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Abstract: Medium- to high-resolution imagery is indispensable for various applications. Combining
images from Landsat 8 and Sentinel-2 can improve the accuracy of observing dynamic changes
on the Earth’s surface. Many researchers use Sentinel-2 10 m resolution data in conjunction with
Landsat 8 30 m resolution data to generate 10 m resolution data series. However, current fusion
techniques have some algorithmic weaknesses, such as simple processing of coarse or fine images,
which fail to extract image features to the fullest extent, especially in rapidly changing land cover
areas. Facing the aforementioned limitations, we proposed a multiscale and attention mechanism-
based residual spatiotemporal fusion network (MARSTFN) that utilizes Sentinel-2 10 m resolution
data and Landsat 8 15 m resolution data as auxiliary data to upgrade Landsat 8 30 m resolution
data to 10 m resolution. In this network, we utilized multiscale and attention mechanisms to extract
features from coarse and fine images separately. Subsequently, the features outputted from all input
branches are combined and further feature information is extracted through residual networks and
skip connections. Finally, the features obtained from the residual network are merged with the feature
information of the coarsely processed images from the multiscale mechanism to generate accurate
prediction images. To assess the efficacy of our model, we compared it with existing models on two
datasets. Results demonstrated that our fusion model outperformed baseline methods across various
evaluation indicators, highlighting its ability to integrate Sentinel-2 and Landsat 8 data to produce
10 m resolution data.

Keywords: spatiotemporal fusion; Landsat 8; Sentinel-2; multiscale; attention mechanisms; residual

1. Introduction

Medium-resolution satellites, with spatial resolutions typically in the tens of meters, enable
more precise observations of the Earth’s surface. Compared to low-resolution satellites, they
exhibit superior capabilities in characterizing the spatial structures of geographic features [1,2].
In the field of medium-resolution satellites, Landsat and Sentinel stand out for their exceptional
observational capabilities. The Landsat 8 satellite is equipped with two sensors: the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) [3], both of which maintain similar
spatial resolution and spectral characteristics to Landsat 1–7. This satellite features a total of
11 bands, including 7 bands (1–7) with a spatial resolution of 30 m and 4 bands (9–11) with a
spatial resolution of 15 m. Moreover, it boasts a unique panchromatic band (band 8) with an
even higher resolution of 15 m. With its capability of global coverage every 16 days, the Landsat
8 satellite represents a significant advancement in Earth observation technology [4,5]. The
superior spatial resolution and extensive temporal span offered by Landsat 8 satellite imagery
have made it extensively utilized across multiple domains. For instance, this imagery has proven
instrumental in assessing forest disturbances [6], monitoring vegetation phenology [7], and
detecting changes in land cover [8]. As a consequence, the versatility and reliability of Landsat 8
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satellite imagery continue to attract substantial research interest in diverse scientific communities.
Although Landsat 8 has a wide range of applications, its sparse time series data makes it not
suitable for rapidly changing global monitoring tasks such as crop yield estimation [9], flood
monitoring [10], vegetation phenology identification [11], and forest disturbance monitoring [12].

Sentinel-2 is a multispectral imaging satellite, featuring a powerful Multi-Spectral
Instrument (MSI). It consists of two orbiting satellites and collects multispectral images at
resolutions of 10/20/60 m in specific wavelength bands [13]. It provides medium-resolution
multispectral Earth observation imagery for various applications [14–17]. The satellite data
can be accessed via the European Space Agency’s Copernicus Data Hub, ensuring access
to up-to-date and reliable information for researchers and practitioners alike. However,
with an increasing frequency of cloud cover, the available time intervals for obtaining
actual images from Sentinel-2 have been extended, leading to a reduction in its capability
to observe dynamic changes on the Earth’s surface [18,19]. As a result, for both Landsat
8 and Sentinel-2, a single sensor captures images with limited observation frequency in
certain situations, thus making it difficult to effectively monitor the varying conditions on
the Earth’s surface [20]. Considering the similarities in the image bands captured by both
sensors (Table 1), numerous academic endeavors have centered around integrating images
derived from these sensors in order to augment the overall image resolution.

Table 1. Comparison of Landsat 8 and Sentinel-2 bands.

Landsat 8 Sentinel-2
Band Wavelength (nm) Resolution Band Wavelength (nm) Resolution

1 (coastal) 430–450 30 1 (coastal) 433–453 60
2 (blue) 450–515 30 2 (blue) 458–523 10

3 (green) 525–600 30 3 (green) 543–578 10
4 (red) 630–680 30 4 (red) 650–680 10
5 (NIR) 845–885 30 8A (NIR) 855–875 10

6 (SWIR 1) 1560–1660 30 11 (SWIR) 1565–1655 20
7 (SWIR 2) 2100–2300 30 12 (SWIR) 2100–2280 20

To date, extensive research has been conducted both domestically and internationally
on the spatiotemporal fusion of remote sensing data, leading to the development of nu-
merous spatiotemporal fusion methods. For instance, the spatial and temporal adaptive
reflectance fusion model (STARFM) [21] is a weighted function-based approach that utilizes
mathematical models. The algorithm leverages spatial information from high-resolution
images and temporal information from low-resolution images to generate high-resolution
surface reflectance values both spatially and temporally. The enhanced spatial and temporal
adaptive reflectance fusion model (ESTARFM) methodology [22] builds upon the existing
STARFM algorithm by incorporating a transformation coefficient, thereby enhancing its
overall accuracy. Another noteworthy technique, STARFM under simplified input modality
(STARFM-SI) [23], integrates image simulation with the spatiotemporal fusion model to
tackle the fusion challenge. Furthermore, the Multi-sensor Multi-resolution Technique
(MMT) [24] method represents the first unmixing-based approach. This method classifies
the fine images and then unmixes the coarse pixels to obtain the final prediction results.
The conditional spatial temporal data fusion approach (STDFA) [25] estimates the change
in reflectance by unmixing the end-member reflectance of the input and the predicted dates
within a moving window. The Flexible Spatiotemporal Data Fusion (FSDAF) algorithm [26]
is based on using spectral unmixing analysis and interpolation methods to obtain high
spatiotemporal resolution remote sensing images by blending two types of data. The spa-
tial and temporal nonlocal filter-based data fusion method (STNLFFM) [27] methodology
leverages coarse-resolution reflection data as a catalyst for establishing a unique correlation
between fine-resolution images obtained through the same sensor at disparate time points.
The Bayesian data fusion approach to spatiotemporal fusion (STBDF) algorithm [28] gener-
ates a fused image that effectively balances multiple data sources and enhances prediction
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performance by leveraging a maximum a posteriori estimator. The area-to-point regres-
sion kriging (ATPRK) [29] model accomplishes the downscaling process by introducing a
residual downscaling scheme based on the regional-to-point kriging (ATPK) method. A
coupled dictionary-based spatiotemporal fusion method [30] was devised to leverage the
interconnected dictionary and enforce the similarity of sparse coefficients, thus reducing the
gap between small block sizes and high resolutions. The remote sensing image STF model
enhances its predictive capability by combining single-band with multi-band prediction
(SMSTFM) [31]. The multilayer perceptron spatiotemporal fusion model (StfMLP) [32]
leverages multilayer perceptrons to capture the temporal dependencies and consistency
between input images.

More recently, developments in the area of deep learning have fueled the proliferation
of data fusion approaches designed to solve the disparity in spatial resolution between
Landsat 8 and Sentinel-2 datasets [33,34]. One promising approach is the super-resolution
convolutional neural network (SRCNN) [35], a form of super-resolution architecture utiliz-
ing non-linear mapping, which is approximated via a three-layer convolutional network
before ultimately delivering the high-resolution output image. The work in [36] proposed
a deep learning-based framework that utilizes corresponding low spatial resolution (Land-
sat 8) images to fill in the blanks of high resolution (Sentinel-2) values. The extended
super-resolution convolutional neural network (ESRCNN) [37], based on the SRCNN,
uses a deep learning framework to enhance 30 m spatial resolution Landsat 8 images
to 10 m resolution using spectral bands of Sentinel-2 with 10 m and 20 m resolutions.
Utilizing the attentional super-resolution convolutional neural network (ASRCNN) [38]
framework, the creation of a precise 10 m NDVI time series is achieved through the ef-
fective integration of Landsat 8 and Sentinel-2 images. The cycle-generative adversarial
network (CycleGAN) [39] incorporates a cycle-consistent generative adversarial network to
introduce images with spatial information into the FSDAF framework, thereby enhancing
the spatiotemporal fusion performance of the images. The degradation-term constrained
spatiotemporal fusion network (DSTFN) [40] enhances 30 m resolution Landsat 8 images
to 10 m resolution by developing a degradation constrained network. The model in [41]
integrates multiple sources of remote sensing data, such as Landsat 8 and Sentinel-2, to
generate high spatiotemporal NDVI data. The GAN spatiotemporal fusion model, based
on a multiscale and convolutional block attention module (MCBAM-GAN) [42], introduces
a multiscale mechanism and a CBAM (Convolutional Block Attention Module) to enhance
the network’s feature extraction capability.

Despite the numerous models developed to improve the accuracy of image prediction,
there are still some limitations. Firstly, linear networks of basic design [23] are deemed inad-
equate for accurately capturing the intricate mapping correlation between input and output
images. Secondly, previous models have not considered global spatial feature information,
and a simple summation strategy may result in low prediction accuracy. Finally, using
a simple convolutional neural network (CNN) alone cannot fully utilize the information
in coarse and fine images. To tackle these challenges, we have put forward a multiscale
and attention mechanism-based residual spatiotemporal fusion network (MARSTFN). This
novel approach has been rigorously evaluated on two distinct datasets and contrasted
against multiple conventional techniques. The primary advancements made by this study
are outlined below:

1. We have devised a multiscale mechanism that incorporates the concept of dilated
convolution to more effectively extract feature information from coarse images across
multiple scales. We have also designed an attention mechanism to effectively extract
feature information from fine images, maximizing feature utilization.

2. We have designed a channel and spatial attention-coupled residual dense block (CSARDB)
module, which combines the convolutional block attention module (CBAM) [43] and the
residual dense block (RDB) [44]. This network architecture proceeds by initially extracting
image features using the attention module, followed by their injection into the residual
module. Simultaneously, the presence of skip connections within the residual module
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permits the extraction of additional features. Such a collaborative network configuration
fortifies the precision of both spatial and spectral information encapsulated within the
generated predictions.

3. We present a fusion architecture, referred to as MARSTFN, which incorporates the
principles of the multiscale mechanism, the attention mechanism, and the residual
network. This innovative design skillfully merges Landsat 8 and Sentinel-2 data to
produce high-resolution data outputs.

2. Materials and Methods
2.1. Network Architecture
2.1.1. MARSTFN Architecture

In the MARSTFN network, we divide the input data into two: auxiliary data and target
reference data. The auxiliary data consist of Sentinel-2 10 m resolution bands (B02–B04,
B8A, B11–B12) and the Landsat 8 15 m resolution panchromatic band. The target reference
data are the Landsat 8 30 m resolution bands (b2–b7), and the final output data are the
Landsat 8 10 m resolution bands (b2–b7). As depicted in Figure 1, in the branches of
Landsat 8 30 m resolution bands and the 15 m resolution panchromatic band, the image
undergoes feature extraction through a multiscale mechanism. Then, bicubic interpolation
is applied. For the Sentinel-2 10 m resolution bands, the image features are extracted using
a regular convolutional layer with 64 filters of size 3 × 3 × 6. An attention module SE is
then used for further feature extraction. Subsequently, the outputs of the three branches
are concatenated using a convolutional layer with 64 filters of size 1 × 1 × 192. Four
CSARDB blocks with skip connections are applied to fully utilize features at different levels.
Afterward, the results of all skip connections are received by a convolutional layer with
64 filters of size 1 × 1 × 64. Finally, the exported feature map is added to and convolved
with the upsampled result of the coarse-resolution source (Landsat 8 30 m resolution data)
using 6 filters of size 3 × 3 × 64, resulting in the final fine-resolution output (Landsat 8
10 m resolution data). In the following chapters, we will introduce the multiscale module in
Section 2.1.2, the attention module in Section 2.1.3, and the CSARDB module in Section 2.1.4.
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Figure 1. The overall architecture of MARSTFN, where Multiscale represents the multiscale mechanism,
Upsample represents bicubic upsampling, Conv represents convolution operation, ReLU represents the
activation function, SE represents the attention mechanism, CSARDB represents the attention-coupled
residual module, “c” represents concatenation operation, and “+” represents add operation.

2.1.2. Multiscale Mechanism

To overcome the loss of detailed information in the coarse image, we adopt a multiscale
approach using convolutional kernels of varying receptive fields. This enables us to extract
spatiotemporal change features and enhance fusion accuracy simultaneously. The module
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operates at different scales for feature extraction, as depicted in Figure 2. Firstly, at the top
level, five parallel convolutional layers are expanded, including a 1 × 1 convolutional layer
(Conv), three 3 × 3 convolutional layers (Conv), and an average pooling layer. Among
them, the middle three 3 × 3 convolutional layers (Conv) adopt dilated convolution with
dilation rates of 2, 4, and 6. This approach increases the receptive field while maintaining
the feature map size and improving accuracy through multiscale effects. Subsequently,
an attention module is added after each of the three dilated convolutional layers. Our
attention module borrows from the DANet [45] by integrating two self-attention modules:
a position attention module for spatial processing and a channel attention module for
handling channel-specific data. These sub-modules harness self-attention to enhance
feature fusion across the spatial and temporal dimensions. Finally, the results of each
branch are fused together.
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Figure 2. Network architecture of the multiscale mechanism, where Conv represents convolution
operation, Average pooling represents average pooling layer, “D” represents dilation rates, and
Attention represents attention module.

2.1.3. Attention Mechanism

In consideration of the importance of fine-scale image features in the image fusion
process, simple convolutional layers are insufficient for effectively extracting the spatiotem-
poral information from these images. Attention mechanisms have been widely applied to
enhance computer vision tasks such as pan-sharpening and super-resolution. Therefore,
we designed an attention module to extract feature information from fine-scale images,
inspired by the Squeeze-and-Excitation Networks (SENet [46]). The network structure
is shown in Figure 3, and given input with c1 feature channels, a series of convolutions
and other transformations result in c2 feature channels. Unlike traditional CNNs, this
is followed by three operations to re-calibrate the previously obtained features: squeeze,
excitation, and scale. In the squeeze step, the feature map is compressed from height and
width dimensions (h ×w × c2) to a 1 × 1 × c2 tensor via global average pooling, capturing
contextual information across the entire image. Next, in the excitation step, a multilayer
perceptron (MLP) models the feature channels, introducing weight parameters denoted as
w. These weights are obtained through dimension reduction and normalization, generating
a weight representation for each feature channel. Finally, in the scale step, these weights
are applied to the original features by performing a channel-wise multiplication, recalibrat-
ing the feature responses. This process strengthens the focus on important features and
enhances discriminative ability. In summary, the Squeeze-and-Excitation (SE) operation
models interdependencies between feature channels through global average pooling, MLP
modeling, and feature recalibration. This enhances feature expression and optimizes neural
network performance.
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Figure 3. Network architecture of the attention mechanism, where Ft represents the transform opera-
tion, Fsq represents the squeeze operation, Fex represents the excitation operation, Fscale represents
the reweight operation, h and w represent the length and width of the input data, c1 represents the
number of channels before conversion, and c2 represents the number of converted channels.

In Figure 3, Ft represents the transformation operation and the expression for its
input–output relationship can be defined as follows:

uc =
c1

∑
s=1

vs
c ∗ xs (1)

where x represents the first 3D matrix on the left side of Figure 3, which is the input, u
represents the second 3D matrix, which is the output, uc represents the c-th 2D matrix in u,
xs represents the s-th input, and vc represents the c-th convolutional kernel.

Fsq represents the squeeze operation, which can be expressed as:

Fsq(uc) =
1

h ∗ w

h

∑
i=1

w

∑
j=1

uc(i, j) (2)

Fex represents the excitation operation, which can be expressed as:

Fex = σ(W2δ(W1z)) (3)

where z represents the result of the previous squeeze operation, W1 and W2 are the two pa-
rameters used for dimension reduction and dimension increment, respectively, δ represents
the ReLU function, and σ represents the sigmoid function.

Fscale represents the reweight operation, which can be expressed as:

Fscale = sc·uc (4)

where s represents the result of the previous excitation operation, and “·” represents each
value in the uc matrix multiplied by sc.

2.1.4. Channel and Spatial Attention-Coupled Residual Dense Block (CSARDB) Module

To fully represent the mapping relationship between data, we designed a complex
network structure called the channel and spatial attention-coupled residual dense block. In
this module, we combine the attention mechanism and the residual mechanism to form
a basic unit of the network. Figure 4 visually demonstrates the enhancement made to
the SENet-based Convolutional Block Attention Module (CBAM). On the left-hand side,
there is a modified CBAM that includes both a channel attention module derived from
the Squeeze-and-Excitation Network (SENet) and a spatial attention module emulating
SENet’s functionality through global average pooling applied along the channel axis to
generate a two-dimensional spatial attention coefficient matrix. The CBAM performs
hybrid pooling of global average pooling and global maximum pooling on both space and
channel, enabling the extraction of more effective information. The output feature map
is then fed into the right side’s residual dense block (RDB), which utilizes both residual
learning and dense connections. The block consists of six “Conv + ReLU” layers, each
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containing a 3 × 3 ordinary convolutional layer (Conv) and an activation function unit
(ReLU). Additionally, the feature maps from all previous layers are fed into each layer
via skip connections, enhancing feature propagation and greatly improving the network
feature reuse ability. In the skip connections, the output expression of each “Conv + ReLU”
layer (1 ≤ n ≤ 6) can be expressed as:

Fn = fn(concat(F1, F2, . . . , Fn−1)) (5)

where Fn represents the feature map output from the attention mechanism, “concat” denotes
the concatenation operation, F1, . . . Fn−1 represents the feature maps of the first layer to the
(n − 1)-th layer, and Fn represents the feature map of the n-th layer. The final output of the
CSARDB block is represented as:

Fo = Ft + Fd (6)

where Fd represents the residual feature maps obtained through skip connections from the
previous six layers.
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2.2. Loss Function

To quantify the discrepancy between the predicted results of the model and the actual
observations, a loss function is employed. Within the context of this network, the loss
function is structured as follows:

L = aL1 + bL f (7)

where L1 represents the L1-norm term used to constrain the error between predictions and
labels, Lf represents the Frobenius norm term, and a and b are adaptive parameters, and
they can be expressed as:

a =
L1

L1 + L f
(8)

b =
L f

L1 + L f
(9)

3. Experiment Results
3.1. Datasets and Network Training

The experimental data in this study were obtained from the two benchmark datasets
provided in [40]. These datasets were chosen due to their diverse characteristics, includ-
ing varying degrees of spatial heterogeneity and temporal dynamics. By utilizing such
datasets, we can assess the feasibility and effectiveness of the proposed method in handling
complex and changing environmental conditions. The datasets consist of two study areas.
The first one is located in Hailar, Northeast China [40], situated at the western foot of
the Daxing’anling Mountains, where it intersects with the low hills and high plains of
Hulunbuir. The terrain types in this area include low hills, high plains, low flatlands,



Remote Sens. 2024, 16, 1033 8 of 21

and riverbanks. The second study area is located in Dezhou, Shandong Province [40],
which is a floodplain of the Yellow River characterized by a higher southwest and a lower
northeast topography. The general landforms can be classified into the three following
categories: highlands, slopes, and depressions. The climate is warm temperate continental
monsoon, with four distinct seasons and obvious dry and wet periods. The Hailar dataset
includes 23 scenes covering the entire year of 2019, while the Dezhou dataset includes
24 scenes for the year 2018. Both datasets underwent preprocessing steps including geo-
metric calibration and spatial cropping [47] to ensure consistent image sizes. The size of
the Hailar images is 3960 × 3960, and the size of the Dezhou images is 2970 × 2970. To
ensure robustness in the model development process, each dataset was partitioned into
three distinct subsets—training, validation, and testing. Specifically, 60%, 20%, and 20%
of the data were allocated for training, validation, and testing purposes, respectively. The
purpose of the validation set was to find the optimal network parameters to ensure the
best performance. Each dataset consists of four types of images, including Landsat 8 (30 m,
15 m, and 10 m) and Sentinel-2 (10 m) data. In addition, we used Sentinel-2 10 m resolution
images of the reference date in the input data as the ground truth images for comparison
with the experimental results.

3.2. Evaluation Indicators

Under the same experimental conditions, we compared our model with the following
four models: FSDAF [26], STARFM-SI [23], ATPRK [29], and DSTFN [40]. FSDAF fuses
images through spatial interpolation and unmixing. STARFM-SI is a simplified version of
STARFM that fuses images through weighted averaging under simplified input conditions.
ATPRK is a geostatistical fusion method involving the modeling of semivariogram matrices.
DSTFN predicts images by incorporating a degradation constraint term.

The Structural Similarity Index (SSIM) [48], Peak Signal-to-Noise Ratio (PSNR) [49],
and Root Mean Square Error (RMSE) [50] are employed to give a quantitative evaluation.
SSIM serves as an indicator for assessing the visual similarity between two given images.
The expression for SSIM can be defined as:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (10)

where µx and µy represent the mean values of the predicted image x and the ground truth
image y, respectively. σ2

x and σ2
y represent the variances of the predicted image x and the

ground truth image y, respectively. σxy represents the covariance between the predicted
image x and the ground truth image y. c1 and c2 are constants to avoid division by zero
and prevent potential system errors. The SSIM score falls within the range of −1 to 1 and
higher values denote lesser discrepancies between the predicted and ground truth images,
signifying better similarity.

PSNR is used to evaluate the quality of the images. The PSNR value is commonly used as
a reference for measuring image quality, but it has limitations as it only measures the quality
between the maximum signal value and background noise. The PSNR is measured in decibels
(dB) and can be obtained using Mean Squared Error (MSE), which is expressed as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[y(i, j)− x(i, j)]2 (11)

where m and n represent the height and width of the images, x represents the predicted
image, and y represents the ground truth image. The PSNR is expressed as:

PSNR = 20 × log10

(
MAXy√

MSE

)
(12)
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where MAXy represents the maximum pixel value of the ground truth image. A higher
PSNR value signifies lower image distortion, implying that the predicted image is in closer
proximity to the ground truth image.

RMSE serves as a measure of deviation between the predicted image and the ground
truth image. It is derived from the Square Mean Error (MSE), but due to its square root
operation, it is more responsive to fluctuations in data than MSE. As such, RMSE offers a
more comprehensive depiction of the differences between the images. Lower RMSE values
indicate a reduced image deviation, denoting enhanced proximity between the predicted
and ground truth images. The expression for RMSE can be defined as:

RMSE =

√√√√ 1
mn

m−1

∑
i=0

n−1

∑
j=0

[y(i, j)− x(i, j)]2 (13)

3.3. Parameter Setting

We employed three machine learning-based methodologies, including FSDAF [28], STARFM-
SI [25], and ATPRK [31], without requiring any prior training stages. Instead, these approaches
were subjected to testing using a 20% validation dataset. Conversely, the deep learning-based
models DSTFN [40] and MARSTFN underwent extensive training sessions. For this purpose, we
utilized a high-performance server environment, equipped with an 8-core CPU and a powerful
Tesla T4 GPU, to facilitate efficient model optimization. Throughout the training process, we
maintained a consistent learning rate of 0.001, and utilized a batch size of 64 samples, executing
100 training epochs to ensure optimal model convergence.

3.4. Results
3.4.1. Evaluation of the Methods on the Hailar Dataset

Figure 5 presents a set of input data on the Hailar dataset, where (a) and (b) represent
auxiliary data, namely Sentinel-2 10 m resolution data on 19 October 2019, and Landsat 8
15 m resolution data on 22 October 2019, respectively. Panel (c) represents the target
reference data, which are Landsat 8 30 m resolution data on 22 October 2019. Figure 6
displays the prediction results of various methods on the Hailar dataset. “GT” represents
the reference image, which is the ground truth image. Panels (a) to (f) show the prediction
results of various methods on 22 October 2019, for Landsat 8 data with a resolution of 10 m.
Panels (g) to (l) show magnified views of a subset region (marked with a yellow square)
of panels (a) to (f), respectively. As shown in Figure 6, all fusion methods can predict
spatial details of the images well. The phenology change in the Hailar region is relatively
slow, resulting in good overall prediction performance. However, the fusion results of each
method differ. Panels (a) to (f) show that DSTFN and MARSTFN perform better in restoring
spectral information, while the recovery effects of the other three methods are slightly
lacking, especially ATPRK, which shows more distortion in spectral recovery. Moreover, for
panels (g) to (l), the differences in fusion results are more pronounced. The fusion results of
FSDAF and STARFM-SI have more obvious distortion, and the image edges are relatively
blurred, losing many spatial texture details. The fusion results obtained by ATPRK exhibit
a slight improvement compared to the first two methods but still have some distortion and
large errors compared to the original image. Although the fusion effect of DSTFN is better
than the previous methods, with less image distortion and better recovery of texture details,
the spectral recovery is slightly lacking in detail. Our proposed MARSTFN performs well
in reducing distortion, maintaining good texture details, and restoring spectral information.
The results above indicate that our proposed MARSTFN has better fusion results compared
to the other methods on the Hailar dataset, not only predicting texture details but also
handling spectral information well.
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Figure 7 presents the correlation between various fusion results and the real image on
the Hailar dataset. The samples are derived from the scene images shown in Figure 6. In
this figure, we utilize the coefficient R2 to represent the prediction results. R2 is a statistical
measure of the degree of fit between the data and the regression function. It is defined by
the following formula:

R2 = 1 − ∑N
i=1(xi − x̂i)

2

∑N
i=1(xi − xi)

2′ (14)

where xi represents the observed value of the i-th pixel x̂i denotes the predicted value, xi is
the mean value, and n is the number of pixels. The value of R2 typically falls within the
range of 0 to 1, with a value closer to 1 indicating better prediction performance.
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Figure 7. (a–e) represent the correlation between the predicted images of each fusion method and the
real images, and R2 represents the statistical measure of the degree of fit between the data and the
regression function.

It can be observed that the FSDAF, STARFM-SI, and ATPRK methods exhibit relatively
poor correlation with the real image. On the other hand, MARSTFN demonstrates a slightly
higher R2-value compared to DSTFN, and there are fewer points deviating from the real
values. Therefore, both the statistical measurement of function fitting and visual assessment
suggest that the predicted results of MARSTFN are closer to the real image compared to
the other four methods.

3.4.2. Evaluation of the Methods on the Dezhou Dataset

Figure 8 shows a set of input data on the Dezhou dataset, where (a) and (b) represent
auxiliary data, namely Sentinel-2 10 m resolution data on 17 October 2018, and Landsat 8
15 m resolution data on 26 October 2018, respectively. Panel (c) represents the target refer-
ence data, which are Landsat 8 30 m resolution data on 26 October 2018. Figure 9 displays
the prediction results of the various methods on the Dezhou dataset. “GT” represents the
reference image, which is the ground truth image. Panels (a) to (f) show the prediction re-
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sults of these five methods on 26 October 2018, for Landsat 8 data with a resolution of 10 m.
Panels (g) to (l) show magnified views of a subset region (marked with a yellow square)
of panels (a) to (f), respectively. As shown in Figure 9, it can be observed that all fusion
methods can to some extent improve the accuracy of the predicted images, indicating that
these methods possess the ability to recover temporal and spatial changes in the images.
However, the fusion results of different methods vary. From (a) to (f), it can be observed
that STARFM-SI and MARSTFN perform relatively well in terms of spectral recovery, while
the spectral recovery effect of the other three methods is relatively poor. Furthermore, for
(g) to (l), the differences in the fusion results of these methods are more pronounced. From
the images, it can be observed that the fusion results of FSDAF and STARFM-SI are very
buried, exhibiting significant distortion and loss of texture detail. Although the fusion
result of ATPRK is slightly better compared to the first two methods, it still exhibits some
distortion and has a larger error compared to the original image. While the fusion result
of DSTFN exhibits fewer distortions and relatively better preservation of spatial details,
the spectral recovery effect is still lacking. Our proposed MARSTFN method processes
the feature information of the image well. Although it does not perfectly restore the real
image, it exhibits smaller color differences compared to the other methods and preserves
spatial texture details relatively well. Our research findings conclusively demonstrate that,
across all evaluations conducted on the Dezhou dataset, the proposed MARSTFN method
demonstrates a clear advantage over competing strategies in terms of overall performance.
Specifically, the resulting fused image produced by our method exhibits a higher degree of
similarity to the corresponding ground truth image relative to alternative techniques.
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Figure 10 shows the correlation between various fusion methods and the real image on
the Dezhou dataset, with samples taken from the scene graph in Figure 9. It can be observed
that the ATPRK method has the poorest prediction performance, which may be attributed
to its status as a geostatistical method for data fusion, leading to poor performance in areas
with fast phenological changes. In contrast, the MARSTFN method exhibits the highest
correlation with the real image compared to the other four methods, indicating superior
performance. Based on the above analysis, in areas with significant spectral variations, the
predictive performance of MARSTFN remains closer to the real image compared to the
other four methods.
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3.4.3. Quantitative Evaluation

We performed a total of six trials on the Hailar dataset, and Table 2 presents the quanti-
tative assessment results of all fusion methodologies tested on this set. Highlighted in bold
are the optimal values for each assessment metric. As illustrated in the table, our proposed
method outperforms FSDAF and STARFM-SI by approximately 4.5% and 4.6% in terms of
PSNR, respectively. ATPRK performs the worst, while DSTFN demonstrates better fusion
results than the previous three methods, indicating its ability to recover image texture
details effectively. In terms of SSIM, ATPRK outperforms FSDAF and STARFM-SI, possibly
because the phenological changes in the Hailar dataset are relatively slow, allowing ATPRK
to make better image predictions. MARSTFN achieves the best performance, indicating
its ability to recover spectral information well in areas with slow geological variations.
Regarding RMSE, MARSTFN reduces the RMSE values by 15% and 19% compared to
FSDAF and ATPRK, respectively. However, STARFM-SI performs worse than DSTFN,
possibly due to its simplicity as a machine learning method that only considers partial
pixel reconstruction, making it less suitable for predicting larger spatial regions. For the
FSDAF, STARFM-SI, and ATPRK algorithms, the experimental results on certain dates
are slightly better than those of DSTFN, possibly because the former three algorithms are
based on physical models, which can exhibit good prediction performance in areas with
slow geological structural changes. Additionally, the instability of the DSTFN model can
lead to unpredictable accuracy fluctuations. These experimental results demonstrate that
the MARSTFN method achieves the best results across all metrics. We executed a total
of five trials on the Dezhou dataset, and Table 3 compiles the quantitative assessment
outcomes of all fusion methodologies tested on this set. Highlighted in bold are the optimal
values for each assessment metric. As shown in the table, our proposed MARSTFN model
demonstrates improved fusion results compared to other algorithms across the evaluation
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metrics. For instance, in terms of PSNR, our method outperforms the machine learning-
based FSDAF and STARFM-SI methods by approximately 7% and 5.8%, respectively, and
achieves an improvement of about 2.1% compared to the deep learning-based DSTFN
method. On the other hand, ATPRK exhibits the poorest quantitative evaluation results,
possibly due to its limited flexibility in preserving the spectral distribution of the original
images as a geostatistical data fusion method. In terms of the Structural Similarity Index
(SSIM), both FSDAF and ATPRK show the worst fusion results, while our proposed method
achieves approximately 0.9% and 1.1% improvements over these two methods, respectively.
The enhancement in STARFM-SI, which incorporates auxiliary data, leads to better fusion
results compared to the original STARFM method. Furthermore, MARSTFN, with the
introduction of a multiscale mechanism and attention mechanism, is able to better capture
the information of the images compared to DSTFN. From the table, it can be observed that
FSDAF and ATPRK demonstrate the poorest prediction performance, with our proposed
method reducing the error values by approximately 20.2% and 27.4%, respectively. The
RMSE value of STARFM-SI is worse than that of the DSTFN method, indicating the ability
of DSTFN to predict spectral information effectively. The marginal improvement in perfor-
mance observed for FSDAF, STARFM-SI, and ATPRK algorithms compared to DSTFN on
specific dates may be indicative of DSTFN’s limited suitability for regions with complex and
rapidly changing ground features, highlighting the need for enhanced stability. MARSTFN
outperforms the other methods across all three metrics, demonstrating its effectiveness in
recovering spectral information in regions with significant spectral variations. Therefore,
the experimental results indicate that introducing a multiscale mechanism, attention mech-
anism, and residual mechanism in our network can improve the accuracy of predicted
images and effectively fuse the images.

Table 2. Quantitative evaluation of various methods on the Hailar dataset. The best values of the
index are marked in bold.

Evaluation
Method

FSDAF STARFM-SI ATPRK DSTFN MARSTFN

PSNR

29.9821 30.2142 30.9168 32.3470 32.4808
29.5619 29.6318 28.9653 30.3120 31.2037
29.2083 29.1779 29.4909 30.4400 31.3767
29.5278 29.1653 29.5383 29.1339 29.6070
33.4398 33.4254 32.2749 33.6752 34.3020
30.3845 30.2776 29.6360 30.6992 31.3778

Average 30.3507 30.3154 30.1370 31.1012 31.7247

SSIM

0.9505 0.9510 0.9577 0.9580 0.9597
0.9605 0.9590 0.9613 0.9612 0.9652
0.9454 0.9441 0.9449 0.9444 0.9521
0.9150 0.9132 0.9236 0.9240 0.9294
0.9561 0.9594 0.9636 0.9640 0.9656
0.9359 0.9426 0.9420 0.9437 0.9490

Average 0.9439 0.9449 0.9489 0.9492 0.9535

RMSE

0.0310 0.0302 0.0282 0.0235 0.0231
0.0338 0.0339 0.0328 0.0290 0.0261
0.0326 0.0324 0.0351 0.0298 0.0269
0.0328 0.0342 0.0372 0.0343 0.0325
0.0205 0.0205 0.0236 0.0195 0.0183
0.0290 0.0294 0.0319 0.0278 0.0259

Average 0.0300 0.0301 0.0315 0.0273 0.0255
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Table 3. Quantitative evaluation of various methods on the Dezhou dataset. The best values of the
index are marked in bold.

Evaluation
Method

FSDAF STARFM-SI ATPRK DSTFN MARSTFN

PSNR

31.9103 32.4065 31.5480 34.2633 34.6670
31.9498 32.4436 32.9046 34.6958 35.6082
31.3712 31.6537 29.9532 32.1945 32.9657
27.9400 28.4388 26.7805 28.9720 29.7145
28.6961 28.6151 27.4919 28.9879 29.6476

Average 30.3735 30.7115 29.7356 31.8227 32.5206

SSIM

0.9719 0.9705 0.9627 0.9700 0.9731
0.9732 0.9685 0.9705 0.9730 0.9743
0.9636 0.9658 0.9630 0.9661 0.9680
0.8697 0.8814 0.8760 0.8923 0.8978
0.9031 0.9111 0.9028 0.9057 0.9146

Average 0.9363 0.9395 0.9350 0.9414 0.9456

RMSE

0.0252 0.0238 0.0265 0.0192 0.0182
0.0250 0.0236 0.0224 0.0183 0.0164
0.0267 0.0259 0.0314 0.0242 0.0222
0.0378 0.0352 0.0446 0.0341 0.0314
0.0357 0.0360 0.0408 0.0341 0.0317

Average 0.0301 0.0289 0.0331 0.0260 0.0240

4. Discussion
4.1. Generalized Analysis

The experimental outcomes concerning the Hailar dataset exhibit the superior per-
formance of our method in comparison to rival techniques, achieving notable gains in
fusion image accuracy through the integration of the multiscale mechanism, attention
mechanism, and residual network. Subjective assessments reveal that fusion results from
FSDAF and STARFM-SI methods are marred by pronounced distortions, whereas our
method consistently generates images that closely resemble their associated ground truth
counterparts. This observation suggests that our approach is adept at predicting images
in scenarios characterized by sluggish phenological transformations. Furthermore, the
outcomes derived from the Dezhou dataset showcase the ability of our method to accurately
represent spatiotemporal characteristics and spectral variances embedded in images of re-
gions exhibiting substantial phenological fluctuations. This accomplishment is attributed to
the enhanced capability of our approach to effectively extract image features and preserve
intricate details through a distinctive fusion strategy. Our proposed method, MARSTFN,
achieves the following results: (1) It utilizes a multiscale mechanism to extract features
from coarse images, incorporating dilated convolutions in the multiscale mechanism. (2) It
employs an attention mechanism to extract features from fine images, preserving spec-
tral information to the maximum extent. (3) It introduces the CSARDB module, which
combines the attention mechanism and residual network. The CSARDB module fuses
the features extracted from the coarse images processed by the multiscale mechanism
and the fine images processed by the attention mechanism. Through skip connections, it
continuously extracts features, maximizing feature extraction and thus achieving more
accurate prediction results.

Figure 11 shows the 10 m images generated by MARSTFN, as well as the comparison
between 10 m and 30 m in four different scenes. We selected four representative areas with
diverse geological landscapes, including farmland and urban buildings, and zoomed in to
compare the scenes at 10 m and 30 m resolutions. It can be observed that the original 30 m
image fails to provide sufficient spatial information, whereas the 10 m image significantly
improves the spatial resolution, enabling better recognition of geospatial structures and
enhanced object identification capabilities. Therefore, our proposed MARSTFN deep
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network, which incorporates multiscale mechanisms, attention mechanisms, and residual
networks, effectively predicts medium- to high-resolution images.
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4.2. Ablation Experiments

To substantiate the significance of the multiscale mechanism, attention mechanism,
and residual network modules, we devised three separate experiments. For experiment
1, the multiscale mechanism was eliminated while maintaining the attention mechanism
and residual network. In experiment 2, the attention mechanism was discarded but the
multiscale mechanism and residual network remained intact. Lastly, in experiment 3, the
residual network was eradicated but the multiscale mechanism and attention mechanism
were retained. Table 4 presents the experimental results for these three experiments, where
“ARNet” represents the network structure without the multiscale mechanism, “MRNet”
represents the network structure without the attention mechanism, and “MANet” repre-
sents the network structure without the residual network. The best values for the evaluation
metrics are highlighted in bold.
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Table 4. The quantitative evaluation of ablation experiments. The best values of the index are marked
in bold.

Data Index ARNet MRNet MANet MARSTFN

Hailar
SSIM 0.9492 0.9514 0.9502 0.9535
RMSE 0.0271 0.0267 0.0265 0.0259

Dezhou
SSIM 0.9415 0.9413 0.9422 0.9456
RMSE 0.0254 0.0248 0.0245 0.0240

From Table 4, it can be seen that on the Hailar dataset, both MRNet and MANet
have higher SSIM values than ARNet, indicating that these two models have better spa-
tial information prediction capabilities than ARNet. Additionally, the RMSE values for
MRNet and MANet are lower than those for ARNet, indicating that these two models
have more accurate spectral information change predictions than ARNet. This suggests
that incorporating a multiscale mechanism can enhance the model’s prediction ability, and
combining the multiscale mechanism with either an attention mechanism or a residual
network can effectively predict both spatial and spectral information in the image. On
the Dezhou dataset, the SSIM value for ARNet is higher than that for MRNet, indicating
that the combination of the attention mechanism and residual network has achieved good
results. Moreover, the SSIM value for MANet is also higher than that for MRNet, indicating
that adding an attention mechanism can improve the model’s prediction ability, and intro-
ducing a residual network on this basis can further enhance the model’s ability to predict
high-resolution images. On both the Hailar and Dezhou datasets, MARSTFN achieves
optimal SSIM and RMSE values, indicating that incorporating a multiscale mechanism,
an attention mechanism, and a residual network enables the effective extraction of both
spatial and spectral information from the image. Figure 12 shows the results of the three
comparison experiments on 8 February 2019 on the Hailar dataset, and Figure 13 displays
the results of the three comparison experiments on 26 October 2018 on the Dezhou dataset.
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In Figures 12 and 13, (a) represents the real image, (b) represents the prediction result
of ARNet, (c) represents MRNet’s prediction result, (d) represents MANet’s prediction result,
and (e) represents MARSTFN’s prediction result. From Figure 12, it can be observed that the
prediction result of ARNet exhibits significant spectral distortion, while the prediction results
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of MRNet, MANet, and MARSTFN closely resemble the real image. This indicates that the
introduction of a multiscale mechanism can effectively capture spatial and spectral details of
the image, which also corresponds to the quantitative evaluation results. From Figure 13, it can
be observed that the prediction results of MRNet and MANet have lost a considerable amount
of texture details. In comparison, ARNet maintains texture details relatively well. This suggests
that the introduction of an attention mechanism is crucial for recovering texture details in
areas with significant spectral variations. In both Figures 12 and 13, the prediction results of
MARSTFN are the closest to the real image, indicating that our approach can effectively extract
image features. Although our approach has made improvements in extracting spatial and
spectral information from the images, there are still some shortcomings, such as the relatively
low prediction accuracy in areas with significant spectral variations, which may be addressed
by collecting more suitable datasets in the future.

5. Conclusions

We validated the effectiveness of our proposed spatiotemporal fusion network (MARSTFN)
using two datasets and obtained the best experimental results. The main contributions of our
research are summarized as follows:

1. We introduced a novel spatiotemporal fusion (STF) architecture, namely MARSTFN,
which combines a multiscale mechanism, an attention mechanism, and a residual
network to effectively extract spatial and spectral information from the images.

2. Through comprehensive experiments on two datasets, we demonstrated that MARSTFN
outperforms other existing methods in terms of image detail preservation, as well as
overall prediction accuracy.

3. Our proposed STF architecture addresses the limitations of existing methods in cap-
turing both spatial and spectral information, particularly in areas with significant
spectral variations.

The experimental outcomes confirm the proficiency of our proposed methodology in
accurately forecasting images across various scenarios. This includes the Hailar region,
characterized by gradual phenological transformations, and the Dezhou area, featuring
swift phenological alterations. Our approach, harnessing Sentinel-2 10 m resolution data
and Landsat 8 15 m resolution data as supplementary resources, successfully upgrades
the Landsat 30 m resolution data to a 10 m resolution through the integration of the
multiscale mechanism, attention mechanism, and residual network. This fusion framework
skillfully harmonizes the intricate details present in low-resolution imagery with the
thorough spatial characteristics of high-resolution data, thereby optimizing the production
of highly accurate high-spatial high-temporal resolution predictions. Nevertheless, access
to comprehensive and relevant datasets remains a limiting factor in significantly enhancing
the overall prediction accuracy. As such, we plan to dedicate further research efforts toward
identifying and utilizing more appropriate and extensive datasets for spatiotemporal fusion
purposes. These issues can be further discussed in future studies.
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