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Abstract: The pollution caused by nitrogen dioxide is a major environmental problem in China.
This study introduces a new type of atmospheric trace gas remote-sensing instrument, an airborne
fiber imaging spectrometer. This spectrometer has a spectral range of 300–410 nm and works in
push-broom mode with a 30◦ field of view on a flight path. Flight experiments were conducted on
30 December 2022 and 5 January 2023, covering heavily polluted areas east of Beijing and Tangshan.
This equipment obtained the density distribution of NO2 over the flight area. The results showed that
pollution was mainly concentrated in the Caofeidian area and at the power station in the north, and
the main source of pollution was anthropogenic. Satellite and airborne data near the pollution points
were compared, and the two datasets showed a positive correlation with a correlation coefficient of
0.78 and 0.7, on the two days, respectively. This study demonstrates the capability of an airborne fiber
imaging spectrometer for NO2 regional emission remote sensing and identifying the pollution points.

Keywords: airborne; differential optical absorption spectroscopy (DOAS); imaging differential
absorption spectrometer; NO2

1. Introduction

Nitrogen oxides (NOx), including NO and NO2, have an impact on both the atmo-
sphere and human health. Their main sources include industrial emissions, coal-fired
combustion, and vehicle exhaust emissions. As the main representative of anthropogenic
pollutant emissions, NOx emissions are significantly enhanced in urban areas. Compared
with NO, NO2 is more stable in the atmosphere and participates in the chemical reactions
of multiple organic compounds, which is also one of the main causes of urban acid rain.
Therefore, measuring NO2 in the environment is a crucial aspect of air pollution monitoring.

Owing to the complex terrain and uneven population distribution in China, the
atmospheric environment is complex. In the Beijing–Tianjin–Hebei region of China, the
high population density and rapid economic development have contributed to compound
atmospheric pollution consisting of coal smoke and motor vehicle exhaust, which display
marked temporal changes. Ground-based atmospheric monitoring stations are mainly
distributed in urban areas, and their detection range is limited, hindering their ability
to provide large-scale data. In contrast, satellite remote sensing provides large-scale and
continuous observations. However, satellite data cannot monitor real-time changes in
pollutants. Therefore, airborne measurements can compensate for the shortcomings of
ground-based and spaceborne observations by providing large-scale and high-temporal-
resolution observations.

Previous studies in Germany, the United States, and the United Kingdom have used
specially modified aircraft to conduct aerial remote sensing and the differential optical
absorption spectroscopy (DOAS) technique to monitor the spatial distribution of various
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pollutants in the atmosphere in real time. In 1977, Professor Platt of Heidelberg University
proposed DOAS technology [1] and applied it to pollution gas tests. After many years
of development, the DOAS technique was extended to mobile, shipborne, airborne, and
satellite platforms to address the requirements of atmospheric observations in different
regions. Furthermore, by combining DOAS with imaging technology, the two-dimensional
visualization of pollution-gas distribution has been realized. For instance, on a small scale,
ground-based imaging differential optical absorption spectroscopy (IDOAS) was used
to study BrO formation in volcanic plumes [2–4]. Additionally, IDOAS measurements
were conducted in Beijing, China, during the CARE BEIJING campaign in 2006 [5]. On
a large scale, Valks et al. (2011) presented an algorithm for the retrieval of total and
tropospheric NO2 columns from the Global Ozone Monitoring Experiment (GOME-2) in
near-real time [6], and satellite data from the SCIAMACHY were used to evaluate ship
emissions based on observations of NO2 distribution in the Indian Ocean or emissions
from cities [7,8]. Additionally, the ability of the European Space Agency’s Tropospheric
Monitoring Instrument (TROPOMI) to observe the spatial and temporal patterns of NO2
pollution in the continental United States was investigated by Goldberg et al. [9].

Airborne IDOAS was first applied to aircraft platforms, and the distribution of NO2
density was observed near power and steel plants in South Africa [10]. The Heidelberg
Airborne Imaging DOAS Instrument (HAIDI), developed by the University of Heidelberg,
is capable of detecting multiple gases, such as NO2, HCHO, H2O, O3, O4, SO2, and BrO [11].
The Airborne Imaging DOAS instrument for Measurements of Atmospheric Pollution
(AirMAP), developed by the University of Bremen, was suitable for mapping trace gases
emitted from small-scale sources with high spatial resolution. During a flight over a coal-
fired power plant in northwest Germany, AirMAP detected a downwind emission plume
from the exhaust stack [12]. The Atmospheric Nitrogen Dioxide Imager (ANDI), developed
by the University of Leicester, discovered multiple NO2 pollution points in urban and
surrounding areas during a flight above Leicester [13]. The high-resolution Airborne Prism
EXperiment (APEX) developed by the Royal Belgian Institute for Space Aeronomy detected
NO2 in polluted areas, and several flights were conducted in Belgium [14,15].

In China, the aerial remote-sensing technique for atmospheric pollutants is relatively
new. Currently, suitable aerial remote-sensing equipment is rare. The Anhui Institute of
Optics and Fine Mechanics conducted in-depth research on DOAS imaging technology and
has achieved progress. Using airborne and ground-based platforms, a two-dimensional
distribution of trace pollutant gases was obtained by Liu Jin et al. [16]. Additionally,
Xi Liang et al. (2018) obtained high-resolution NO2 maps using an ultraviolet–visible
hyperspectral imaging spectrometer (UVHIS) in Feicheng, Shandong [17].

This study introduces a new type of imaging DOAS that differs from the previous
design. The equipment adopts a combination of fiber optic and imaging spectroscopy
techniques to separate the telescope from the spectrometer. The installation has lower
requirements for aircraft modification, which greatly facilitates onboard installation. To test
the performance of this device, it was used to detect the densities of pollutants in the area
surrounding Tangshan City and obtain the density distribution of NO2 over the flight path
using the DOAS algorithm. Section 2 details the airborne IDOAS instrument. Section 3
describes the aircraft platform used in the experiment and the flight path. Section 4 provides
the data processing procedure. Section 5 presents results and discussion, and Section 6
makes conclusions.

2. Instrument Details
2.1. Principles of Airborne IDOAS

The schematic diagram of the airborne IDOAS device is shown in Figure 1. The
airborne fiber IDOAS is based on imaging differential absorption spectroscopy and fiber
optics combined with the aircraft platform push scanning method. It uses an area array
charge-coupled device (CCD) for rapid scanning to obtain a two-dimensional distribution
of ground reflection spectra within the field of view of the flight route. The slant column
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density (SCD) of the polluted gas was obtained from the spectrum using a differential
absorption spectroscopy algorithm. The air mass factor (AMF) was calculated using the
SCIATRAN atmospheric transport model, and the SCD was transformed into a vertical
column density (VCD) that is independent of the path. Finally, the flight path was obtained
using the onboard Position and Orientation System (POS), and the pollution density was
projected onto the map to realize the two-dimensional distribution of pollutant densities.
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Figure 1. Schematic diagram of airborne imaging differential optical absorption spectroscopy (IDOAS).

2.2. Design of the Airborne Fiber IDOAS Instrument

As show in Figure 2, the airborne fiber IDOAS used in this experiment mainly con-
sists of a pre-optical system, spectral imaging system, circuit control system, and power
supply system. Nadir backscattered solar radiation enters the pre-optical system, and
after being shaped by the pre-optical system, it is converted into electronic signals through
photoelectric conversion. Parameters are shown in Table 1.
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Figure 2. Design of airborne fiber imaging differential optical absorption spectroscopy (IDOAS) system.

Table 1. Parameters of the spectral imaging system.

Parameters Value

Wavelength range 300–410 nm
Incidence slit 0.05 × 10.0 mm2

Spectral resolution 0.05 nm
Spatial resolution 5 mrad

Detector size 1024 × 1024
Convex Grating Stripe Number 2400/mm

Volume 237.6 × 142.3 × 138 mm3
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2.2.1. Pre-Optical System

To satisfy the installation requirements of airtight cabin aircraft platforms, an airworthi-
ness modification scheme based on optical fiber transmission was proposed for pre-optical
systems. The pre-optical system comprises of the following two parts: a large-field ultravio-
let lens and a transmission fiber bundle. The large-field ultraviolet lens adopts a multi-lens
combination structure and shapes the nadir backscattered solar radiation within the field of
view. The transmission fiber consists of 50 multi-fibers, each with a 180 µm core diameter
and a 10 µm cladding thickness. The fibers are spaced 200 µm apart. The width of each
fiber bundle is 10 mm. Each optical fiber is an independent channel for transmitting light.
The all-reflective structure of each optical fiber, composed of a core and cladding, ensures
that there is no light leakage or crosstalk effect during light transmission. The UV telescope
and fiber optic bundle have the same numerical aperture to minimize energy loss and
prevent stray light caused by a mismatch between them.

The combination of a large-field ultraviolet lens and a fiber bundle has advantages,
such as high sensitivity, strong anti-interference ability, long service life, adjustable geomet-
ric shape according to environmental requirements, and low energy loss.

2.2.2. Spectral Imaging System

Figure 3 shows the internal structure of the spectral imaging system. It consists of an
entrance slit, a reflection mirror, a concave mirror, a convex grating, and a CCD detector.
The spectrometer was designed with a Littrow–Offner structure. It also has the advantages
of a Littrow-Offner-type optical system, such as a large relative aperture, small inherent
aberration, and high imaging quality. The structure is compact, simple, light, and small in
volume, making it suitable for airborne systems.
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Similarly, the spectrometer and the fiber optic bundle have the same numerical aper-
ture, minimizing energy loss and preventing stray light due to any mismatch.

2.2.3. Circuit Control System

The circuit control system comprises of the following three parts: the temperature
control system, software, and image sensor. The temperature control system is responsible
for controlling the temperature of the spectrometer to reduce temperature drift. The
software controls and monitors the overall equipment status. The image sensor mainly
collects and stores data.

The airborne fiber IDOAS uses a CCD47-20 chip produced by E2V(UK) as an image
sensor. The CCD47-20 chip adopts a backlit technique and an extremely low-noise output
amplifier, making it suitable for being used in various detection fields. The CCD47-20 is
a frame-transfer array CCD that mainly consists of an exposure area, a storage area, and
a horizontal readout area. The size of the exposure area is 13 × 13 mm, which contains
1024 × 1024 valid pixels.
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3. Aviation Platform and Flight Lines
3.1. Modification of Aircraft Platforms

The aircraft platform used in the experiment was a sealed cabin transport aircraft
(AirKing350ER; NO. B-300, USA). The maximum cruising speed was 160 m/s, and the
maximum endurance was 7 h. Owing to the introduction of the pre-optical fiber system,
the fiber IDOAS system was installed in the aircraft in a manner that did not influence the
stability of the platform (Figure 4). The main instrument was installed in the aircraft cabin,
while the pre-optical fiber system was mounted on the bottom of the aircraft through a
designated viewing window.
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ment in the aircraft cabin.

3.2. Flight Lines

Prior to conducting flight experiments, it is necessary to plan the flight lines. The ob-
servation area was determined based on the distribution of atmospheric NO2 tropospheric
column densities observed by satellites in Hebei Province.

Figure 5 shows the distribution maps of the NO2 tropospheric column densities in
the region during November and December of 2022, derived from monthly averages of
TROPOMI tropospheric NO2 column concentration data [18,19]. The NO2 column densities
in Tangshan City were high in autumn and winter. In winter, the NO2 column densities in
the Caofeidian Oilfield gradually increased, and the column densities were the highest in
December. Therefore, we selected the area around Tangshan City as the study region.
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The experiments were better conducted under clear conditions. The experiment was
conducted on 30 December 2022 and 5 January 2023, with a total of four flights. The weather
on 30 December 2022 was clear and cloudless, and that on 5 January 2023 was cloudy. The
experimental area covered the Caofeidian District of Tangshan City and the neighboring
rural areas of Daxinzhuang Town. The instrument was mounted on the King Aircraft
platform, which flew at an altitude of 700–1000 m in the scanning area at a flight speed of
approximately 100 m/s. Under these parameters (altitude: 1000 m, speed: 100 m/s), the
spatial resolution of the instrument was approximately 40 m in the across-track direction
and 170 m along the flight direction. The scanning field of the spectrometer was 30◦.

The first flight in December took off from Beijing Shahe Airport at 10:11 (local time)
on 30 December 2022, and the flight duration was 2 h and 24 min (Figure 6). After taking
off, the aircraft flew to Tangshan at an altitude of approximately 2260 m. Once reaching
Tangshan, the aim of this flight was to scan the area with the southern oil fields and northern
steel plants, and an altitude of approximately 700–1000 m and a speed of approximately
100 m/s were maintained. The second flight took off from Beijing Shahe Airport at 15:33 on
30 December 2022, and the flight duration was 2 h and 9 min (Figure 7). After taking off, the
aircraft flew to Tangshan at an altitude of approximately 2280 m. Once reaching Tangshan,
the aim of this flight was to scan the northern steel plants in Tangshan City. The altitude
of the flight was approximately 700–1000 m, and it maintained a speed of approximately
100 m/s. The experimental area had flat terrain with an elevation of approximately 0–30 m.

The first flight in January took off from Beijing Shahe Airport at 10:31 on 5 January
2023, and the flight duration was 3 h and 7 min (Figure 8). After taking off, the aircraft flew
to Tangshan at an altitude of approximately 2300 m. Once reaching Tangshan, the altitude
of the flight was maintained at approximately 700–1000 m, with a speed of approximately
100 m/s. The second flight took off from Beijing Shahe Airport at 15:55 on 5 January 2023,
and the flight duration was 1 h and 46 min (Figure 9). After taking off, the aircraft flew to
Tangshan at an altitude of approximately 2300 m. Once reaching Tangshan, the altitude of
the flight was maintained at approximately 700–1000 m, with a speed of approximately
100 m/s. The aim of the flights was to scan the area with the chemical and steel plants
in Tangshan City at different altitudes. The experimental area had flat terrain, with an
elevation of approximately 0–30 m.
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4. Data Processing

The algorithm for the retrieval of the VCD of NO2 in the troposphere for airborne fiber
IDOAS includes four steps, as shown in Figure 10. The first step involves the necessary
data preprocessing procedures in order to make spectral data from the raw electrical
data collected by the detector. Subsequently, after preprocessing, in the second step, an
established DOAS technique was used to analyze the airborne fiber IDOAS spectral data in
an appropriate wavelength region to obtain the SCDs of the target gases. In the third step,
the AMFs were calculated, and the SCDs were converted to VCDs for each observation
using the SCIATRAN radiative transfer model. Lastly, in the fourth step, the NO2 VCDs
were geo-referenced and overlaid onto Google satellite map layers by using the POS data
from the sensors.
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4.1. Preprocessing

Before performing spectral analysis, the data were preprocessed. This included data
selection, dark current correction, spatial binning, and in-flight calibration.

4.1.1. Data Selection

Combined with the onboard POS data, invalid data from before takeoff and after
landing were excluded. Additionally, spectral data collected during takeoff when the
aircraft did not reach the predetermined height of 2000 m and the pitch angle was greater
than 4◦, and during landing when the altitude was lower than 2000 m and the pitch
angle was lower than −2◦, were excluded, owing to the large changes in the altitude of
the aircraft.

4.1.2. Dark Current Correction

To reduce the effect of the detector’s dark current on the signal, dark current correction
is required. We performed a dark current correction by blocking the fore-optics based
on the measurement taken at the beginning of the entire flight to improve instrument
performance and reduce the errors in the DOAS fit. Figure 11 shows the spectral intensity
comparison before and after dark current correction.
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Figure 11. Spectral graph before and after the dark current correction. (a) Original spectra; (b) Spectra
after dark current correction.

The CCD is cooled using TE cooling to reduce dark background noise. Figure 11a
shows a single-line spectrum of the detector before preprocessing, which is relatively noisy.
Binning is performed to effectively suppress the noise and improve the spectral quality. The
spectral noise level varies with the solar azimuth angle and ground conditions during the
flight. The signal-to-noise ratio (SNR) level was approximately 900:1 under the conditions
of a 60◦ solar zenith angle and 0.3 surface albedo.

4.1.3. Spatial Binning

Figure 12 shows the solar scattering spectral intensity collected by the detector during
the aircraft flight. Owing to the use of an optical fiber, the image detected by the detector
shows a strip distribution. The bright and dark stripes are initially segregated. The bright
stripes correspond to 13 rows of pixels, while the dark stripes correspond to 2 rows of
pixels. The main energy within a single fiber is contained in the bright stripes, while the
dark stripes are the overlapped information between adjacent fibers. The bright stripes are
spatially integrated into pixel elements, whereas the dark stripes are effectively eliminated
during data processing. Consequently, each fiber represents a spectrum with a high signal-
to-noise ratio within its field of view.
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Figure 12. Intensity map of array charge-coupled device (CCD). In (a), the vertical dimension of
the spectrum is the spatial dimension, and the horizontal dimension is the spectral dimension;
(b) Distribution of spectral intensity along the vertical spatial dimension.

To increase an instrument’s signal-to-noise ratio (SNR) and sensitivity to NO2, raw
DOAS imaging pixels are typically aggregated in the across-track direction. In this study,
four sets of fiber optic spectral data were binned in an across-track orientation during the
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data analysis to increase the SNR, and the single group field of view angle was 2.4◦, with
a spatial resolution in the across-track direction of approximately 40 m when the altitude
was approximately 1000 m.

4.1.4. In-Flight Calibration

In-flight wavelength calibration is crucial for subsequent DOAS analysis because the
wavelength-to-pixel registration and slit function shape of the airborne fiber IDOAS may
differ from the laboratory calibration results. To obtain this in-flight wavelength calibration,
the observed spectra were fitted to a high-resolution solar reference spectrum using a slit-
function correction and wavelength shift [20]. The laboratory calibration determined the
nominal wavelength-to-pixel registration, which served as the initial value in the iterative
fitting procedure for converging to the optimal solution. The spectrum was divided into n
tiny intervals for translation, expansion, and compression in order to perform this in-flight
wavelength calibration, as indicated by the following equation:

∆λ = a + b(λ− λ0) + c(λ− λ0)
2 (1)

where λ represents the correction wavelength, λ0 represents the center wavelength of the
n_th small intervals, a represents the translation of the fitting, and b and c represent the
expansion and contraction of the quadratic fitting, respectively.

The laboratory temperature was maintained at approximately 20 ◦C, whereas the
in-flight temperature was approximately 0 ◦C, which is significantly different from the lab-
oratory temperature. Consequently, the wavelength-to-pixel registration and slit function
shape may alter during the experiment. Figure 13 shows the effective shifts and spectral
resolutions (full-width at half maximums, FWHMs) of the various across-track positions.
Figure 13a shows the offset values of the FWHMs at 338, 354, and 370 nm in different
across-track directions, with an offset range of 0.38–0.49 nm. Figure 13b shows the offset
values of the spectrum in across-track directions, with an offset range of −0.08–0.4 nm.
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4.2. DOAS Analysis

To retrieve the NO2 SCD, the observed spectra of the airborne fiber IDOAS were
analyzed using the QDOAS 3.2 software [21]. Table 2 lists the details of the DOAS analysis
settings. Considering the strong NO2 absorption features, the fitting window was within
the 338 and 370 nm wavelength regions. For each spectrum, the direct output of the
DOAS fit was the differential SCD, which is the difference between the NO2 integrated
density along the effective light path of the studied spectrum and the selected reference
spectrum. Reference spectra are typically obtained over a clean rural area. For example, in
the experiment on the morning of 30 December 2022, the spectra collected in the north of
the flight path were chosen as the reference spectra. QDOAS 3.2 software also provides the
RMS of the residuals and the retrieval error.
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Table 2. Differential optical absorption spectroscopy fitting parameters.

Parameter Data Source

Wavelength 338–370 nm
Wavelength calibration Kurucz

Absorption cross-section
NO2 Vandaele (1998): 294 k
O4 Hermans (2011): 298 k
O3 Bogumil (2003): 293 k

Polynomial degree Order 5

Figure 14 shows a typical NO2 DOAS fit and the corresponding residual spectra. The
collection time was 11:26:13 and the location was 118.564◦N, 39.996◦E. Four sets of fiber
optic spectral data were binned in the across-track direction. The differential SCD was
5.24 × 1016 molec/cm2, the RMS of the residuals was 2.17 × 10−3, and the fit error was
4.68 × 1015 molec/cm2.
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4.3. AMF Calculations, Geo-Referencing, and Mapping

The SCD represents the integrated density along the effective light path of observation.
It is strongly dependent on the viewing geometry and radiative transfer. Therefore, before
drawing the projection map, it is necessary to convert the SCD into the VCD, which is
path-independent. The method for converting the SCD to the VCD is based on the AMF.

The AMF is defined as the ratio of the SCD to the VCD:

AMF =
SCD
VCD

(2)

Meanwhile, the AMF is influenced by several factors, including the path of light (e.g.,
the sun and viewing angle), trace gas and aerosol vertical profiles, and surface reflectivity.
The accuracy of the AMF calculation affects the retrieval accuracy of the trace gas VCD. To
enhance the accuracy of the trace gas VCD retrieval, it is necessary to consider the impact
of various factors on the AMF. The AMF calculation method uses the SCIATRAN [22]
radiative transfer model and establishes a lookup table (LUT). Combined with the AMF,
the SCD is converted into a path-independent VCD as follows:

VCD =
SCD
AMF

(3)

Figure 15 shows the calculation process of the AMF and VCD.
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Figure 15. Calculation flowchart for air mass factor (AMF) and vertical column density (VCD).

In this experiment, the observation angle of the instrument was calculated based on
the aircraft’s POS data. The solar azimuth angle and solar zenith angle can be deduced
from the latitude and longitude of each observation. For the AMF calculation, the Landsat
8 Operational Land Imager surface reflectance product was utilized, which has a wave-
length range of 433–450 nm. The Aerosol Optical Depth (AOD) information for the AMF
calculation was obtained from the MODIS AOD product at 412 nm and interpolated in two
dimensions to each airborne ground pixel. Owing to the unavailability of the planetary
boundary layer (PBL) height during the flight, a typical height of 2 km was used as a
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reasonable estimate for mid-latitude areas in China. The single-scattering albedo was set to
0.93, and the asymmetry factor was set to 0.68 for the aerosol extinction profile.

Figure 16 shows the surface reflectance from 24 December 2022 to 3 January 2023,
considering the altitude of the flight of the aircraft from 10:41 to 10:47. Figure 17 shows the
calculated AMF for a flight line. It is clear that the AMFs are highly dependent on surface
reflectance. Table 3 shows the AMF LUT parameter settings.
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Figure 17. Air mass factor (AMF) on 30 December 2022.

Table 3. Parameters of the air mass factor lookup table (LUT).

Parameter Setting

Wavelength 354 nm
Detector height 1 km

Surface reflectance 0.01–0.4 (steps of 0.01)
Solar zenith angle 60–70◦ (steps of 10◦)

Viewing zenith angle 0–50◦ (steps of 10◦)
Relative azimuth angle 0–180◦ (steps of 30◦)
Aerosol optical depth 0–1.6◦ (steps of 0.1◦)

Aerosol profile Box of 2.0 km
NO2 profile Box of 2.0 km

4.4. Aircraft Angle and Geolocation Correction

Owing to the instability of the aircraft during flight, there was a deviation between
the ground pixels and aircraft positions. Therefore, the accurate matching of ground pixels
is essential.
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The altitude of an aircraft is primarily determined by its pitch, roll, and yaw angles.
Conventionally, the pitch angle is considered positive when the aircraft’s nose is pointing
upwards, while the roll angle is positive when the right wing is pointing downward. The
yaw angle is measured in degrees clockwise from north (0◦).

Information on aircraft positioning was read before the collection of each spectrum.
Therefore, the middle value between the two data collections was selected as the pixel center.

The spatial displacement of the ground in the flight direction and the spatial displace-
ment vertically can be obtained from the pitch and roll angles as follows:

L = H·tan θ, (4)

d =
H

cos θ
tan(θi − ∅), (5)

where θ represents the pitch angle, ∅ represents the roll angle, L is the ground spatial
displacement in the flight direction, d is the vertical spatial displacement, H is the current
flight altitude, and θi is the angle between the center of the field and the vertical direction.

Assuming that, at a certain point in time, the aircraft is located at a longitude and
latitude (X0, Y0) and the ground coordinates of the actual testing location are (X, Y) (the
displacement deviation between X′ and Y′), the relationship below can be derived:

X = X0 + X’, (6)

Y = Y0 + Y’ (7)

Furthermore, (X’, Y’) can be represented as follows:

X’ =
180◦

πR0cos Y0
(cosφ·d + sinφ·L), (8)

Y’ =
180◦

πR0
(− sinφ·d + cosφ·L) (9)

Additionally, based on the above equation, it can be derived that:

X’ =
180◦·H

πR0cos Y0

(
cosφ· tan(θi − ∅)

cos θ
+ sinφ·tan θ

)
, (10)

Y’ =
180◦·H
πR0

(
− sinφ· tan(θi − ∅)

cos θ
+ cosφ·tan θ

)
(11)

5. Results and Discussion
5.1. IDOAS Results

The NO2 VCD two-dimensional distribution map obtained using the airborne fiber
IDOAS for the flight on 30 December 2022 is shown in Figure 18. The VCD of NO2 in
the Caofeidian area was significantly high, especially over pollution points 3, 4, and 5.
The highest VCD of NO2 was at point 4 in the southern part of Caofeidian, where oil
field drilling platforms and coal utilization companies are located. Large-scale dispersed
pollution was observed in the coastal area of pollution point 3, which has artificial islands
in oil fields and oil and gas transportation companies. A large area of high NO2 VCD
distribution was observed around pollution point 5. Considering the wind direction
on this day (west and northwest wind), NO2 pollution may be caused by the diffusion
of pollutants from oil fields and maritime vessels. In other areas, especially Tangshan
City and the surrounding areas of Beijing, the VCD of NO2 was relatively low. The
maximum VCD of NO2 during the flight was 3.3 × 1016 molec/cm2, the minimum value
was 7.36 × 1015 molec/cm2, and the average value was 1.92 × 1016 molec/cm2. Moreover,
the average uncertainty of NO2 during the flight was found to be 2.80 × 1015 molec/cm2.
The error estimation method is adopted from reference [17].



Remote Sens. 2024, 16, 1042 15 of 20Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 22 
 

 

116.5°E             117°E              117.5°E             118°E             118.5°E 

40°N

39.5°N

39°N

Point 1

Point 2

Point 3
Point 4

Point 5

 
Figure 18. Two-dimensional distribution map of NO2 vertical column density (VCD) on the morning 
of 30 December 2022. 

The results for the afternoon of 30 December 2022 showed that the VCD of NO2 was 
significantly high on the flight line (Figure 19). However, considering that the aircraft took 
off late and the light was poor, only the data collected before 17:00 were valid. A high VCD 
was observed at points 1 and 2. According to the analysis of the wind direction and satel-
lite data on that day, this may be caused by the emission source of NO2 in the south. 

  116°E           116.5°E             117°E             117.5°E             118°E            118.5°E 

40.5°N

40°N

39.5°N

39°N

Point 1

Point 2

 
Figure 19. Two-dimensional distribution map of NO2 vertical column density (VCD) on the after-
noon of 30 December 2022. 

Figure 20 shows the NO2 VCD two-dimensional distribution map obtained using the 
airborne fiber IDOAS for the flight on 5 January 2023. On this day, the VCD of NO2 re-
mained relatively high throughout the flight. In particular, at point 1 in the north, where 
there were several steel plants, coking plants, and chemical plants, the VCD of NO2 was 
relatively high. In addition, there were steel and chemical plants at points 2, 3, 4, 5, 6, and 

Figure 18. Two-dimensional distribution map of NO2 vertical column density (VCD) on the morning
of 30 December 2022.

The results for the afternoon of 30 December 2022 showed that the VCD of NO2 was
significantly high on the flight line (Figure 19). However, considering that the aircraft took
off late and the light was poor, only the data collected before 17:00 were valid. A high VCD
was observed at points 1 and 2. According to the analysis of the wind direction and satellite
data on that day, this may be caused by the emission source of NO2 in the south.
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Figure 19. Two-dimensional distribution map of NO2 vertical column density (VCD) on the afternoon
of 30 December 2022.

Figure 20 shows the NO2 VCD two-dimensional distribution map obtained using
the airborne fiber IDOAS for the flight on 5 January 2023. On this day, the VCD of NO2
remained relatively high throughout the flight. In particular, at point 1 in the north, where
there were several steel plants, coking plants, and chemical plants, the VCD of NO2 was
relatively high. In addition, there were steel and chemical plants at points 2, 3, 4, 5, 6,
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and 8. Point 7 was located on a farm and had no evident emission sources. According to
the wind direction of the day (west and south winds), NO2 pollution may be caused by
the diffusion of pollutants from the west and the oil field drilling platform in the south.
The maximum VCD of NO2 during the flight was 7.16 × 1016 molec/cm2, the minimum
value was 3.82 × 1015 molec/cm2, and the average value was 4.86 × 1016 molec/cm2. The
average uncertainty of NO2 during the flight was 3.60 × 1015 molec/cm2.
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The results for the afternoon of 5 January 2023 showed high levels of NO2 VCD in the
flight path (Figure 21). However, because the aircraft took off late and the light was poor,
only the data collected before 17:00 were valid. A high VCD was observed at points 1 and
2. According to the wind direction and satellite data on that day, this may be caused by the
emission source of NO2 in the south.
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5.2. Comparison of IDOAS and Satellite Data

Relative to satellite remote sensing, airborne remote-sensing technology is more sensi-
tive to the atmospheric composition near the surface and has a higher temporal and spatial
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resolution. In this experiment, tests were also performed at different altitudes around the
pollution points. For instance, during the initial flight experiment on 30 December 2022,
two flights were conducted at different altitudes over pollution point 3. The average VCD
of NO2 was 2.73 × 1016 molec/cm2 at an altitude of 900 m and 2.83 × 1016 molec/cm2 at
an altitude of 740 m. There are few discrepancies between them. It is evident that NO2
pollutants are primarily concentrated near the surface. Therefore, airborne observational
data are suitable for verifying satellite data. In order to assess the agreement of satellite
and airborne data, the airborne fiber IDOAS NO2 VCDs were compared with TROPOMI
data in the vicinity of the day’s flight.

The results of the airborne fiber IDOAS at the airborne flight line on the morning of
30 December 2022 were compared with the TROPOMI NO2 data of that day (Figure 22).
The two NO2 VCD datasets at the flight line show a high coincidence, with a correlation
coefficient of 0.78. The NO2 VCDs measured by the TROPOMI satellite at most pollu-
tion points on the flight path were slightly higher than the those of the airborne data,
whereas the airborne data were slightly higher in areas with more severe pollution, such as
points 4 and 5.
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Figure 22. (a) Distribution map of airborne and satellite NO2 vertical column density (VCD) on
30 December 2022; (b) Comparison of NO2 VCDs between airborne and satellite datasets; (c) Analysis
of the correlation between airborne and satellite data.
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As shown in Figure 23, the results of the airborne fiber IDOAS at the airborne flight
line on the morning of 5 January 2023 were compared with the TROPOMI data of that
day. It can be seen that the two NO2 VCD datasets in the flight line have high coincidence,
with the correlation coefficient of 0.7. The NO2 VCDs measured by the TROPOMI satellite
at most pollution points on the flight line were slightly higher than those of the airborne
results, whereas the airborne data were slightly higher in areas with more severe pollution,
such as point 1.
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Figure 23. (a) Distribution map of airborne and satellite NO2 vertical column density (VCD) on
5 January 2023; (b) Comparison of NO2 VCDs between airborne and satellite datasets; (c) Analysis of
the correlation between airborne and satellite data.

The distribution maps of airborne and satellite NO2 VCDs on 30 December 2022
and 5 January 2023 are shown in Figures 22a and 23a. In terms of spatial dimensions,
the resolution of satellite observation is 3.5 × 5.5 km2, while the airborne pixel is about
40 m × 170 m2. The ground pixel of the satellite is much larger than the airborne pixel.
Therefore, the airborne pixels need to be averaged within each satellite pixel for comparison.
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The large discrepancy in the spatial dimensions may lead to discrepancies in the two
datasets. In addition, the TROPOMI product uses the a priori TM5-MP chemical transport
model to separate the stratospheric and tropospheric layers in the retrieval, while, in this
study, the SCD-VCD transformation for airborne data is performed using the SCIATRAN
radiative transfer model. Finally, due to the rapid changes in the distributions of gases, the
difference in the observation time of the aircraft and the overpass time of the satellite also
caused discrepancies in the two datasets. The three factors result in differences between the
airborne data and the TROPOMI data. We can reduce the difference in the two datasets by
making the aircraft observation time closer to the overpass time of the satellite, and trying
to increase the flight altitude of the aircraft.

6. Conclusions

This study presents a newly developed airborne fiber IDOAS with a broad spectral
range of 300–410 nm and a high spatial resolution. The airborne fiber IDOAS comprises a
fiber transmission system and an IDOAS system, which provides advantages such as high
spectral imaging resolution, a large field of view, and a compact structure.

In this experiment, the DOAS technique was used to retrieve the NO2 SCD in the flight
area. The SCIATRAN radiation model was then used to calculate the AMF and convert the
SCD into a path-independent VCD. Finally, a map-projection algorithm was used to project
the results onto a map and realize a two-dimensional distribution of the NO2 VCDs.

In this study, IDOAS airborne observations were performed over Tangshan, China, on
30 December 2022 and 5 January 2023. The results of the two morning experiments were
relatively ideal, whereas the afternoon flight experiment had significant errors due to poor
light. On the morning of 30 December 2022, the maximum VCD of NO2 during the flight
was 3.3 × 1016 molec/cm2, and on the morning of 5 January 2023, the maximum VCD of
NO2 during the flight was 5.56 × 1016 molec/cm2.

Finally, we compared the NO2 VCD dataset of the airborne fiber IDOAS with that of
the TROPOMI satellite. The distribution of the NO2 VCDs between the two datasets was
strongly positively correlated and showed a high correlation. The correlation coefficients
were 0.78 and 0.7, respectively.

Compared to the data from the satellite instruments, those from the airborne fiber
IDOAS had a higher spatial resolution. Additionally, compared with ground DOAS
instruments, the airborne fiber IDOAS has higher flexibility. The design of the airborne
fiber IDOAS in this study compensates for the shortcomings of the ground equipment and
onboard instruments. This study demonstrates the ability of the airborne fiber IDOAS to
locate NO2 pollution points.
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