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Abstract: Deep learning technology for real-time small object detection in aerial images can be used
in various industrial environments such as real-time traffic surveillance and military reconnaissance.
However, detecting small objects with few pixels and low resolution remains a challenging problem
that requires performance improvement. To improve the performance of small object detection,
we propose DCEF2-YOLO. Our proposed method enables efficient real-time small object detection
by using a deformable convolution (DFConv) module and an efficient feature fusion structure to
maximize the use of the internal feature information of objects. DFConv preserves small object
information by preventing the mixing of object information with the background. The optimized
feature fusion structure produces high-quality feature maps for efficient real-time small object de-
tection while maximizing the use of limited information. Additionally, modifying the input data
processing stage and reducing the detection layer to suit small object detection also contributes to
performance improvement. When compared to the performance of the latest YOLO-based models
(such as DCN-YOLO and YOLOv7), DCEF2-YOLO outperforms them, with a mAP of +6.1% on
the DOTA-v1.0 test set, +0.3% on the NWPU VHR-10 test set, and +1.5% on the VEDAI512 test set.
Furthermore, it has a fast processing speed of 120.48 FPS with an RTX3090 for 512 × 512 images,
making it suitable for real-time small object detection tasks.

Keywords: aerial object detection; small target detection; real-time object detection; DCN; deformable
convolution; feature fusion

1. Introduction

Deep learning technology is used ubiquitously in industry and is developing at an
incredible rate. Therefore, the performance of simple classification and detection tasks
using representative benchmark datasets such as ImageNet [1], COCO [2], and Pascal
VOC [3] is saturated. Accordingly, much research is being conducted in each field to
perform special and applied tasks depending on the purpose of use. Problem area diagnosis
and segmentation using medical images [4,5], small object detection using aerial imagery
datasets [6,7], and object detection in SAR military imagery [8,9] are examples.

As the performance of SOTA models becomes saturated, they have high detection rates
and accuracy in images that are not very complex. Nevertheless, performance improvement
is still needed for partially overlapping objects or small objects. When 2D images and videos
are used, small objects, having a limited number of pixels and low resolution, provide
insufficient information for deep learning models to extract features through convolution
operations. In particular, in the case of aerial image datasets such as DOTA [10], compared
to the very high resolution of up to 20,000 × 20,000, the spatial proportion of small objects
is very small, as low as 10 pixels, and simple resizing and pooling operations performed
during the learning process can cause information loss in small objects. Transformer-based
models [11,12] have recently performed well and are topping the benchmark leaderboard.
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On the other hand, these models, which divide images into patches and perform attention
operations [13–15], may not be suitable for detecting small objects.

Accordingly, this study examines detection rate improvement from two major per-
spectives to detect small objects of 32 × 32 pixels or smaller in long-distance aerial images.
Therefore, we propose aerial detection YOLO with deformable convolution-efficient feature
fusion for small target detection (DCEF2-YOLO; Deformable Convolution-Efficient Feature
Fusion-YOLO).

Make full use of the internal feature information of small objects in a few pixels: The
deformable convolution (DFConv) module was used for this purpose [16,17]. The convolu-
tion kernel is square in shape, so the object and surrounding background information may
be mixed during operation. This can be fatal when learning tiny objects with a small amount
of information and can be compensated for using the DFConv module, which allows the
shape of the kernel to be modified. DFConv acquires the offset values through additional
kernel training to adjust the sampling points of the kernel and performs sampling feature
masking according to learning contribution through sampling weight. This was proposed
to ensure that the kernel has an appropriate receptive field by training it to be robust to
various forms of geometric transformations caused by camera angles, object posture or
state, location, etc. And we expect to improve learning for small objects by preventing
mixing with background information and focusing on areas of interest more effectively
than possible with the original kernels. And several previous studies dealing with small
object detection have confirmed that this actually leads to performance improvements.
Ref. [18] improved the detection accuracy of thin and rotated targets during remote sensing
by replacing all convolution layers of YOLOv5 with DFConv and adding the box aspect
ratio to the loss function to improve the detection accuracy for specific classes. In addition,
in [19,20], DFConv was applied to YOLOv5 to detect small objects in complex environments,
and channel-level attention was applied through a CBAM (convolutional block attention
module), resulting in performance improvement. In this paper, in order to prevent an
increase in the number of calculations, we found the optimal location and number of each
module through experiments and applied them to the network to improve performance
with minimal changes and applications.

Must be usable for real-time tasks: Small object detection in aerial images is expected
to be used mainly in surveillance/reconnaissance and military fields, requiring onboard
real-time task completion. Configuring the network to be complex in order to have good
performance limits real-time operations. Therefore, YOLOv5 [21] was used as the base
model because it is lightweight but has good detection performance and scalability. In addi-
tion, Efficient-RepGFPN [22], which performs various stages of feature fusion, was applied
to make the most of the small object feature information extracted from the backbone.
Unlike the YOLOv5 series, which perform relatively simple fusions in the neck, Efficient-
RepGFPN performs sufficient inner fusion between multiple and same scales of feature
maps to extract more meaningful information. However, this naturally brings a lot of
computational cost and is not suitable for real-time tasks. Therefore, we optimize the
structure considering performance and computational cost to suit our purpose and im-
prove small object detection performance without computational overhead. In addition,
the focus module of YOLOv5 was replaced with convolution-based processing, which is
faster on a GPU, and the deformable convolution used in the backbone does not pose a
large computational burden. Based on this, we propose a DCEF2-YOLO that is suitable for
real-time tasks.

The contributions are summarized as follows:

(1) To make the most of a small amount of small object internal information, DCN and
an optimized efficient feature fusion neck are applied. This actually improves the
small object detection performance in the benchmark aerial dataset without signifi-
cant computational burden. DCEF2-YOLO improves mAP by 6.1% in DOTA, mAP
by 1.5% in VEDAI, and mAP by 0.3% in NWPU VHR-10 compared to the latest
comparison model.
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(2) Each module and structure is applied through an appropriate number and location
selection and optimization process in consideration of the amount of calculation for
real-time tasks. Accordingly, DCEF2-YOLO has the smallest amount of calculations
(GFLOPs) compared to the comparative models, and shows a detection speed of
120.48 FPS on 512 × 512 images.

Section 2 introduces the recent research trends related to small object detection in aerial
images and briefly explains YOLOv5, which was selected as the base model. Section 3
explains the DCN module, optimization of Efficient-RepGFPN, and the focus to conv
function. Section 4 evaluates the network performance using several public datasets,
and Section 5 presents the conclusions.

2. Related Works
2.1. Aerial Object Detection

Object detection work is divided mainly into a one-stage detection and a two-stage
detection depending on the task execution stage, and it is also divided depending on the
bounding box type: HBB (horizontal bounding box)-based or OBB (oriented bounding
box)-based detection. OBB is a form in which the box direction parameter (a rotation
component) is added to the HBB coordinates (x, y, w, h, and theta). This system is applied
mainly as an extension of the HBB-based two-stage detector and can be more suitable for
rotated objects. OBB-based detection models have been used widely in recent years because
aerial object detection mainly utilizes datasets containing unaligned objects captured from
the air.

Pu et al., proposed the ARC (adapted rotated convolution), which adaptively rotates
the convolution kernel according to the object direction and increases the identification and
detection rate of objects in various directions [23]. Yi et al., proposed a box-boundary-aware
vector learning method that broke away from the existing method of directly predicting the
width, height, and angle of the bounding box and showed a good rotated object detection
rate [24]. Yang et al., presented SkewIOU loss based on Gaussian modeling and the
Gaussian product for rotated object detection, and Wang et al., introduced FCOSR Assigner
and ProbIOU Loss to detect rotated bounding boxes, and a decoupled angle prediction
head predicted the angle distribution of the object more accurately [25,26].

Previous studies showed good detection performance while using existing HBB.
Kim et al., performed attention at the channel level to compensate for the lack of small
object information and used transposed convolution to prevent small object information
from mixing through a simple upsampling process [6]. Zhang et al., exploited the charac-
teristics of the VEDAI dataset, which provides RGB and IR images of two sizes (512, 512)
and (1024, 1024), and reported excellent detection performance through multi-sensor image
fusion and super-resolution loss [7,27]. Li et al., mentioned that different objects require
different degrees of context and proposed LSKNet: a backbone model that dynamically
adjusts the receptive fields through large-scale kernels and channel-specific pooling [28].
Wang et al., conducted optimization to pre-train an aerial dataset from the backbone, and
the performance in downstream tasks was presented as an experiment [29].

Figure 1 summarizes the aerial object detection technologies listed above in a timeline.
As recent trends show, many models based on OBB have been proposed. But OBB-based
models have limitations in that they are difficult to fine-tune for new tasks due to the data
label characteristics. And they are not good at distinguishing occluded objects with various
shapes by considering angle information. Accordingly, we perform an HBB-based detec-
tion task considering high complexity, computational cost, and scalability. And through
verification, it presents performance that is comparable to OBB-based detection tasks.

A publicly available aerial image dataset for detection is very helpful for optimizing
and developing deep-learning models for small object detection tasks. Benchmark datasets
include DOTA [10], HRSC2016 [30], and DIOR-R [31], as well as VEDAI [32], AID [33],
xView [34], iSAID [35], LandCover.ai [36], NWPU VHR-10 [37], and VisDrone [38]. This
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study examined the performance of DCEF2-YOLO on DOTA, VEDAI, and NWPU VHR-10.
Table 1 presents a summary of the utilized datasets.

OBB in 
aerial OD

2020

PP-YOLOE-R
2022

ARC
2023.03

KIOU
2023.02

RS pretraining
2023.05

LKSNet
2023.03

DCN-YOLO
2023

ECAP-YOLO
2021

Super-YOLO
2023

YOLO-Fusion
2022

OBB 
based

HBB
based

multi-
sensors

single 
sensor

Aerial Object Detection timeline
Limitations

OBB: High complexity and cost, 
difficulty with distinguishing occluded 

objects, difficulty with finetuning due to 
label characteristics

HBB: May not be optimal for some 
objects (rotated objects)

Multi-sensor: Limited scope of use, 
requires information from various types 

of sensors

Figure 1. Aerial object detection timeline of the latest aerial object detection technologies according
to their release dates. Depending on the bounding box format, methods are largely divided into
OBB-based and HBB-based detection. The limitations of each technique are presented on the right.
Several limitations of OBB were considered, and a model based on HBB was proposed for efficient
real-time aerial image detection [6,7,23–29,39].

Table 1. DOTA-v1.0, VEDAI, and NWPU VHR-10 dataset summary. The DOTA, VEDAI, and NWPU
VHR-10 datasets were used to verify the proposed model. The overall performance of DCEF2-YOLO
was verified through DOTA-v1.0 and NWPU VHR-10, which include multi-sized objects. The small
object detection performance was analyzed more intensively through VEDAI, which includes small
objects [40].

DOTA-v1.0 [10] VEDAI [32] NWPU VHR-10 [37]

Dataset size 2806 images 1272 images 800 images

Image size (800, 800) to (20,000, 20,000) (512, 512), (1024, 1024) Width and height range from
450 to 1000

Target classes vehicles, track fields, storage
tanks, etc. multi-class vehicles and others vehicles, ships, planes, etc.

Target Size multi sizes; l, m, s (less than
10 pixels)

small instances with widths of
8 to 20 pixels

multi sizes; l, m, s (primarily
medium-sized)

2.2. YOLOv5

The YOLO series is a representative model of one-stage detectors [41]. Although the
detection accuracy is slightly lower than that of two-stage detectors that perform object
location estimation and classification separately [42,43], real-time application is possible
with rapid detection speed. Since YOLOv5, there has been a focus on optimizing algorithms
and training methodologies, leading to improvements and expansions, and in January 2023,
YOLOv8 [43] was announced. DCEF2-YOLO, which is optimized for small object detection
through a combination of various technologies, was constructed based on the pure and
highly scalable YOLOv5.

Like YOLOv4 [44], YOLOv5 distributes the computational load of each layer evenly
through CSPNet [45], eliminates computational bottlenecks, and derives the computational
utilization of the CNN layer. The detection performance is improved by approximately
10%, but it has a lower capacity and faster speed. The backbone receives an input image
that is expanded and resized to the channel dimension through a focus operation, and
performs learning on the image. PAFPN is applied to complement the unidirectional fusion
flow of FPN; it fuses the feature maps received from the three stages of the backbone to
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produce a more meaningful map for detection. YOLOv5 showed a detection performance
of 68.9 mAP@0.5 on COCO 2017 val, and the smallest YOLOv5n model has a speed of up
to 45 ms on a CPU. The model has various sizes up to n, s, m, l, and x according to the
depth–width multiple. This study applied a YOLOv5s structure with suitable performance
and high speed. Figure 2 shows the structure of YOLOv5s.

Focus

(7) CBS

(8) SPP

(9) C3 _1

Conv

Conv

Conv

(1) CBS

(2) C3 _1

(3) CBS

(4) C3 _3

(5) CBS

(6) C3 _3

Backbone Neck Head

FPN PANet

CBS

CBS

Concat CBS

n*Bottleneck

Conv BatchNorm SiLU

CBS

C3_n

Focus

Figure 2. Overall structure of YOLOv5s. YOLOv5 evenly distributes the computational amount of
each layer through CSPNet, eliminates the computational bottlenecks, and induces computational
utilization of CNN layers. PAFPN generates more meaningful feature maps through bidirectional
feature map fusion. Each layer of the backbone is numbered from (1) to (9), providing a reference to
understand the model improvements for the proposed model.

3. Methods

Figure 3 presents the overall structure of DCEF2-YOLO. Based on the YOLOv5s model,
the focus module that processes the input image was replaced with convolution-based
processing. A deformable convolution module was applied in the backbone to extract
meaningful small object features. The relatively simple existing neck was replaced with
an optimized version of Efficient-RepGFPN, which undergoes sufficient fusion. These im-
provements enable small object detection in aerial images with high real-time performance.
Section 3.1 explains the DFConv module. Sections 3.2 and 3.3 explain Optimized-Efficient-
RepGFPN, and focus to conv, respectively.
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Rep 3x3

3x3
Conv

1x1
Conv

BN BN

3x3
Conv

BN

ACT
Train Infer

DFConv

SPP

C3 _1

Conv

CBS

C3 _1

CBS

C3 _3

CBS

C3 _3

DF-Backbone

Optimized-Efficient-RepGFPN Neck Lighten-Head
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Offset

Mask

Regular

Fusion Block

C

Conv

Conv Rep 3x3 Conv

ConvC

+

xN

Focus to Conv

Conv

Input

: Fusion Block Below

Figure 3. Overall structure of DCEF2-YOLO. The upper left is the overall structure of the model.
Each module is listed from the upper right to the bottom. DCEF2-YOLO consists of a backbone,
an Optimized-Efficient-RepGFPN neck, and a lighten head. When an image is an input, the input
image is reconstructed through the replaced convolution-based input processing stage and passed
to the backbone. In the backbone, the deformable convolution layer acquires meaningful inner-
feature information for small objects by simultaneously learning offset, mask, and feature information
through three kernels. Afterwards, Optimized-Efficient-RepGFPN, which was reduced to suit real-
time work, performs sufficient fusions to make the most of the feature information extracted from
the backbone. Efficient-RepGFPN performs feature map fusion through the fusion block, and the
fusion block is shown at the bottom of the diagram. It has the structure of CSPNet and has rep
3 × 3 operations to reduce unnecessary calculations during inference. The rep 3 × 3 structure is
an optimization technique that reduces inference time efficiently by separating the kernels used
during training and inference. More details about Efficient-RepGFPN are described in Section 3.2.
Additionally, the CBS layers and C3_n layers included in the backbone are the same as those in
YOLOv5, as illustrated in Figure 2.

3.1. DCN

Figure 4 presents the operation of deformable convolution. Unlike basic convolution,
which uses a 3 × 3 square kernel (first from the left), DCNv1 (second from the left) uses the
sampling offset to adjust the sampling position, and DCNv2 (second from the right) uses
the sampling weight to improve the detection accuracy. The first picture on the right is an
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example of a kernel with a sampling offset applied, which was the output after training in
DCEF2-YOLO.

Figure 4. Example of deformable convolution kernel operation. Unlike the existing convolution,
which utilizes a 3 × 3 square filter (first from the left), DCNv1.0 (second from the left) introduces
a sampling offset value to modify the sampling position, and DCNv2.0 (second from the right)
introduces a sampling weight that assigns a weight to each sampling point. The first picture on the
right is an example of a filter with a sampling offset applied, which was the output after training in
DCEF2-YOLO.

Deformable convolution (DFConv) was used to derive meaningful small object fea-
ture extraction in the YOLOv5 backbone. DCNv1 [16] presented the first deformable
convolution–deformable ROI (region of interest) pooling concept that utilizes a learnable
sampling offset. Deformable convolution obtains an offset value through additional kernel
training performed simultaneously with the existing kernel training and performs a trans-
formation of the sampling position of the kernel. Through this, it fits the object more closely
than basic convolution and becomes robust against geometric transformations. On the
other hand, even if a deformable offset is given, the sampling space may still deviate from
the area of interest. By DCNv2 [17], an additional sampling weight value is introduced
to compensate for this. The sampling weight is also obtained through additional kernel
training, where a large value is weighted if the sampled location significantly influences
learning the correct answer by belonging to the characteristics of the object, and conversely,
a small value is weighted. Deformable convolution can be confirmed by the following
formula.

Assuming a 3 × 3 kernel with a dilation of 1, the output feature map for each position
through a general convolution operation has the following values:

y(p) =
3×3

∑
k=1

ωk · x(p + pk) (1)

where pk = (−1, −1), (−1, 0), ..., (1, 1), which is the existing kernel sampling location; x
is the input feature map; y is the output feature map; ωk is the weight for each sampling
position. The output of the DCNv2 kernel reflecting the sampling offset and sampling
weight is as follows:

y(p) =
3×3

∑
k=1

ωk · x(p + pk + ∆pk) · ∆mk (2)

x(p′) = ∑q G(q, p′) · x(q), where p′ = (p + pk + ∆pk),
q enumerates all integral spatial locations in the f eature map x

(3)

∑
q

G(q, p′) = g(qx, p′x) · g(qy, p′y) , where g(a, b) = max(0, 1 − |a − b|) (4)

The DCNv2 kernel multiplies the output from p + pk + ∆pk, which reflects the sam-
pling offset ∆pk, by the sampling weight ∆mk, which is between 0 and 1. At this time, ∆pk
is a fractional value obtained through a bilinear interpolation kernel G(., .). The sampling
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offset and sampling weight are obtained through separate convolution training, and the
values of the 3K channels are finally output: 2K channels with learnable offsets in the x-
and y-directions and K channels with sampling weight scalar values that can be obtained
through a sigmoid function.

We use a DCNv2 kernel (DFConv in this paper) to derive meaningful small object
feature extraction from the YOLOv5 backbone. As shown in Table 2, when the DFConv
module was applied, the recall improved by 3.2%, and the classification precision and
mAP@0.5 improved by 3.3% and 2.2%, respectively. However, during the experiment,
we discovered that stable learning can be difficult in small object detection tasks if an
appropriate convergence direction is not found in the early stages of learning. This is
presumed to be derived from the fact that parallel training is performed using two kernels
(offset and existing feature extraction) simultaneously and that object information is lacking.
We confirmed that applying DFConv at the layer immediately before SPP after learning
enough about the input, rather than applying many DFConv modules, is the most stable
method and results in sufficient performance improvement. Table 3 presents a performance
comparison based on the location and number of DFConv modules. The backbone of
YOLOv5 consists of nine layers, excluding the input stage, as shown in Figure 2. The
labels (3), (5), and (7) in the table indicate the application positions of the DFConv module.
We applied one to three DFConv modules and compared their performance. In Table 3,
when one DFConv module was located in the (7) layer immediately before the SPP, the F1
score, which is an indicator of the precision–recall balance, was the highest, and the overall
performance was the best, so stable training and general-purpose application to new data
were possible. On the other hand, the model showed a tendency to diverge when three
layers were replaced.

Table 2. Ablation table: w/, w/o DFConv. Performance comparison table for applying the DFConv
module. The deformable convolution is effective for learning small object features.

Precision Recall mAP@0.5 mAP@0.5:0.95

w/o DFConv 0.629 0.590 0.626 0.364
w/DFConv 0.662 0.622 0.648 0.372

Table 3. Ablation Table 2: position of DFConvs. Performance comparison table of DFConv modules
by location. The most balanced performance improvement was achieved when one DFConv module
was located in the (7) layer immediately before the SPP.

Precision Recall mAP@0.5 mAP@0.5:0.95 F1 Score *

(3) DFConv 0.580 0.558 0.531 0.292 0.569
(5) DFConv 0.550 0.489 0.492 0.248 0.518
(7) DFConv 0.626 0.530 0.546 0.30 0.574

(3) (5) DFConv 0.648 0.464 0.526 0.293 0.526
(3) (7) DFConv 0.617 0.505 0.552 0.302 0.555
(5) (7) DFConv 0.538 0.485 0.492 0.277 0.510

* F1-score = 2
(1/Precision)+(1/Recall) .

3.2. Efficient-RepGFPN

We adopt the Efficient-RepGFPN structure, which performs sufficient feature map
fusion to make full use of the small object information extracted through the DFConv
module. Efficient-RepGFPN improves detection performance through sufficient inner
fusions between multi/same-scale feature maps, but this naturally leads to a large increase
in the amount of computation. Accordingly, we optimize the structure by reducing the neck
and detection head to suit real-time small object detection tasks. DCEF2-YOLO performs
detection using only one feature map that has undergone sufficient fusion, which efficiently
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detects small objects without imposing a computational burden compared to detection
with the three feature maps of the existing YOLOv5.

GFPN (Generalized-FPN) [46], the base of Efficient-RepGFPN, is a structure proposed
to compensate for the fact that FPN [47], PAFP [48], and BiFPN [49] only focus on the
fusion of feature maps of different resolutions and lack connections between internal layers.
A deep network was formed without significantly increasing computational complexity by
adjusting the shortest gradient distance through log2n-link. Moreover, it fuses all feature
maps from the current, previous, and subsequent layers through queen fusion by going
beyond the existing structure that only performs feature map fusion between the current
and previous layers. RepGFPN provides feature maps containing rich information to the
detection head through sufficient feature fusion but was limited in its use in real-time
applications. Therefore, DAMO-YOLO proposes Efficient-RepGFPN (called E-RGFPN),
which optimizes GFPN and improves its performance.

E-RGFPN improves GFPN in three aspects. (1) Adjustment of channel depth by scale:
GFPN unifies the channel depth of feature maps for each scale. In E-RGFPN, however,
higher performance was achieved at a flexible channel depth of (96, 192, 384) by considering
the trade-off between the channel depth for each scale and the fusion bottleneck width.
(2) Adjustment of the number of upsampling operators: The number of upsampling opera-
tors in the overall structure was adjusted, suggesting that the upsampling operation and
the corresponding connection layer do not significantly improve performance compared
to the delay time. (3) Fusion block improvement: Convolution-based fusion was replaced
with CSPNet [45], and re-parameterization and ELAN were applied like in YOLOv7 [50]
to improve the accuracy without increasing the inference cost. Re-parameterization [51,52]
optimizes the shared and task-specific weights through two convolutions. For task-specific
loss, only the relevant weights were optimized to reduce the interference between tasks,
and at the inference time, only shared weights optimized for joint indicators of interest were
used, allowing for general-purpose application to a wide range of data without increasing
the inference costs. ELAN [53] designed an efficient propagation path hierarchical aggrega-
tion structure by controlling the longest and shortest gradient paths, with the view that a
shorter gradient length indicates more powerful network learning. This solved the problem
of low convergence when expanding the network and amplified the usability of gradients.

DCEF2-YOLO uses only the medium-sized output feature map through E-RGFPN for
detection. Since the final output feature map that passes the backbone has a considerably
lower spatial resolution than the input, by combining it with a low-level feature map,
the information can be meaningfully utilized in a wider image unit at detection. At this
time, the size of the object that is mainly referenced and detected varies according to the size
of the feature map. The feature maps with small sizes and deep channels through several
layers mainly contribute to detecting large objects and learning the overall context of the
image. And the feature maps with relatively large sizes and shallow channels containing
the wide part of the image contribute to small object detection. Therefore, in some networks
for which primary purpose is small object detection, medium or larger object detection
layers are removed for efficient and intensive training [6,7].

In Figure 5, Efficient-RepGFPN finally outputs feature maps with three scales: s, m,
and l. In this case, the l-scale feature map has relatively less fusion between multi-scale
maps, and the s-scale feature map lacks information for small object detection because of
the loss of spatial dimension information during the resizing process. On the other hand,
for medium-sized feature maps, fusion between small- and large-sized feature maps is rela-
tively sufficient. The medium-sized feature map that is finally output after fusion reflects
high-level semantic information and low-level spatial information, so it will be useful on its
own for small object detection tasks. Accordingly, we reduced the neck structure to use only
the m-scale feature map for the real-time detection task, which ultimately made it possible
to utilize feature information at various levels without incurring a large computational
burden. Table 4 shows a comparison before and after application of Efficient-RepGFPN.
Compared to the case for which the structure was not applied, recall increased by 1.2% and
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mAP increased by up to 3.5%. And when comparing results by feature map sizes, it can be
seen that the m-scale feature map resulted in the best performance.

Fusion Block

C

Conv

Conv Rep 3x3 Conv

ConvC

+

xN

Rep 3x3

3x3
Conv

1x1
Conv

BN BN

3x3
Conv

BN

ACT

Effiient-RepGFPN

Backbone

Train Infer

Figure 5. Overall structure of Efficient-RepGFPN.

Table 4. Ablation Table 3: DFConv + E-RGFPN_(s, m, l). Comparison of the detection performance
by output feature map size of Efficient-RepGFPN to be used in the detection layer. DCEF2-YOLO
used the m-feature for detection because the detection rate, accuracy, and mAP were the highest with
a medium-sized feature map.

Precision Recall mAP@0.5 mAP@0.5:0.95

w/o E-RGFPN 0.662 0.622 0.648 0.372
w/E-RGFPN-s 0.610 0.520 0.668 0.385
w/E-RGFPN-m 0.709 0.634 0.683 0.403
w/E-RGFPN-l 0.667 0.532 0.630 0.365

3.3. Focus to Conv

YOLOv5 uses the focus module to adjust the size of network input images. The fo-
cus module expands the image from the spatial dimension to the depth dimension and
generates an image with an appropriate resolution and a deeper channel for convolution
operations. In this process, the image is divided into grid units and is processed, which can
cause information loss in small objects, similar to the patch embedding of the transformer
mentioned above. In YOLOv6 [54], the focus module was replaced with convolution-based
processing for faster computation on the GPU. According to [7], this change improves
small object detection model performance because during the training process, the cor-
responding input image processing convolution operation is also trained to improve the
detection performance. Figure 6 compares the focus module and the convolution-based
input preprocessing stage, and Table 5 compares the performance according to whether or
not the focus module was replaced. Considerable improvement in small object learning
performance was achieved.
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Figure 6. Input data processing comparison with Focus and Convolution.

Table 5. Ablation Table 4 (Input data processing). Input image processing through learning sig-
nificantly improves the performance of small object detection tasks compared to existing input
image processing.

Precision Recall mAP@0.5 mAP@0.5:0.95

Focus 0.5065 0.622 0.599 0.324
Conv 0.662 0.622 0.648 0.372

4. Experimental Results

In this study, we evaluated the comprehensive detection performance of DCEF2-YOLO
using DOTA and NWPU VHR-10, which are well-known aerial object detection benchmark
datasets, as well as the VEDAI dataset, which specifically focuses on small objects. Our
proposed model exhibited a mAP improvement of +6.1% compared to the baseline model
on the DOTA-v1.0 test set, +1.5% on the VEDAI512 test set, and +0.3% on the NWPU
VHR-10 test set. Using a GeFore RTX 3090, the network had a detection speed of 120.48 FPS
on 512 × 512 images, confirming its suitability as a real-time small object detection model
for aerial images. DOTA and VEDAI image results are compared with the results of training
each aerial dataset on YOLOv7, which is widely recognized as a superior object detector
in terms of speed and accuracy. Furthermore, through inference on the NWPU VHR-10
test set, we conducted a comparison between the detection results and the ground truth
and analyzed the detection performance of the proposed network.

4.1. DOTA

DOTA is a large-scale dataset for object detection in aerial images [10], consists of
images collected by Google Earth, GF-2, and JL-1 satellites, and is provided by the Chinese
Center for Resources for Satellite Data and Applications. The dataset contains objects
of various sizes, orientations, and shapes and consists of RGB images and gray-scale
images with various resolutions ranging from 800 × 800 to 20,000 × 20,000 pixels. DOTA
provides oriented and horizontal bounding box annotation and is currently available in
three versions: DOTA-v1.0, v1.5, and v2.0.

The proposed model was evaluated on the DOTA-v1.0 (HBB) dataset. For fair verifi-
cation, Table 6 shows a comparison using the same settings as Tian et al. [39]. The DOTA
dataset is utilized for training by dividing it into patches due to its irregular and very large
image size. All images were divided into patches with a size of 1024 × 1024 and with an
overlap range of 200 pixels, and 10,000 patches were randomly selected and divided at a
ratio of 7:1:2 and used as training, validation, and test sets, respectively. Training lasted
for 150 epochs. The dataset consisted of 15 classes: plane (PL), baseball diamond (BD),
bridge (BR), ground track field (GTF), small vehicle (SV), large vehicle (LV), ship (SH),
tennis court (TC), basketball court (BC), storage tank (ST), soccer ball field (SBF), round-
about (RA), harbor (HA), swimming pool (SP), and helicopter (HC). Figure 7 is an example
of detection results for the DOTA test set.
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(a) Ground truth (b) YOLOv7 (trained with DOTA) (c) Ours

Figure 7. Detection results comparison using the DOTA dataset. While YOLOv7 frequently exhibits
false detections, non-detections, and misclassifications, the proposed network consistently delivers
accurate detection results.



Remote Sens. 2024, 16, 1071 13 of 22

Table 6. DOTA-v1.0 test results (10,000 image patches selected randomly). This shows that the
relatively low large object detection performance has been greatly complemented by small- and
medium-sized object detection performance and proves that the proposed model can be effectively
applied to small- and medium-sized object detection tasks and shows good performance.

Method GFLOPs mAP@0.5 mAP@0.5:0.95 APval
S APval

M

YOLOv3 154.8 59.4 38.7 14.0 34.2
YOLOv3-Spp 156.6 60.3 39.0 15.6 34.3
YOLOv4-Csp 119.1 60.3 39.6 15.6 34.2
YOLOR-Csp 107.9 60.0 39.6 16.6 34.1

YOLOv5l 108.7 59.9 40.0 14.5 33.8
YOLOv5-Bifpn 15.7 58.1 36.4 12.8 31.4

YOLOv5s-Transformer (7.0) 119.1 61.8 40.4 15.1 34.7
YOLOv6l 156.6 60.0 40.1 15.8 35.8
YOLOv7 103.4 60.0 40.0 15.9 34.4

DCN-YOLO [39] 98.4 63.4 41.9 20.1 36.4

DCEF2-YOLO 96.4 69.5 45.8 23.6 46.6

Table 6 compares the performance of the proposed model with the SOTA model DCN-
YOLO announced in July 2023 and other YOLO-based models. DCEF2-YOLO showed
improved performance by mAP@0.5 +6.1% and mAP@0.5:0.95 +3.9% with the lowest com-
putational cost (from -2 GFLOPs up to -60.2 GFLOPs). This proves that DCEF2-YOLO
has successfully achieved low computation and high detection performance through ap-
propriate optimization and combination of each structure and module. Furthermore,
the verification results were compared according to the object size. Similar to the COCO
benchmark method, the results were divided into small- and medium-sized objects of
32 × 32 pixels and 96 × 96 pixels, respectively, and AP values were calculated for each size.
The proposed model, which focuses on improving the performance of small object detection
in aerial images, showed significantly improved performance in APS and APM, which are
small and medium object detection results, respectively. This proves that the proposed
model can be effectively applied to aerial detection tasks and shows good performance.

Table 7 compares the results of sufficient training for 300 epochs by class for all patches
rather than 10,000 patches to verify the scalability of the proposed model. Compared to the
training results of 150 epochs on 10,000 randomly selected patches in Table 6, mAP@0.5
showed an improvement of +14.2% to 83.7mAP@0.5. This is similar performance to the
DOTA-v1.0 benchmark model. Therefore, DCEF2-YOLO can bring about a clear perfor-
mance improvement after sufficient training with a sufficient dataset. And for inference
purposes, Figure 8 is an example of detection results for the entire image rather than a
patch image. It can be observed that the proposed network consistently delivers more
stable detection results compared to YOLOv7.

Table 7. DOTA-v1.0 test results (all image patches). The detection performance will be improved if
sufficient training is performed with sufficient data.

All (%) PL BD BR GTF SV LV SH

Precision 89.7 97.9 91.1 82.3 91.0 89.5 94.9 95.5
Recall 80.2 86.7 82.0 80.6 47.9 85.8 94.0 90.5

mAP@0.5 83.7 92.7 86.2 82.8 54.2 86.5 95.8 91.2
mAP@0.5:0.95 60.9 73.9 58.7 50.0 33.2 62.8 79.5 73.5

TC BC ST SBF RA HA SP HC

Precision 98.1 92.9 91.5 65.5 84.4 90.6 85.6 94.9
Recall 98.6 90.5 90.9 31.6 79.6 76.3 89.0 79.5

mAP@0.5 99.4 92.4 92.6 40.8 82.6 84.2 90.4 84.0
mAP@0.5:0.95 92.5 79.3 67.1 20.9 53.5 57.4 51.4 59.8
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(a) YOLOv7 (trained with DOTA) (b) Ours

Figure 8. Detection results comparison on whole images in the DOTA test set for inference. These
are comparison of detection results on entire images, not on the patch-wise images used for training.
It can be observed that the proposed network consistently delivers more stable detection results
compared to YOLOv7.
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4.2. VEDAI

VEDAI is a dataset for vehicle detection in aerial images [32] and provides RGB and
IR image sets that are 512 × 512 and 1024 × 1024 in size. Each consists of approximately
1200 images, and a 512 × 512 RGB set was used to verify the performance of the proposed
model. Each image has a spatial resolution of 25 cm at 512 × 512 and contains 3757 small
instances from 8 to 20 pixels in width. The dataset was divided at a ratio of 8:1:1 for
training, validation, and test sets, respectively. The dataset includes nine classes: car,
truck, pickup, tractor, camper, boat, van, plane, and other instances. Table 8 compares the
performance with YOLO-based models, and Table 9 compares the detection performance
by class with [6,7,55], which were also proposed for aerial object detection.

Table 8. VEDAI512 test results.

Method Precision Recall F1 Score mAP@0.5 mAP@0.5:0.95 GFLOPs

YOLOv5l 50.3 64.4 56.5 52.5 27.6 115.6
YOLOv5x 64.0 52.7 57.8 55.9 30.8 219.0

YOLOR-Csp 20.2 47.2 28.3 31.4 19.5 120.6
YOLOR-Cspx 23.9 56.1 33.5 34.7 21.1 222.4

YOLOX-l 28.7 49.1 36.2 55.6 28.8 155.6
YOLOX-x 21.2 59.9 31.3 53.4 26.6 281.9

ECAPs-YOLOv5l 64.6 51.4 57.2 56.0 31.5 122.1
ECAP-YOLOv5l 71.6 52.9 60.8 58.7 34.5 132.4

YOLOv7 - - - 61.1 - -
SuperYOLO - - - 63.1 - -

BiCAM-Detector [55] - - - 63.8 - -

DCEF2-YOLO 74.0 60.0 66.3 65.3 37.2 96.4
DCEF2-YOLO (500ep val) 72.1 67.2 69.6 68.6 42.3 96.4

Table 9. VEDAI512 test results per class.

Method All(%) Cars Trucks Pickups Tractors Campers Boats Vans Planes Others

avg. pixels 237 546 309 936 323 308 416 - 588

YOLOv5l 52.5 79.5 43.3 66.2 63.2 53.3 26.4 45.1 63.4 32.1
YOLOv5x 55.9 83.6 59.4 67.6 62.8 49.8 24.3 53.5 61.5 40.7

ECAPs-YOLOv5l 56.0 85.5 40.4 74.8 61.8 54.7 32.7 39.8 90.1 23.9
ECAP-YOLOv5l 58.7 85.6 52.0 77.0 62.7 50.3 35.0 47.8 91.0 27.2

YOLOv7 61.1 72.6 59.5 48.6 60.1 69.3 57.8 21.7 98.7 -
SuperYOLO 63.1 76.9 51.5 56.8 59.7 74.8 52.9 34.6 97.5 -

BiCAM-Detector 63.8 82.1 44.5 58.2 57.4 82.6 55.1 31.3 99.5 -

DCEF2-YOLO 65.3 92.2 52.2 81.2 80.3 62.8 49.4 72.7 63.6 33.3

In Table 8, DCEF2-YOLO showed the best balance between detection rate and accuracy
(F1 score) and the highest detection rate and mAP compared to the comparison models.
In particular, compared to YOLOv7, there was a 12.1% improvement in detection rate and
a 25.4% improvement in mAP. Additionally, when compared to the model proposed for
small object detection [55] in June 2023, there was a mAP improvement of 1.5%. And the
computational amount was also 36 GFLOPs lower than the YOLOv5-based small object
detection comparison model and 7.1 GFLOPs lower than YOLOv7. YOLOv7 has superior
processing speed among object detectors, and with the VEDAI dataset, it has a processing
speed of 88.49 FPS. However, DCEF2-YOLO has a processing speed of 120.48 FPS. This
means that 31.99 more images per second can be processed with the proposed method
with high performance even with higher efficiency. Figure 9 is an comparison of detection
results on VEDAI test set. By comparing the results with YOLOv7, it is evident that the
proposed network exhibits significantly more stable and accurate detection of small objects.
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(a) Ground Truth (b) YOLOv7 (trained with VEDAI) (c) Ours

Figure 9. Comparison of detection results with VEDAI. YOLOv7 frequently causes non-detection and
misclassification in complex images, while the proposed network outputs more appropriate detection
results. Additionally, YOLOv7 has an overall lower score for each detected object than the proposed
network, making it less reliable. This proves that the proposed network is better optimized for small
object detection tasks than YOLOv7, which was proposed for a variety of tasks.

4.3. NWPU VHR-10

The NWPU VHR-10 dataset [37] comprises 800 high-resolution remote sensing images
collected from Google Earth and Vaihingen that have been annotated manually by experts.
It provides 650 labeled images and 150 negative images without objects, with images having
widths ranging from around 400 to 1000 pixels. It contains 3775 instances with widths and
heights ranging from around 20 to 400 pixels and primarily consisting of medium-sized
objects. We utilized NWPU VHR-10 for experimentation to verify the scalability of the
network and for comprehensive performance analysis. We split the 650 labeled images into
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a ratio of 8:2 for training and testing, respectively. The dataset consists of 10 classes: airplane
(AP), ship (SH), storage tank (ST), baseball diamond (BD), tennis court (TC), basketball
court (BC), ground track field (GT), harbor (HA), bridge (BR), and vehicle (VE).

The proposed network achieved a precision of 90.7% and a mAP@0.5 of 94.7% at a
recall of 93.1%. Furthermore, even with a relatively lower recall of approximately 89.3%,
the mAP@0.5 increased to 95.7%. We compared the performance of the first training result,
which achieved sufficiently high recall, with recent aerial image-based detection networks.
Table 10 compares the detection performance on the NWPU VHR-10 test set. The proposed
network exhibited a mAP 0.3% higher than the top-performing MSCCA [56] among the
comparison networks, +0.6% compared to DS-YOLOv8 [57], which was proposed in 2023,
and +1.3% compared to SuperYOLO [7], which was proposed in 2022.

Table 10. Comparison of NWPU VHR-10 test results.

Method mAP@0.5

MSF-SNET [58] 82.4

CBFF-SSD [59] 91.4

SuperYOLO [7] 93.3

DS-YOLOv8 [57] 94.1

MSCCA [56] 94.4

DCEF2-YOLO 94.7

Table 11 compares the detection performance class-wise. The highest values are
highlighted in bold, and the second-highest values are underlined. Despite most objects
being medium-sized or larger, the proposed network consistently exhibits high detection
performance among the compared networks, achieving mAPs exceeding 90% for all classes
except VE.

Table 11. NWPU VHR-10 test results per class. The detection performance for NWPU VHR-10 is
compared class-wise. The highest values are emphasized in bold, and the second-highest values are
underlined. It can be observed that the proposed network consistently demonstrates high detection
performance among compared networks.

Method All (%) AP SH ST BD TC BC GT HA BR VE

MSF-SNET 82.4 93.5 92.2 58.8 97.9 65.1 79.5 94.7 75.6 91.4 75.5
CBFF-SSD 91.4 96.9 94.3 81.0 99.1 91.5 92.6 98.8 91.6 89.7 78.8
MSCCA 94.4 99.7 90.4 90.8 90.8 90.8 98.6 98.3 90.3 88.2 98.3

DCEF2-YOLO 94.7 99.6 92.9 97.3 95.6 97.3 98.4 93.9 93.4 92.1 86.7

Figure 10 shows the inference images for NWPU VHR-10, while Figure 11 specifically
focuses on the inference images for the VE class. Here, we were able to identify the reason
for the relatively low mAP of the proposed network for VE through the inference images.

Figure 11 depicts the detection of unlabeled vehicles that are partially visible in
the image. This indicates that objects were detected even when only a portion of them
was visible, showcasing the network’s effective utilization of internal object information.
Such instances were particularly common, especially in the VE class. In other classes,
it was observed that the proposed network often produced bounding boxes that better
fit the objects compared to the ground truth bounding boxes. This issue stems from
the limitations of manually labeled datasets and potentially impacts numerical detection
performance metrics like recall and mAP. However, these results ultimately affirm the
proposed network’s capability to accurately detect objects even in situations where feature
information is lacking.
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(a) Ground Truth (b) Ours

Figure 10. Detection results with the NWPU VHR-10 test set.
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(a) Ground Truth (b) Ours

Figure 11. Some comparison examples of detection results. When comparing the ground truth (GT)
images on the left and the results on the right in rows 1 and 2, it is observed that objects that were
partially visible and thus not labeled previously were detected. In row 3, it can be seen that the
proposed network frequently outputs bounding boxes that better fit the shape of objects compared to
the GT bounding boxes. While this may have a negative impact on numerical performance metrics,
it ultimately demonstrates the proposed network’s capability to accurately detect objects even in
scenarios where feature information is lacking.
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5. Discussion and Conclusions

This paper proposed DCEF2-YOLO for effective real-time small object detection in
aerial images. The DFConv module was appropriately applied to learn small objects with
fewer pixels and low resolution, effectively enabling intensive learning of small object areas.
The Efficient-RepGFPN neck is optimized to output only medium-sized feature maps,
ultimately enabling ‘real-time’ detection. This also provides high-quality feature maps
to the detection layer, effectively improving performance. The convolution-based input
stage also contributes to faster computation and improved performance. Thus, several
techniques suitable for ‘real-time’ ‘small’ object detection tasks are optimized and applied
appropriately to DCEF2-YOLO so that we successfully achieved our goal. DCEF2-YOLO
showed good performance at the SOTA level on aerial object detection benchmark sets such
as DOTA, VEDAI, and NWPU VHR-10 and showed the possibility of expansion to various
detection tasks. DCEF2-YOLO is expected to be applied to embedded systems and to be
effectively utilized in various industrial environments, such as real-time traffic monitoring
and military reconnaissance.
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