87.26
1.64

86.77
1.52

87.19
0.60

89.36
1.26

92.47
1.33

K × 100 Mean
Std

83.60
0.21

83.14
1.64

83.19
0.43

80.61
1.31

78.86
0.33

79.76
0.93

80.37
1.59

84.24
1.55

87.14
1.86
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Figure 11. Classification images of different methods on MU. (a) Ground-truth Image; (b) DMCN 
(87.39%); (c) SpectralFormer (87.08%); (d) SSFTT (87.06%); (e) morpFormer (84.96%); (f) Coupled 
CNN (83.67%); (g) MFT_PT (84.33%); (h) MFT_CT (84.81%); (i) HCT (87.94%); (j) AGMLT (90.16%). 
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HSI Input HSI and LiDAR-DSM Input 

DMCN 
Spectral-
Former SSFTT 

morp- 
Former 

Coupled 
CNN MFT_PT MFT_CT HCT AGMLT 

1 
Mean 

Std 
98.59 
0.56 

86.10 
0.44 

98.82 
0.08 

97.71 
0.21 

89.59 
6.02 

98.38 
0.53 

98.29 
1.31 

98.75 
0.49 

99.31 
0.20 

2 
Mean 

Std 
98.52 
0.44 

96.10 
1.44 

99.02 
0.33 

98.54 
0.25 

98.55 
0.61 

98.20 
0.26 

98.14 
2.86 

98.66 
0.41 

99.10 
0.18 

3 
Mean 

Std 
87.64 
1.51 

75.99 
8.92 

90.13 
1.39 

89.69 
1.46 

87.65 
1.39 

89.24 
2.23 

88.60 
1.20 

88.45 
2.78 

93.10 
2.23 

4 
Mean 

Std 
99.02 
0.58 

98.66 
0.34 

98.77 
0.34 

98.53 
0.11 

99.39 
0.26 
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0.28 

98.37 
0.35 

98.93 
0.21 

99.29 
0.12 

5 
Mean 

Std 
71.08 
3.99 

48.88 
7.61 

79.09 
5.60 

84.88 
3.06 

75.54 
7.72 

78.43 
0.36 

86.18 
8.12 

81.08 
7.95 

87.09 
5.21 

6 Mean 47.82 27.56 70.12 75.45 58.62 70.68 71.17 69.00 76.69 

Figure 11. Classification images of different methods on MU. (a) Ground-truth Image; (b) DMCN
(87.39%); (c) SpectralFormer (87.08%); (d) SSFTT (87.06%); (e) morpFormer (84.96%); (f) Coupled
CNN (83.67%); (g) MFT_PT (84.33%); (h) MFT_CT (84.81%); (i) HCT (87.94%); (j) AGMLT (90.16%).
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3. AU dataset

As seen in Table 8, similar to the TR dataset, SpectralFormer has the worst classifi-
cation results, and Coupled CNN is the second worst. The OA of the proposed AGMLT
increased by 1.56%, 3.91%, 0.72%, 0.95%, 2.79%, 1.45%, 1.28%, and 0.86% compared to
DMCN, SpectralFormer, SSFTT, morpFormer, Coupled CNN, MFT_PT, MFT_CT, and HCT.
Simultaneously, the AA of the proposed method increased by 8.32%, 17.69%, 3.23%, 1.32%,
7.91%, 3.74%, 2.46%, and 3.01%, and K × 100 increased by 2.25%, 5.63%, 1.04%, 1.37%,
4.06%, 2.07%, 1.83%, and 1.24%, respectively. From Figure 12, for the proposed AGMLT,
the salt-and-pepper noise is the least compared to the comparison methods.

Table 8. Classification results of all methods on AU dataset (the bold represents the optimum accuracy).

No.
HSI Input HSI and LiDAR-DSM Input

DMCN SpectralFormer SSFTT morp-
Former

Coupled
CNN MFT_PT MFT_CT HCT AGMLT

1 Mean
Std

98.59
0.56

86.10
0.44

98.82
0.08

97.71
0.21

89.59
6.02

98.38
0.53

98.29
1.31

98.75
0.49

99.31
0.20

2 Mean
Std

98.52
0.44

96.10
1.44

99.02
0.33

98.54
0.25

98.55
0.61

98.20
0.26

98.14
2.86

98.66
0.41

99.10
0.18

3 Mean
Std

87.64
1.51

75.99
8.92

90.13
1.39

89.69
1.46

87.65
1.39

89.24
2.23

88.60
1.20

88.45
2.78

93.10
2.23

4 Mean
Std

99.02
0.58

98.66
0.34

98.77
0.34

98.53
0.11

99.39
0.26

97.88
0.28

98.37
0.35

98.93
0.21

99.29
0.12

5 Mean
Std

71.08
3.99

48.88
7.61

79.09
5.60

84.88
3.06

75.54
7.72

78.43
0.36

86.18
8.12

81.08
7.95

87.09
5.21

6 Mean
Std

47.82
5.15

27.56
9.54

70.12
3.37

75.45
3.58

58.62
9.20

70.68
3.28

71.17
2.02

69.00
1.26

76.69
3.59

7 Mean
Std

64.51
1.86

55.50
4.95

66.88
1.20

71.36
3.58

60.73
1.52

66.41
6.30

67.52
4.04

69.52
4.05

70.85
1.95

OA (%) Mean
Std

96.24
1.36

93.89
0.27

97.08
0.18

96.85
0.07

95.01
1.31

96.35
0.24

96.52
0.31

96.94
0.33

97.80
0.06

AA (%) Mean
Std

81.03
2.30

71.66
2.58

86.12
1.93

88.03
1.21

81.44
2.86

85.61
1.11

86.89
1.25

86.34
1.51

89.35
0.92

K × 100 Mean
Std

94.60
0.42

91.22
0.43

95.81
0.25

95.48
0.10

92.79
1.91

94.78
0.34

95.02
0.44

95.61
0.47

96.85
0.08
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Figure 12. Classification images of different methods on AU. (a) Ground-truth Image; (b) DMCN 
(96.24%); (c) SpectralFormer (93.89%); (d) SSFTT (97.08%); (e) morpFormer (96.85%); (f) Coupled 
CNN (95.01%); (g) MFT_PT (96.35%); (h) MFT_CT (96.52%); (i) HCT (96.94%); (j) AGMLT (97.80%). 

4. HU dataset 
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Figure 12. Classification images of different methods on AU. (a) Ground-truth Image; (b) DMCN
(96.24%); (c) SpectralFormer (93.89%); (d) SSFTT (97.08%); (e) morpFormer (96.85%); (f) Coupled
CNN (95.01%); (g) MFT_PT (96.35%); (h) MFT_CT (96.52%); (i) HCT (96.94%); (j) AGMLT (97.80%).

4. HU dataset

As shown in Table 9, Coupled CNN has the worst classification results, and DMCN has
the second worst. The proposed AGMLT increased by 1.09%, 1.04%, 0.20%, 0.57%, 1.39%,
0.33%, 0.47%, and 0.20% on OA compared to DMCN, SpectralFormer, SSFTT, morpFormer,
Coupled CNN, MFT_PT, MFT_CT, and HCT. The value of AA increased by 0.90%, 1.05%,
0.16%, 0.52%, 1.10%, 0.27%, 0.40%, and 0.17%, and the value of K × 100 increased by
1.19%, 1.13%, 0.22%, 0.63%, 1.52%, 0.36%, 0.52%, and 0.23%, respectively. In addition,
DMCN and SpectralFormer have similar classification performance on the HU datasets.
Simultaneously, SSFTT and HCT have similar classification performance. From Figure 13,
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the higher classification accuracy leads to less salt-and-pepper noise. This indicates that
AGMLT effectively enhances the joint classification performance.

Table 9. Classification results of all methods on HU dataset (the bold represents the optimum accuracy).

No.
HSI Input HSI and LiDAR-DSM Input

DMCN SpectralFormer SSFTT morp-
Former

Coupled
CNN MFT_PT MFT_CT HCT AGMLT

1 Mean
Std

98.35
0.80

99.34
0.66

99.74
0.26

99.18
0.36

99.91
0.09

99.32
0.68

98.94
0.97

98.77
1.05

99.81
0.08

2 Mean
Std

98.54
3.24

98.89
1.11

99.91
0.09

99.19
0.32

99.94
0.06

99.53
0.85

99.49
0.51

99.70
0.30

99.84
0.16

3 Mean
Std

98.05
2.88

100
0.00

99.96
0.04

99.47
0.47

99.92
0.08

99.76
0.24

99.88
0.12

99.92
0.08

100
0.00

4 Mean
Std

98.74
0.98

99.72
0.28

99.66
0.15

99.56
0.16

94.56
5.15

94.43
0.57

98.28
1.72

99.56
0.35

100
0.00

5 Mean
Std

100
0.00

99.39
0.61

99.92
0.08

100
0.00

100
0.00

100
0.00

100
0.00

100
0.00

100
0.00

6 Mean
Std

96.89
3.11

99.30
0.70

100
0.00

100
0.00

100
0.00

100
0.00

100
0.00

100
0.00

100
0.00

7 Mean
Std

96.05
1.37

98.06
1.94

99.63
0.38

98.88
0.65

99.06
0.75

99.31
0.69

99.85
0.15

99.74
0.26

100
0.00

8 Mean
Std

94.60
4.45

98.33
1.42

99.44
0.10

98.35
0.25

96.81
1.28

99.55
0.45

99.47
0.53

99.87
0.13

100
0.00

9 Mean
Std

94.34
5.52

96.20
2.19

99.68
0.32

98.65
1.45

96.94
2.02

99.09
0.91

99.13
0.87

99.23
0.37

100
0.00

10 Mean
Std

99.83
0.17

99.83
0.17

99.77
0.23

99.94
0.09

99.83
0.17

99.81
0.19

99.98
0.02

99.98
0.02

100
0.00

11 Mean
Std

99.31
0.69

99.48
0.32

99.79
0.21

100
0.00

99.28
0.57

99.72
0.28

99.49
0.51

99.98
0.02

100
0.00

12 Mean
Std

97.14
2.51

99.27
0.23

99.63
0.37

99.46
0.20

99.06
0.56

99.81
0.19

99.29
0.23

99.67
0.33

99.57
0.04

13 Mean
Std

94.03
5.96

95.99
3.64

99.93
0.07

98.71
1.82

99.65
0.35

99.86
0.14

99.58
0.42

99.72
0.28

100
0.00

14 Mean
Std

99.90
0.10

99.92
0.08

100
0.00

100
0.00

100
0.00

100
0.00

100
0.00

100
0.00

100
0.00

15 Mean
Std

100
0.00

99.83
0.17

100
0.00

100
0.00

100
0.00

100
0.00

99.92
0.08

100
0.00

100
0.00

OA (%) Mean
Std

98.84
0.29

98.89
0.70

99.73
0.14

99.36
0.24

98.54
0.49

99.60
0.15

99.46
0.29

99.73
0.16

99.93
0.02

AA (%) Mean
Std

99.05
0.38

98.90
0.45

99.79
0.11

99.43
0.29

98.85
0.31

99.68
0.13

99.55
0.24

99.78
0.22

99.95
0.01

K × 100 Mean
Std

98.74
0.31

98.80
0.32

99.71
0.16

99.30
0.26

98.41
0.53

99.57
0.16

99.41
0.32

99.70
0.16

99.93
0.02
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Figure 13. Classification images of different methods on HU. (a) Ground-truth image; (b) DMCN 
(98.84%); (c) SpectralFormer (98.89%); (d) SSFTT (99.73%); (e) morpFormer (99.36%); (f) Coupled 
CNN (98.54%); (g) MFT_PT (99.60%); (h) MFT_CT (99.46%); (i) HCT (99.73%); (j) AGMLT (99.93%). 

Figure 13. Classification images of different methods on HU. (a) Ground-truth image; (b) DMCN
(98.84%); (c) SpectralFormer (98.89%); (d) SSFTT (99.73%); (e) morpFormer (99.36%); (f) Coupled
CNN (98.54%); (g) MFT_PT (99.60%); (h) MFT_CT (99.46%); (i) HCT (99.73%); (j) AGMLT (99.93%).
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3.3.2. Consumption and Computational Complexity

To comprehensively compare the AGMLT with the comparison methods, the total
parameters (TPs), training time (Tr), test time (Te) and Flops of all methods are tested in this
section. The results are presented in Table 10. Since the data are filled in the convolution
part to align the feature sizes, the number of parameters and the complexity of the model
are increased, while the learnable features are added to improve the classification accuracy.

Table 10. Consumption and computational complexity of each dataset (the bold represents the
optimum accuracy).

Methods
TPs Tr (s) Te (s) Flops OA (%) TPs Tr (s) Te (s) Flops OA (%)

TR MU
DMCN 2.77 M 20.22 1.69 3.21 G 99.35 ± 0.17 2.77 M 34.40 3.04 3.21 G 87.39 ± 1.12

SpectralFormer 97.33 K 46.80 3.55 192.68 M 97.99 ± 0.64 97.65 K 93.22 6.22 192.70 M 87.08 ± 1.24
SSFTT 147.84 K 22.08 1.51 447.18 M 99.18 ± 0.12 148.16 K 38.06 2.78 447.20 M 87.06 ± 0.85

morpFormer 62.56 K 38.36 4.38 334.43 M 99.02 ± 0.28 62.56 K 77.67 7.11 334.43 M 84.96 ± 1.10
CoupledCNN 104.18 K 7.68 0.78 169.08 M 98.39 ± 1.28 106.11 K 18.47 1.38 169.20 M 83.67 ± 1.46

MFT_PT 221.29 K 58.50 7.98 312.91 M 99.11 ± 0.19 221.61 K 115.80 14.10 312.93 M 84.33 ± 0.76
MFT_CT 221.29 K 82.33 11.60 312.91 M 99.45 ± 0.10 221.61 K 163.87 20.39 312.93 M 84.81 ± 1.34

HCT 465.62 K 14.53 1.28 519.16 M 99.62 ± 0.14 728.09 K 26.84 2.27 569.55 M 87.94 ± 0.48
AGMLT 837.08 K 50.44 3.97 4.91 G 99.72 ± 0.04 837.40 K 120.48 9.55 4.91 G 90.16 ± 1.49
Methods AU HU
DMCN 2.77 M 76.96 3.82 3.21 G 96.24 ± 1.36 2.78 M 23.49 0.93 3.21 G 98.84 ± 0.29

SpectralFormer 97.39 K 202.32 8.03 192.68 M 93.89 ± 0.27 97.91 K 153.84 1.43 192.71 M 98.89 ± 0.70
SSFTT 147.90 K 93.01 3.97 447.18 M 97.08 ± 0.18 148.42 K 28.37 0.37 447.22 M 99.73 ± 0.14

morpFormer 62.56 K 185.38 10.22 334.43 M 96.85 ± 0.07 62.56 K 134.35 1.85 334.43 M 99.36 ± 0.24
CoupledCNN 104.57 K 37.86 2.03 169.11 M 95.01 ± 1.31 107.66 K 27.98 0.37 169.30 M 98.54 ± 0.49

MFT_PT 221.35 K 272.02 20.03 312.91 M 96.35 ± 0.24 221.87 K 195.11 3.32 312.95 M 99.60 ± 0.15
MFT_CT 221.35 K 397.32 29.77 312.91 M 96.52 ± 0.31 221.87 K 332.68 5.50 312.95 M 99.46 ± 0.29

HCT 727.83 K 60.74 3.42 569.52 M 96.94 ± 0.33 728.35 K 58.33 0.87 569.58 M 99.73 ± 0.16
AGMLT 837.14 K 258.56 12.43 4.91 G 97.80 ± 0.06 837.66 K 170.65 1.67 4.91 G 99.93 ± 0.02

The settings of experiments are the same as previously mentioned. The AGMLT has
fewer total parameters than DMCN but a longer running time and larger Flops, and the
AGMLT has a shorter running time than MFT_PT and MFT_CT but more total parameters
and larger Flops. However, compared with SpectralFormer and SSFTT, the AGMLT has
more total parameters, larger Flops, and a longer running time. Taking the TR and HU
datasets as examples, the AGMLT has a shorter test time than morpFormer, but more total
parameters and Flops, and a longer training time. Taking the MU and AU datasets as examples,
the AGMLT has more total parameters, larger Flops, and a longer running time than morp-
Former. Furthermore, compared with HCT, the AGMLT has more Flops and a longer running
time, and it has more total parameters on the TR dataset and fewer total parameters than other
datasets. Finally, the classification performance of AGMLT is optimal.

4. Discussion
4.1. Ablation Analysis

This section takes the TR dataset as an example to conduct ablation experiments
to verify the effectiveness of different components. The first column in Table 11 is the
convolutional feature extraction module SSAGM shown in Figure 1, and its specific ablation
experiments are shown in Table 12. The second column of Table 11 is the L-Former shown
in Figure 1, where LS and LTM represent the layer scale and learnable transition matrix in
Figure 3, respectively. The third column in Table 11 is the cross-attention with the learnable
transition matrix. As outlined in the table, the classification accuracy of the AGMLT
proposed in this paper is the best. Each component plays a positive role in improving
classification accuracy.
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Table 11. Ablation experiments of each component (The
√

represents that use current component,
and the bold represents the optimum accuracy).

SSAGM
L-Former

LC-Attention OA (%) AA (%) K × 100
LS LTM
√

99.67 ± 0.03 99.49 ± 0.04 99.56 ± 0.04
√

99.63 ± 0.01 99.38 ± 0.02 99.50 ± 0.01
√ √ √

99.34 ± 0.08 98.87 ± 0.16 99.11 ± 0.11
√ √ √

99.55 ± 0.09 99.31 ± 0.14 99.40 ± 0.11
√

99.62 ± 0.13 99.37 ± 0.22 99.49 ± 0.18
√

99.41 ± 0.04 98.95 ± 0.17 99.21 ± 0.06
√

99.68 ± 0.02 99.46± 0.02 99.57 ± 0.02
√ √

99.43 ± 0.03 98.98 ± 0.13 99.24 ± 0.05
√ √

99.50 ± 0.09 99.12 ± 0.14 99.32 ± 0.12
√ √

99.46 ± 0.08 99.14 ± 0.13 99.28 ± 0.11
√ √ √

99.72 ± 0.04 99.57 ± 0.07 99.62 ± 0.05

Table 12. Different combinations of PDWA and ADWA (The
√

represents that use current component,
and the bold represents the optimum accuracy).

PDWA ADWA(H) ADWA(L) OA (%) AA (%) K×100
√

99.57 ± 0.03 99.34 ± 0.05 99.43 ± 0.04
√

99.38 ± 0.06 99.04 ± 0.07 99.17 ± 0.07
√

99.63 ± 0.15 99.42 ± 0.24 99.50 ± 0.20
√ √

99.36 ± 0.14 98.61 ± 0.20 99.14 ± 0.18
√ √

99.61 ± 0.05 99.40 ± 0.07 99.48 ± 0.07
√ √

99.51 ± 0.03 99.24 ± 0.05 99.34 ± 0.03
√ √ √

99.72 ± 0.04 99.57 ± 0.07 99.62 ± 0.05

Detailed ablation experiments on the convolutional feature extraction are presented in
Table 12. PDWA mainly extracts spectral features of HSI. ADWA(H) is the spatial feature
extraction of HSI, while ADWA(L) is the spatial feature extraction of LiDAR-DSM data.
In this paper, different combinations of the three attention modules were verified with
experiments. Finally, it obtained the best combination and use order, which achieved the
best classification effect.

Table 13 shows the effect of asymmetric convolution kernels on the AGMLT. The
asymmetric convolution kernel can improve classification accuracy while reducing the
number of parameters and Flops of the model. Because the 3D convolution kernel can be
divided into many two-dimensional convolution kernels, when the rank of a 2D kernel is 1,
it can be equivalent to a series of one-dimensional convolutions, which can strengthen the
nuclear skeleton of the CNN while reducing the parameters.

Table 13. The effect of asymmetric convolution for AGMLT (the bold represents the optimum accuracy).

OA (%) AA (%) K × 100 Total Params Flops

No Asymmetric
Convolution 99.62 ± 0.08 99.01 ± 0.14 99.50 ± 0.10 904.71 K 5.39 G

With Asymmetric
Convolution 99.72 ± 0.04 99.57 ± 0.07 99.62 ± 0.05 837.08 K 4.91 G

In this paper, we compare the classification accuracies of HSI or LiDAR-DSM alone
and the combination of the two data. As indicated in Table 14, by fusing the HSI and LiDAR-
DSM, it is possible to achieve a more accurate and robust classification outcome than would
be possible using either source of data alone. HSI can provide rich spectral information,
and LiDAR-DSM can supplement accurate orientation and distance information.
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Table 14. Ablation analysis of different inputs (the bold represents the optimum accuracy).

Inputs
OA (%) AA (%) K×100 OA (%) AA (%) K × 100

TR MU

HSI 99.32 ± 0.03 98.95 ± 0.05 99.09 ± 0.04 89.33 ± 0.92 91.83 ± 1.20 86.09 ± 1.19

LiDAR-DSM 97.81 ± 0.64 96.55 ± 1.22 97.06 ± 0.87 68.11 ± 1.61 67.26 ± 5.39 59.55 ± 1.87

HSI + LiDAR-DSM 99.72 ± 0.04 99.57 ± 0.07 99.62 ± 0.05 90.16 ± 1.49 92.47 ± 1.33 87.14 ± 1.86

Inputs AU HU

HSI 97.45 ± 0.19 89.17 ± 1.21 96.35 ± 0.27 99.76 ± 0.05 99.80 ± 0.05 99.73 ± 0.06

LiDAR-DSM 95.62 ± 1.07 95.62 ± 1.07 95.62 ± 1.07 95.62 ± 1.07 95.62 ± 1.07 95.62 ± 1.07

HSI + LiDAR-DSM 97.80 ± 0.06 89.35 ± 0.92 96.85 ± 0.08 99.93 ± 0.02 99.95 ± 0.01 99.93 ± 0.02

4.2. Loss Functions

AGMLT with different loss functions compared on four multi-modal datasets in this
section. LCE stands for cross entropy loss, LFC stands for focal loss, LPC stands for poly
loss—CE, and LPF stands for poly loss—focal. As shown in Table 15, LPF, with the best
effect, was selected as the loss function of AGMLT.

Table 15. Experimental results using different loss functions (the bold represents the optimum accuracy).

Loss Functions
OA (%) AA (%) K × 100 OA (%) AA (%) K × 100

TR MU
LCE 99.69 ± 0.05 99.49 ± 0.11 99.58 ± 0.06 89.92 ± 0.77 92.84 ± 0.45 86.84 ± 0.97
LFC 99.69 ± 0.09 99.54 ± 0.13 99.59 ± 0.11 90.09 ± 0.29 92.09 ± 0.39 87.07 ± 0.37
LPC 99.61 ± 0.05 98.99 ± 0.08 99.48 ± 0.06 89.92 ± 0.40 92.47 ± 0.70 86.81 ± 0.51
LPF 99.72 ± 0.04 99.57 ± 0.07 99.62 ± 0.05 90.16 ± 1.49 92.47 ± 1.33 87.14 ± 1.86

Loss Functions AU HU
LCE 97.49 ± 0.27 88.34 ± 0.36 96.41 ± 0.39 99.86 ± 0.05 99.89 ± 0.04 99.85 ± 0.05
LFC 97.63 ± 0.28 88.26 ± 1.37 96.61 ± 0.40 99.75 ± 0.05 99.79 ± 0.04 99.73 ± 0.04
LPC 97.38 ± 0.25 88.42 ± 1.14 96.25 ± 0.36 99.79 ± 0.05 99.75 ± 0.03 99.78 ± 0.05
LPF 97.80 ± 0.06 89.35 ± 0.92 96.85 ± 0.08 99.93 ± 0.02 99.95 ± 0.01 99.93 ± 0.02

4.3. Training Percentage

In this section, experiments were conducted to analyze the performance of the pro-
posed AGMLT under different training percentages. The experimental settings are the
same as above. The results are shown in Figure 14.

For TR, AU, and HU datasets, 2%, 4%, 6%, and 8% of the total samples are selected
as training samples. However, the sample distribution of the MU dataset is particularly
uneven, so 5%, 10%, 15%, and 20% of the total samples are selected for training. Exper-
iments have shown that the accuracies of all methods have been significantly improved
when the training samples increased. Notably, the AGMLT model exhibited superior per-
formance compared to other methods in all cases, with a particularly notable improvement
in accuracy for the MU dataset. It is attributed to the rich learnable features of AGMLT,
which adapt more effectively to uneven distributions and improve accuracy. Moreover, the
effectiveness of AGMLT across diverse datasets suggests its potential for wide applicability
in tasks involving multi-modal data fusion and classification.
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Figure 14. Classification results of different training percentages. (a) TR dataset; (b) MU dataset;
(c) AU dataset; (d) HU dataset. The accuracies of all methods have been significantly improved when
the training samples increased. The AGMLT model exhibited superior performance in all cases.

5. Conclusions

In the study, an adaptive learning model named AGMLT is proposed. Firstly, SSAGM
was used to extract local information, which mainly included PDWA and ADWA. The
PDWA could extract the spectral information of HSI. The ADWA could extract the spatial
information of HSI and the elevation information of LIDAR-DSM. Then, by adding a layer
scale and learnable transition matrix to the primary transformer encoder and SA, the data
dynamics were improved, and the influence of transformer depth on model classification
performance was alleviated. Next, the learnable transfer matrix in LC-Attention enriched
the feature information of multi-modal data fusion. Finally, the poly loss training model
could adapt to different data. A large number of experiments of AGMLT were carried out
to verify the effectiveness and its components.

The data padding in SSAGM increases model complexity and parameters. Therefore,
the future scientific research task is designing a precise yet lightweight model. We plan to
remove the data padding in SSAGM to shorten the semantic sequence for the subsequent
transformer encoder. We propose a multi-scale dynamic gating mechanism combining
asymmetric and depthwise separable convolutions to maintain classification performance.
The effectiveness of the idea needs to be assessed in future research.
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