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Abstract: With the continuous emergence and development of 3D sensors in recent years, it has
become increasingly convenient to collect point cloud data for 3D object detection tasks, such as the
field of autonomous driving. But when using these existing methods, there are two problems that
cannot be ignored: (1) The bird’s eye view (BEV) is a widely used method in 3D objective detection;
however, the BEV usually compresses dimensions by combined height, dimension, and channels,
which makes the process of feature extraction in feature fusion more difficult. (2) Light detection
and ranging (LiDAR) has a much larger effective scanning depth, which causes the sector to become
sparse in deep space and the uneven distribution of point cloud data. This results in few features
in the distribution of neighboring points around the key points of interest. The following is the
solution proposed in this paper: (1) This paper proposes multi-scale feature fusion composed of
feature maps at different levels made of Deep Layer Aggregation (DLA) and a feature fusion module
for the BEV. (2) A point completion network is used to improve the prediction results by completing
the feature points inside the candidate boxes in the second stage, thereby strengthening their position
features. Supervised contrastive learning is applied to enhance the segmentation results, improving
the discrimination capability between the foreground and background. Experiments show these new
additions can achieve improvements of 2.7%, 2.4%, and 2.5%, respectively, on KITTI easy, moderate,
and hard tasks. Further ablation experiments show that each addition has promising improvement
over the baseline.

Keywords: point cloud; 3D object detection; feature fusion; segmentation; contrastive learning

1. Introduction

The continuous emergence and development of 3D sensors have made it increasingly
convenient to collect point cloud data in recent years. The growing interest in autonomous
driving [1] and intelligent robots [2–6] in academia and industry emphasizes the signif-
icance of point cloud processing and 3D scene understanding. Utilizing 3D point cloud
semantic segmentation technology enables accurate recognition of objects such as pedestri-
ans, roads, and cars in natural road environments, ensuring safe operations on highways [5].
Point cloud technology in the 3D space preserves the original geometric information and
has extensive applications in computer vision and robotics. The application of deep learn-
ing gains a lot of attention due to its superior performance in structured data tasks, such
as classification, detection, and segmentation [7,8]. Researchers in computer vision [9–12],
robotics, and other fields have recognized the potential of deep learning in analyzing and
processing unstructured point cloud data.
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Generally, researchers divide point cloud object detection into two major categories:
regional proposals and single-shot methods, which are commonly known as two-stage
and one-stage methods, respectively [1]. Presently, one-stage methods are mainly used
in the industry for real-time performance. Correspondingly, two-stage methods have the
advantage of high accuracy and precise regression. Two-stage methods are employed as
the primary approach in numerous accuracy-oriented tasks, disregarding the speed factor.
Two-stage methods have evolved into a well-established system within point cloud object
detection methods.

In two-stage methods, multi-view strategies are traditional 3D information processing
methods. Multi-view strategies mix feature information from various view models, such
as the LiDAR view and bird’s eye view (BEV) [5,13,14], to generate 3D rotated bounding
boxes. On the one hand, performing fusion prior to inference is an obvious method, like
AVOD [2]; on the other hand, fusing multiple models can effectively separate a single mode
to reduce computing costs. Qi et al. [15] designed a scheme that applies 2D object detection
to point cloud space. Liang et al. [16] show that a neural network can hierarchically mix
various models to transform models easily in each layer, which leads to a new fusion.
Recently, researchers have been exploring new forms of data. Based on the different data
utilization methods, point cloud-based technology can be categorized into three main
types: projection-based, voxel-based, and non-fusion point cloud data. Projection-based
methods project point cloud data into images, such as bird’s-eye-view projection (BEV),
and encode them to form 3D candidate boxes [5,13,17,18]. Encoding methods may be
different, but they all share the common objective of minimizing the impact of messages in
data. Voxel-based convolution is a method of displaying objects or environments in the
form of a 3D grid or voxel, which can clearly present the shape information of objects as
each voxel has unique properties, such as binary occupancy or continuous point density.
VoxelNet [10] is the most classic voxel method. Vote3Deep [6] employs an innovative sparse
convolution [19,20] operator to generate convolution layers through feature-based voting.
This approach significantly reduces the computational burden of 3D data models, simplifies
the computation process, and enhances efficiency. PointNet [21,22] and PointNet++ [23]
are representative methods that directly use the original cloud data.

Segmentation-based methods are common measures with two stages to efficiently
eliminate background points and generate high-quality proposals, consequently reducing
computational expenses. Compared with traditional multi-view technologies [2,21,24],
segmentation-based technology can more effectively capture complex scenes, especially in
enclosed environments with crowded objects. PointPainting [25] projects LIDAR points
onto the output of an image semantic segmentation network and assigns classification
scores to each point. PointRCNN [26] primarily leverages the PointNet++ network for
foreground–background segmentation, thereby enhancing the detection efficiency.

One-stage methods can be divided directly by the type of input data of the BEV view
or point cloud. PIXOR [27] can print input data on point data under the same scale. PIXOR
is widely used in various overlooking scenes by decoding reflections to summarize a set
of regular calculations of input data. SECOND [28] extends VoxelNet by using sparse
convolution to reduce the amount of calculation. Recently, researchers have proposed
many mixed methods and achieved profound results: VoteNet [29] combines vote and
point cloud object detection; ImVoteNet [30] extracts 2D and 3D feature information to vote
better; and Part-A2 [31] combines voxel convolution and semantic segmentation.

The past two years have witnessed the emergence of hybrid methodologies and innova-
tive approaches. In 2019, Qi et al. introduced VoteNet [30], a novel approach that synergizes
traditional voting mechanisms with point cloud detection. This method is designed to
generate 3D candidate bounding boxes of a superior quality, significantly enhancing the
effectiveness of voting for virtual centroid points of objects within point clouds. Building
upon this, in 2020, a groundbreaking voting pipeline named ImVoteNet [32] was proposed.
This pipeline ingeniously merges 2D object detection cues with 3D voting mechanisms,
aiming to substantially improve the efficiency and accuracy of the voting process.
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Based on the above introduction, it is evident that there are still several problems in
point cloud detection, particularly in the following aspects. Compressing the dimensions
of point clouds into the bird’s eye view (BEV) is a commonly used method to save compu-
tational costs. However, this dimension reduction makes it more difficult to extract spatial
and semantic features from point clouds. Extracting the required features from the BEV
and effectively fusing features at different scales presents challenges. Point clouds consist
of discrete points, making it difficult to form significant features when dealing with small
objects like pedestrians. Additionally, as the scanning process goes deeper into the point
cloud data, the laser beams become increasingly sparse, leading to a lower density of points
in distant areas. This introduces a challenge similar to that encountered with small objects.
Furthermore, due to the directional nature of the laser emission source, the distribution of
captured points in areas facing towards and away from the source is uneven. These defects
are illustrated in Figure 1, where (a) and (b) demonstrate the uneven distribution of object
surface point clouds due to the scanning direction and angle, resulting in an incomplete
representation. Figure 1c represents the sparsity of points in areas with greater depth.

(a) (b) (c)

Figure 1. Semantic segmentation based on supervised contrastive learning: (a) uneven point cloud
distribution; (b) incomplete point cloud representation; (c) Sparse point cloud representation.

We have further enhanced the baseline neural network architecture, which primarily
comprises spatial–semantic feature aggregation (SSFA), supervised contrastive learning
(SCL), and a point completion network (PCN). This improvement targets the prevailing
technical challenges and aims to diminish the issues previously mentioned. Our specific
focus is on the deep integration of spatial and semantic features, along with the fusion
of both shallow and deep features within the backbone network. Such integration is
designed to overcome the complex feature-related challenges introduced by bird’s eye view
(BEV) representations. Furthermore, we have developed a specialized module, positioned
subsequent to the multi-heads, that concentrates more effectively on sparse and unevenly
distributed points.

The primary content of this dissertation is structured as follows:

• In Section 1, we delve into the current state of research in 3D point cloud object de-
tection, identifying key challenges in the field. One notable issue is the difficulty of
feature extraction when using bird’s eye view representations. Furthermore, we dis-
cuss the limitations posed by the uneven data distribution in point clouds, exacerbated
by the significant scanning depth of light detection and ranging (LiDAR) technology.
This leads to sparser data in deeper space sectors, challenging the effectiveness of
existing detection methods.
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• Section 2 provides a comprehensive overview of our proposed network. We introduce
a detailed schematic of the network structure, focusing on its innovative components:
the SSFA, SCL, and PCN modules. Each element is meticulously described, illustrating
its specific role and contribution to enhancing the network’s performance in 3D object
detection tasks.

• In Section 3, we present the experimental framework, outcomes, and a detailed analy-
sis of our research. The KITTI dataset serves as the primary basis for our experimenta-
tion. We conduct extensive comparative and ablation studies to validate the feasibility
and effectiveness of our proposed model. Through these methodologies, our objective
is to elucidate the capabilities of the model and explore its applicability in practical,
real-world environments.

2. Method
2.1. Architecture

The overall framework is depicted in Figure 2. The red parts are the modules we
proposed in the network. The algorithm’s entire process is primarily divided into the
following steps. Firstly, a 3D backbone network is constructed using VFE and U-Net
to generate voxel features. Subsequently, these feature data are split into two branches.
On one hand, they are fed into the Point Head for semantic segmentation and internal
location prediction. During semantic segmentation, an additional branch randomly samples
32,000 voxel points, extracting 256 positive and 256 negative samples, which are then
utilized for supervised contrastive learning. The loss function associated with this process
is combined with the segmentation loss function.
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Figure 2. Enhanced model based on auxiliary features.

On the other hand, after applying a bird’s eye view (BEV) transformation to the voxel
features, they are input into a 2D backbone network [33]. This step encompasses BEV
feature extraction through spatial–semantic feature aggregation and the fusion of spatial
and semantic features. Subsequently, the extracted two-dimensional features are directed
into the Region Proposal Network (RPN) to generate candidate boxes and advance to the
second stage.

In the second stage, following RoI-aware pooling, the internal location predictions from
the Point Head undergo PCN point completion, followed by Farthest Point Sampling (FPS)
and Multi-Scale Grouping (MSG). These predictions are then fused with other features and
fed into a fully connected network for classification and regression operations, as depicted
in Figure 2. It is noteworthy that since this module is used to enhance auxiliary features
and the encoding format is in a voxel form, fine-grained results are not necessary. Instead,
coarse-grained outcomes are directly outputted, which also contributes to conserving
computational resources.
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2.2. Spatial–Semantic Feature Aggregation

The SSFA [34] technique excels at adaptively combining abstract deep-layer features
with shallow spatial features. After compression though the BEV, the fusion of depth and
channel features results in difficulty in extracting spatial and semantic features. And it is
also important to consider how to better extract low-level spatial features and high-level
abstract semantic features from BEV images and effectively integrate them. Through this
method, we can predict bounding boxes and classification confidence more accurately.
Specifically, the dimension of the spatial features remains consistent with the input to avoid
a loss of spatial feature information. With the convolution neural networks, spatial features
can be a guide to reduce the height and width by half while doubling the number of chan-
nels. This process is repeatedly carried out to refine the feature representation. Following
this, two distinct deconvolution processes are employed to regain dimensions comparable
to the original spatial features. The networks then leverage additional convolution and
concatenation operations, facilitating a deeper integration and fusion of the extracted fea-
tures. This approach underscores the intricate balance between dimensionality reduction
and feature integration for effective feature representation in neural network architectures.

As depicted in Figure 3, the process of feature fusion involves a series of steps. Ini-
tially, the channels of each feature are condensed into a single channel, followed by the
compressed results. Subsequently, this combined output undergoes normalization with the
softmax function. These normalized data are then partitioned into two distinct BEV atten-
tion maps. In the final stage, these BEV attention maps serve as the weighting mechanism
for each feature. The features, once weighted, are aggregated, culminating in the effective
fusion of semantic and spatial features. This methodology underscores the intricate process
of integrating diverse feature sets to enhance the representational capacity of the neural
network in interpreting both semantic and spatial dimensions.

+

Concat Softmax





+

BEV 

inputs

Group of Sqatial Feature Group of Semantic Feature

Conv333

Conv333

Conv333 Conv333 Conv333

Conv333

Conv333

Conv333

+ Addition  Multiplication

Figure 3. The overall framework of SSFA.

2.3. Supervised Contrastive Learning for Semantic Segmentation

In autonomous driving contexts, 3D objects are segmented by annotated 3D bounding
boxes, which clearly delineate the object’s location and dimensions while offering semantic
masks that provide critical information about the point distribution within these 3D objects.
This suggests that the relative position of each foreground point is determined by its
proximity to the centroid of its respective bounding box. Addressing this, under the 3D
ground truth bounding box supervision, a semantic segmentation network is integrated
into the heads in the Part-A2 framwork. This integration aims to enhance the prediction of
precise internal positional data of detected objects.

When dealing with discrete point clouds, particularly in representing small objects
like pedestrians, features are not prominent. This issue is particularly evident in the context
of LiDAR data used in autonomous driving and other applications. As the depth from the
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LiDAR sensor increases, the density of the laser-emitted fan-shaped scan area decreases,
resulting in a sparser distribution of data points. This phenomenon is more pronounced
at deep distances, where the number of points representing distant objects significantly
diminishes. Furthermore, the inconsistency in point distribution is exacerbated by the
orientation and directionality of the LiDAR emission source, leading to non-uniform point
coverage on the surfaces of the detected objects. Such uneven distribution poses challenges
in accurately representing and interpreting these objects in 3D space. These issues are
illustrated in Figure 1. Panels (a) and (b) demonstrate the uneven distribution of point
clouds on object surfaces due to scanning directions and angles, resulting in incomplete
object representations. Panel (c) highlights the problem of point sparsity in areas with a
greater depth, leading to a similarly incomplete representation.

In scenarios where point clouds exhibit inherent limitations, such as a sparse or uneven
distribution of target points leading to inadequate feature distinction, enhanced supervision
methods [35] can be adopted to refine semantic segmentation. This approach not only
enhances the quality of segmentation but also enables a more precise localization of the
internal centers of foreground points. Furthermore, the attributes of contrastive learning
render it particularly effective for binary semantic segmentation tasks. This method works
by minimizing the distance to positive samples and maximizing the distance to negative
samples, thereby improving the discrimination of the segmentation model. The inherent
segmentation properties of point cloud labels offer an opportunity for self-supervised
learning. This leverages the intrinsic characteristics of the data for improved segmentation
accuracy, especially in challenging environments where traditional methods might fall
short. Therefore, the SCL method would be introduced during image segmentation, which
is shown in the red box in the upper right corner of Figure 2. SCL is shown in Figure 4.

internal position 

prediction

semantic 

segmentation

supervised 

contrastive learning

3D voxel 

features

point_part_loss

point_cls_loss

point_scl_loss

point_loss

Figure 4. Semantic segmentation based on supervised contrastive learning.

In the proposed approach, we enhance the effectiveness of semantic segmentation by
augmenting the conventional classification loss with a supervised contrastive loss. This
additional loss component is designed to refine the segmentation process by improving
the differentiation capabilities of the model. The integration of supervised contrastive loss
operates in tandem with the traditional classification loss, collectively contributing to a
more robust and accurate segmentation outcome. The formulation of this combined loss
function is delineated as follows [36]:

Lsup
out = ∑

i∈I
Lsup

out,i = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑a∈A(i) exp(zi · zp/τ)
(1)

Here, for every sample i, P(i) is the set of its positive samples, |P(i)| is the number of
positive samples, p is one of the positive samples, A(i) is the set of negative samples, a is
one of the negative samples, and τ is a hyperparameter about temperature.
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2.4. Point Completion Network

In light of the challenges identified in the preceding section, specifically the uneven
distribution and sparsity of target points within point cloud data, we introduce a novel
deep learning-based solution aimed at rectifying these data deficiencies. This solution
involves the deployment of an encoder–decoder network architecture that facilitates the
direct transformation of incomplete point clouds into their completed forms. This process
is realized through the implementation of the PCN [37], a specialized network designed
initially for the direct processing and completion of point cloud data. This paper extends
the functionality of the PCN beyond its original scope, enabling completion at the voxel
level. This advancement represents a significant enhancement in the network’s capability
to reconstruct detailed and comprehensive point cloud data from partial inputs. The
methodology and workflow of the original point cloud network, as applied in this context,
are illustrated in Figure 5. This figure provides a visual representation of the network’s
process, from the initial input of incomplete point cloud data to the final output of a fully
realized point cloud.
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Figure 5. Basic process of dot completion network.

The point completion network (PCN) is structured as an encoder–decoder network,
designed to process point cloud data. In this architecture, the encoder intakes a point cloud,
denoted as X, and maps it to a k-dimensional feature vector. Subsequently, the decoder
takes this k-dimensional feature vector and reconstructs coarse (Ycourse) and fine (Ydetail)
granularity types of point clouds. The network’s training is governed by a loss function,
which quantifies the deviation between a benchmark point cloud and the encoder’s output.
This is then utilized for network optimization via backpropagation. A distinctive aspect of
the PCN, setting it apart from traditional autoencoders, is its lack of compulsion to preserve
input points in its output. Contrarily, the PCN is engineered to learn a transformational
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projection from a space characterized by local observations to a space encapsulating com-
plete shape representations. The formulation of the loss function, which is integral to this
learning process, is articulated as follows:

l(Ycourse, Ydetail , Ygt) = d1(Ycourse, Ỹgt) + α × d2(Ydetail , Ygt) (2)

Here d1 and d2 are the functions to measure the distance of output Ycourse, Ydetail , which
are balanced by α. The point completion network is utilized as an auxiliary module in
the model, rather than as the main backbone. Placed after the global pooling step, the
module is oriented more towards the extraction of global features than local ones. It is also
important to note that the computational cost of fine-grained features is a non-negligible
factor. Hence, the weighting factor α is set to a lower value in practical implementation.

3. Experimental Setup and Results Analysis
3.1. KITTI Dataset Introduction

In this research, we aim to evaluate the efficacy of our proposed algorithm in the
context of point cloud detection. The KITTI dataset, renowned for its extensive use and
prominence in the autonomous driving domain, is chosen for our experimental analysis.
KITTI is a real-image dataset, which covers a variety of scenes, including urban, rural, and
highway scenes, featuring images with up to 15 vehicles and 30 pedestrians, alongside
varied depth occlusions and truncations. The dataset encompasses 389 stereo images and
optical flow maps, 39.2 km of visual odometry sequences, and over 200,000 3D annotated
objects [38], all captured at a 10 Hz sampling rate and synchronized. Classified primarily
into categories like ‘road’, ‘city’, ‘residential’, ‘campus’, and ‘person’, the dataset is further
detailed for 3D object detection with labels for cars, vans, trucks, pedestrians (including
sitting), cyclists, trams, and miscellaneous. The KITTI dataset offers a comprehensive
platform for testing in realistic autonomous driving scenarios. Our study primarily focuses
on the detection of three key object categories prevalent in most point cloud datasets within
the realm of autonomous driving: cars, cyclists, and pedestrians. This selective approach
aligns with the typical object detection tasks encountered in autonomous driving road
scenarios and provides a focused framework for assessing the algorithm’s performance in
detecting these specific object types.

The training and test files of the KITTI dataset primarily comprise four components:
two-dimensional RGB image files (image), three-dimensional point cloud binary files (velo-
dyne), camera calibration matrix files (calib), and label files (label). Figure 6a showcases an
example of a two-dimensional RGB image file from the KITTI dataset. Figure 6b,c illustrate
the visualization of the three-dimensional point cloud binary file, which corresponds to the
RGB image above. The visualization includes (b) the point cloud from an oblique angle
and (c) a visualization from another perspective.

The training and test files in the dataset consist of 7481 image samples in the train file
and 7518 image samples in the test file. However, due to reasons such as missing labels in
the test file, this paper follows the official random division method, dividing the files in
train into 3712 training sets and 3769 test sets. The experimental accuracy of this paper will
be tested on the test set.
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(b)

(c)

(a)

Figure 6. Visualization of 3D point cloud binary files from another angle: (a) example of RGB image
files from the KITTI dataset; (b) visualization of 3D point cloud binary files from a general oblique
angle; (c) visualization of 3D point cloud binary files from another angle.

3.2. Evaluation Metrics

In the realm of point cloud detection, the integration of RGB images, RGB-D depth
images, and laser-generated point clouds facilitates the classification of objects along with
the determination of their dimensions (length, width, height) and rotational angles in a
three-dimensional context. The model’s accuracy is quantifiably assessed by constructing
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a confusion matrix based on a binary classification system that delineates the accuracy
and errors in inspecting specific item types. This approach employs several key technical
indicators, such as the precision–recall curve for qualitative accuracy analysis and the
average precision (AP) metric for a quantitative assessment, as per reference [39]. Further-
more, Average Orientation Similarity (AOS) serves as a crucial indicator in the orientation
detection of objects, comparing detection results with the ground truth.

Point cloud detection accuracy is typically categorized into four distinct classes, with
the ‘3D’ category being prevalently utilized due to its comprehensive reflection of the
detection box’s accuracy. These categories include the following:

1. bbox—accuracy of the 2D detection box;
2. BEV—accuracy within the bird’s eye view (BEV) perspective;
3. Three-dimensional—accuracy of the 3D detection box;
4. AOS—accuracy in detecting the target’s rotational angle.

Additionally, the detection framework evaluates the average precision (AP) of each category
under varying degrees of difficulty (easy, moderate, and hard), based on factors such as occlusion
levels of the annotated bounding boxes, for instance, the car AP @0.7 0.7 0.7 metric, where AP
denotes the average precision and 0.7 specifies the minimum Intersection over Union (IoU)
threshold.

The IoU is a pivotal metric for gauging the overlap extent between two areas. The
model is deemed accurate in target detection when the IoU exceeds certain thresholds
(0.3 or 0.5), and below these thresholds, targets are classified as invalid. Precision and
recall are crucial in this context, with the former indicating the proportion of relevant
items retrieved and the latter representing the proportion of relevant items that are actually
detected. The computation of the AP is intrinsically linked to these metrics, averaging the
precision values across the precision–recall curve.

In recent developments, the KITTI leaderboard has transitioned to an 11-point Interpo-
lated Average Precision (IAP) format (AP|R11), where R11 ranges from 0 to 1 in increments
of 0.1. However, this approach, which includes a value of 0, can artificially inflate the
average precision by approximately 9%. To counteract this and provide a more authentic
performance assessment, a new 40-point IAP (AP|R40) has been introduced, adjusting
the metric and leaderboard by excluding the value of 0 and reducing dense interpolation
predictions fourfold. This results in a more rigorous and accurate evaluation of detection
capabilities. The R40 scale extends from 1/40 to 1, and the formula for calculating AP
precision under this scale is as follows:

AP|RN =
1
N ∑

r∈RN

max
r̃≥r

ρ(r̃) (3)

where ρ(r) is the recall accuracy. For experiments of point cloud detection on the KITTI
dataset, AP|R40 is used as the evaluation metric to assess the performance of the pro-
posed method.

3.3. Experimental Setup

The experimental setup detailed in this paper is carried out in an environment as
delineated in Table 1, comprising specific software and hardware configurations. The
programming language adopted for the experiments is Python, utilizing the open-source
Pytorch library as the foundational framework. The network model is developed on the
OpenPCDet platform, a specialized framework for 3D detection tasks.
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Table 1. Software and hardware environment for the experiments.

Hardware environment
CPU Intel Xeon (R) CPU E5-2678 @

2.50 GHz × 48
GPU NVIDIA GeForce GTX 1080 8 GB

Software environment

OS Linux Ubuntu 18.04.5 LTS
Language Python 3.7.4
Platform Pytorch 1.7.0

3D detection platform OpenPCDet 0.5.2
CUDA CUDA 10.1

The Intel Xeon CPU E5-2678 was manufactured by Intel Corporation, headquartered in Santa Clara, California,
United States. The NVIDIA GeForce GTX 1080 8GB was produced by NVIDIA Corporation, also based in Santa
Clara, California, United States.

In terms of model training parameters, the batch size is configured to be 2 and the total
number of training epochs to 40. The optimization algorithm selected for this study
is adam_onecycle, accompanied by a weight decay setting of 0.01 and a momentum
parameter of 0.9. The loss functions implemented were binary cross-entropy loss and
SmoothL1 loss. The SCL loss is initially weighted at 0.1, significantly higher compared to
the semantic segmentation loss. To address this, an epoch-based weight decay mechanism
is applied, progressively reducing the SCL loss weight to 0.01. The learning rate for the
model training is established at 0.01. In the dual-stage process involving the tasks of
classification, regression, and angle loss calculation, a uniform weight of 1.0 is assigned to
each component.

This configuration underscores a comprehensive approach to model training, balanc-
ing the intricacies of loss function weighting with the overarching goals of the experiment.
The selection of Python and Pytorch, along with the utilization of OpenPCDet, demon-
strates a commitment to leveraging advanced and open-source technologies for enhancing
the efficacy and precision of 3D object detection models.

3.4. Experimental Results

In this study, we have conducted a comprehensive analysis of multiple esteemed point
cloud detection algorithms, utilizing the KITTI dataset for benchmarking. Our focus is on
evaluating the algorithms based on AP|R40 criteria across three levels of target difficulties,
with specific attention on their 3D assessment metrics. The findings of these evaluations
are meticulously documented in Tables 2 and 3. Table 2 presents the experimental results
of AP40% under different categories, while Table 3 shows the performance across various
classification difficulties within the KITTI dataset. Table 4 provides an overview of an
ablation study conducted to verify the feasibility of the various modules added. In order
to validate the efficacy of the enhanced model integrating spatial semantic feature fusion
and auxiliary features, as proposed in this study, we engaged multiple classical point cloud
detection algorithms for model training. Subsequently, the algorithm developed in this
study was subjected to rigorous testing and comparative experiments on the KITTI dataset.

A portion of the experimental results is illustrated in Figure 7. Figure 7a shows the
schematic diagram of the baseline Part-A2 results, while Figure 7b presents the schematic
diagram of the results of our module, including SSFA, SCL, and the PCN. In these figures,
vehicle detections are denoted by green boxes, bicycle detections by yellow boxes, and
pedestrian detections by blue boxes.
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Table 2. Performance comparison of different methods on different categories within the
KITTI dataset.

Method Car AP@ Pedestrian AP@ Cyclist AP@
0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.5 0.5

CaDDN [12] 27.78 21.38 18.62 15.45 13.02 11.88 10.85 9.76 0.09
VoxelNet [10] 82.47 70.11 65.73 49.48 43.69 42.50 68.22 53.36 50.37
PointPillar [40] 86.74 77.21 74.47 55.32 48.80 44.50 79.21 61.90 58.15
SECOND [28] 90.05 80.70 77.91 55.82 51.13 46.43 82.78 65.17 61.08
PointRCNN [26] 88.78 75.51 72.93 69.40 60.25 52.78 90.27 70.25 65.75
Part-A2 [31] 91.50 82.07 79.88 66.12 59.04 53.31 89.91 73.50 69.28

Ours 91.74 82.22 79.82 71.84 64.82 59.16 92.18 74.78 70.73

The bold data represent the best-performing experimental results in all comparative experiments.

Table 3. Performance comparison of different methods across different difficulty levels within the
KITTI dataset.

Method Easy Moderate Hard Avg.

CaDDN [12] 18.02 14.72 13.20 15.31
VoxelNet [10] 66.72 66.72 52.53 58.33

PointPillar [40] 73.75 62.64 59.04 65.14
SECOND [28] 76.22 65.66 61.81 67.90

PointRCNN [26] 82.82 68.67 63.82 71.77
Part-A2[31] 82.51 71.54 67.49 73.85

Ours 85.25 73.94 69.90 76.37

The bold data represent the best-performing experimental results in all comparative experiments.

Table 4. The ablation experiments of the model on the KITTI dataset.

Method Easy Moderate Hard Avg.

None 82.51 71.54 67.49 73.85
SCL 83.15 72.09 68.22 74.49
PCN 83.61 72.34 68.39 74.78

PCN + SCL 84.09 72.78 69.11 75.32
PCN + SCL + SSFA 85.25 73.94 69.90 76.37

The bold data represent the best-performing experimental results in all comparative experiments.

(a)

(b)

Figure 7. Visualization of detection results: (a) results of the baseline Part-A2; (b) results of our
module, including SSFA, SCL, and the PCN.
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3.5. Results Analysis

Table 2 presents the evaluation results of different methods on the KITTI dataset
regarding category mean accuracy under different difficulty levels. The proposed enhanced
model based on spatial semantic feature fusion and auxiliary features shows a better perfor-
mance in terms of category mean accuracy across different difficulty levels, demonstrating
its stronger generalization ability in the two-stage 3D detection task. The results in both
tables indicate that the proposed algorithm outperforms the baseline algorithm Part-A2

in terms of overall performance and efficiency, further validating the effectiveness of the
proposed method. Notably, our method demonstrates the capability to effectively detect
objects in challenging scenarios characterized by sparse point clouds and areas with point
cloud deficiencies, especially in remote or distant regions, which is shown in Figure 7.
This illustrates the robustness and adaptability of the algorithm in handling diverse and
complex detection environments. This adaptability is particularly significant in scenarios
where point clouds are less dense or incomplete, as is often the case in remote sensing and
autonomous driving contexts. The ability of the proposed method to maintain detection
accuracy under these conditions is a testament to the effectiveness of the spatial semantic
feature fusion and auxiliary feature enhancement techniques employed.

Table 3 presents the evaluation results of different methods on the KITTI dataset
regarding category mean accuracy under different difficulty levels. An in-depth analysis
of the results presented in Table 3 reveals that the model we proposed, centered around
spatial–semantic feature fusion and auxiliary feature enhancements, excels in its average
performance across various categories and levels of difficulty. The proposed enhanced
model based on spatial semantic feature fusion and auxiliary features shows a better perfor-
mance in terms of category mean accuracy across different difficulty levels, demonstrating
its stronger generalization ability in the two-stage 3D detection task. The results shown in
both tables confirm that the proposed algorithm exceeds the performance of the baseline
algorithm Part-A2 in overall terms, further validating the effectiveness of the proposed
method. The results, as showcased in Figure 7, not only demonstrate the practical ap-
plicability of our method but also highlight its potential to set a new benchmark in the
field of point cloud detection. By outperforming the baseline algorithm, especially in chal-
lenging detection scenarios, the proposed method opens avenues for more accurate and
reliable object detection in various applications, including but not limited to autonomous
vehicles and urban planning. The successful implementation of this method on the KITTI
dataset, a standard benchmark in the field, further reinforces the validity and robustness of
our approach.

Table 4 outlines a set of ablation studies. These studies indicate that the individual
application of each of the three different modules contributes to the enhancement of the
algorithm’s performance to varying degrees. It is noteworthy that the improvement in
accuracy, compared to the original baseline algorithm, is primarily observed in more
challenging scenarios. Furthermore, in conjunction with Table 2, our method demonstrates
a superior performance in detecting smaller and more challenging targets, confirming
the robustness and adaptability of our algorithm model when tackling complex detection
challenges, particularly in addressing targets characterized by sparse and irregular feature
distribution. Furthermore, the results of ablation experiments elucidate a crucial aspect of
our methodology: the progressive incorporation of our specialized modules consistently
enhances the accuracy of the system.

4. Conclusions

In the realm of point cloud processing, challenges persist despite the advent of various
methods, including those based on deep learning. A primary issue is the uneven distribu-
tion of point clouds from LiDAR scans, where an increased depth leads to sparser scans
and inconsistent scales. This complicates feature extraction and correlation, particularly
during the dimension reduction process for creating bird’s eye view (BEV) images. The
reduction in dimensions hampers spatial and semantic feature extraction and integration
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across scales. Additionally, the discrete nature of point clouds and increasing sparsity with
depth impede small target detection, such as pedestrians.

To address these issues, our study introduces a mechanism combining spatial–semantic
feature aggregation with auxiliary feature enhancement. The spatial–semantic feature
aggregation (SSFA) module effectively merges low-level spatial and high-level semantic
features, improving the target box prediction and classification confidence. We enhance
segmentation results using supervised contrastive learning (SCL) and strengthen positional
features with a point completion network (PCN). The experimental results suggest that the
method we proposed has alleviated the detection issues with small-scale and sparse targets.

In our paper, we have provided perspectives and directions for addressing some of the
challenges in 3D object detection, but there remain several areas for further explorations.

A significant challenge in point cloud processing is the fusion of features from different
perspectives, such as bird’s eye view (BEV) features, original RGB image features, voxel
features, original point cloud features, and features from other angle mappings. Effectively
integrating these diverse feature sets can offer a variety of solutions and insights for
point cloud detection tasks. Although this paper only explores the dataset of original
point cloud features, it is anticipated that fusing multiple features could lead to superior
performance outcomes.

Furthermore, the exploration to address the issue of insufficient features in point
cloud detection is still ongoing. While our method has shown significant improvements
for targets with moderate feature deficiencies, its impact on targets with extremely sparse
point features remains limited. Therefore, identifying and solving the detection of objects
with widespread point deficiencies or uneven distribution continues to be a key area for
future research. On one hand, designing a superior network structure to learn more in-
depth voxel features is one approach; on the other hand, considering the use of spatial
information enhancement modules to predict the complete shape of objects could improve
the expression of informational features.
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Abbreviations

Lsup
out supervised contrastive losses

b description of b
Lsup

out,i the loss with the ith data
i the ith data
I the set of data
P(i) the set of positive samples
|P(i)| the number of positive samples
p one of the positive sample
A(i) the set of negative samples
a one of the negative samples
τ temperature
l(·, ·, ·) loss in PCN
Ycourse output of course
Ydetail output of detail
Ygt ground truth
Ỹgt subsample ground
d1(·) distance function
d2(·) distance function
α a hyperparameter for trading off d1 and d2
RN AP accuracy
AP|RN with point number N, the AP accuracy
N point numbers
r the recall
ρ(·) the accuracy of recall
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