
Citation: Tan, Q.; Yang, X.; Qiu, C.;

Jiang, Y.; He, J.; Liu, J.; Wu, Y.

SCCMDet: Adaptive Sparse

Convolutional Networks Based on

Class Maps for Real-Time Onboard

Detection in Unmanned Aerial

Vehicle Remote Sensing Images.

Remote Sens. 2024, 16, 1031. https://

doi.org/10.3390/rs16061031

Academic Editor: Joaquín

Martínez-Sánchez

Received: 24 November 2023

Revised: 1 March 2024

Accepted: 11 March 2024

Published: 14 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

SCCMDet: Adaptive Sparse Convolutional Networks Based on
Class Maps for Real-Time Onboard Detection in Unmanned
Aerial Vehicle Remote Sensing Images
Qifan Tan 1 , Xuqi Yang 2, Cheng Qiu 1,* , Yanhuan Jiang 3, Jinze He 2, Jingshuo Liu 2 and Yahui Wu 3

1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China;
tanqf@bjtu.edu.cn

2 School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; yxq_thu@163.com (X.Y.);
he_jinze@163.com (J.H.); liujingshuo424@163.com (J.L.)

3 Changcheng Institute of Metrology and Measurement, Beijing 100095, China; jiangyh010@avic.com (Y.J.);
wuyh021@avic.com (Y.W.)

* Correspondence: chqiu@bjtu.edu.cn

Abstract: Onboard, real-time object detection in unmaned aerial vehicle remote sensing (UAV-RS)
has always been a prominent challenge due to the higher image resolution required and the limited
computing resources available. Due to the trade-off between accuracy and efficiency, the advantages
of UAV-RS are difficult to fully exploit. Current sparse-convolution-based detectors only convolve
some of the meaningful features in order to accelerate the inference speed. However, the best
approach to the selection of meaningful features, which ultimately determines the performance, is
an open question. This study proposes the use of adaptive sparse convolutional networks based
on class maps for real-time onboard detection in UAV-RS images (SCCMDet) to solve this problem.
For data pre-processing, SCCMDet obtains the real class maps as labels from the ground truth to
supervise the feature selection process. In addition, a generate class map network (GCMN), equipped
with a newly designed loss function, identifies the importance of features to generate a binary class
map which filters the image for its more meaningful sparse features. Comparative experiments were
conducted on the VisDrone dataset, and the experimental results show that our method accelerates
YOLOv8 by 41.94% at most and increases the performance by 2.52%. Moreover, ablation experiments
demonstrate the effectiveness of the proposed model.

Keywords: object detection; remote sensing; sparse convolution; onboard; real time; UAV-RS

1. Introduction

With the increasing popularity of drones and advancements in computer vision tech-
nology, unmanned aerial vehicle (UAV)-based imaging technology has gained widespread
application. Due to their flexibility and universal applicability, drones have significant
advantages in low-altitude remote sensing applications. Neural network-based general
object detection has achieved great success, with an increasing number of state-of-the-art
(SOTA) methods improving the accuracy of object detection on various public datasets. In
combination with object detection models, UAVs can be widely used in the fields of environ-
mental monitoring, agricultural protection, power grid inspection, and disaster response.
Due to limitations in edge resources, current methods primarily rely on cloud computing,
with the drone transmitting images back to a cloud server for inference in pursuit of higher
accuracy. However, cloud computation not only requires a good communication environ-
ment, but also has a communication delay, which is not suitable for real-time tasks. There
are, therefore, still some challenges in the application of unmanned aerial vehicle remote
sensing (UAV-RS), such as onboard real-time object detection, which requires achieving
fast processing speeds for high-resolution images using the limited onboard computational
resources. This paper is focused on the onboard detection of UAV-RS images.

Remote Sens. 2024, 16, 1031. https://doi.org/10.3390/rs16061031 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16061031
https://doi.org/10.3390/rs16061031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4678-6622
https://orcid.org/0000-0002-1941-1614
https://doi.org/10.3390/rs16061031
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16061031?type=check_update&version=1

Remote Sens. 2024, 16, 1031 2 of 19

Recently, many researchers have attempted to solve the problem of the cloud process-
ing of aerial images from drones, aiming to address issues such as small objects or unevenly
distributed objects, varying flight altitudes, high resolutions, and constantly changing
perspectives in aerial images. These researchers have designed more complex models for
higher accuracy in the detection of small objects in high-resolution aerial images; however,
cloud detection cannot be used in all aspects. In some aspects, UAVs need onboard detec-
tion to provide feedback on their actions because cloud detection is not suitable for real-time
communication tasks. Therefore, onboard detectors are needed to achieve fast inference
and low latency in lightweight models deployed on the resource-constrained edge units
equipped on UAVs. Many efforts have been made to address the dilemma of balancing
accuracy and efficiency, focusing mainly on onboard detection. The authors of [1–3] mainly
focus on reducing the complexity of the computational backbone or designing a backbone
suitable for edge devices. In addition, several methods have been proposed to address this
issue, including network pruning [4,5] and model distillation, which have been proven
effective at accelerating inference. These methods are not novel methods and can be used to
accelerate any model by sacrificing performance. In addition, the uniform down-sampling
method [6,7] balances accuracy and speed by reducing the resolution of the original image
and changing the size of meaningful areas. However, the reasonable scaling of meaningful
areas is challenging, especially in drone images.

Sparse convolution [8] is another promising alternative that limits computational
performance by employing convolutions only on sparsely sampled regions or channels via
a learnable mask. While theoretically attractive, the practical results are highly dependent
on selecting meaningful regions, since the focal region of the learning mask in sparse
convolution tends to lie within the foreground. Furthermore, DynamicHead [9] and
QueryDet [10] apply sparse convolutions to the detection head; unfortunately, their primary
goal is to offset the increased computational cost when additional feature maps are jointly
used for performance gain on general object detection. They both follow the traditional
approach in original sparse convolutions of setting fixed mask ratios or focusing on the
foreground only, and are thus far from reaching the optimal trade-off between accuracy
and efficiency required by UAV detectors. CASEC [11] proposes an AMM approach to
find a mask that strikes the optimal balance between accuracy and efficiency. However,
this method only pays attention to the activity ratio of the mask, and disregards the
activity position of the mask. In addition, this method is concerned with the inaccuracy
of the foreground and proposes a context-enhanced (CE) method to recover part of the
background, which increases the computation and inference time to some extent. The
CE module appears to compensate for the loss of information from sparse convolution,
which is a sub-optimal approach. As a result, it is particularly important to find an optimal
approach to efficiently and completely extract meaningful regions in remote sensing images,
and how to extract the entire meaningful region for sparse-convolution-based onboard
detection for UAV-RS images is still and open question.

In this study, the proposed SCCMDet method is focused on how to best extract
the entire meaningful region from an image. For the task of object detection, the most
meaningful regions are the areas that contain objects. In this view, SCCMdet is a method
designed to map the meaningful regions of real class maps that have the same size as the
feature maps. The class maps comprise the masks used in CASEC and the query mask in
QueryDet. We refer to them as class maps because they have the same use as a class token
used in Vit. In class maps, the value of each point represents the proportion of meaningful
regions, and the position represents the region’s location. We will introduce the proposed
method in detail. In addition, a structure called the generate class map network (GCMN)
generates a class map under the supervision of a real class map. This study also designs a
loss function for the class map to improve the accuracy of class map production, which is
important for sparse convolution. These methods can be easily extended to various sparse-
convolution-based detectors for improving the accuracy of the selection in meaningful
areas. In summary, we make three main contributions in our work:

Remote Sens. 2024, 16, 1031 3 of 19

(1) This paper proposes the SCCMDet model for real-time, onboard sparse-convolution-
based detection of UAV-RS images. We design real class maps from the ground truth
images to supervise the selection of sparse features, thus accelerating the inference speed.

(2) For the GCMN structure, we propose a method for obtaining a real class map and
design a loss function to evaluate the performance of the class map generated by the
GCMN to feed back to the network. The GCMN has the ability to generate more
meaningful sparse features for improving the performance of sparse convolution-
based detectors.

(3) We evaluate the proposed approach on a major public dataset. The results show that
the proposed approach significantly reduces computational costs. The performance
on a VisDrone shows that our method accelerates the operation of the YOLOv8 model
by 41.94% at most and increases the performance by 2.52%.

2. Related Works
2.1. Object Detection

The main objective of object detection is to classify and localize target objects using
bounding boxes. With the continuous development of convolutional neural networks
(CNNs), researchers have divided object detection methods into two-stage and one-stage
object detection. Two-stage object detection methods include two main steps: candidate
box generation and object classification with position regression. In the first stage, a
series of candidate boxes that may contain the target is generated. Then, in the object
classification and position regression stage, these candidate boxes are analyzed to determine
whether they actually contain targets, and the targets’ positions are accurately determined.
Representative algorithms in this category include the RCNN and its variants, which
achieve high detection accuracy. However, these algorithms are still far from achieving
real-time performance in terms of speed. Typical networks include Faster-RCNN and Mask
RCNN [12–14].

On the other hand, one-stage object detection involves uniformly sampling different
scales and aspect ratios directly at various positions in the image, followed by feature
extraction using CNNs to perform classification and regression. Some popular algorithms
in this category are the YOLO series models and the SSD algorithm [15,16]. However, one-
stage algorithms still have various shortcomings, and even the improved SSD algorithm
is surpassed by two-stage algorithms like Faster-RCNN. To improve the performance of
one-stage algorithms, attempts have been made to insert a coordinate attention module
into the backbone network, such as in the MCS-YOLO algorithm [17]. Other efforts include
using deeper network architectures with a greater number of residual and convolutional
blocks, as well as introducing more data augmentation methods like random cropping,
random rotation, and updated activation functions, as demonstrated by the YOLO-V7
algorithm [18].

Recently, a new type of anchor-free detection method has emerged that does not rely on
anchor-based methods and focuses on improving computational cost, training speed, and
inference speed. The FCOS method is a pioneering work in this direction. By eliminating
the complex computations involving predefined anchor boxes, FCOS completely avoids
the need for anchor-based operations, such as overlap calculation during the training
process, while reducing memory consumption. Furthermore, since only non-maximum
suppression (NMS) is adopted during post-processing, FCOS offers a simpler alternative to
anchor-based one-stage detectors [19]. A recent research achievement, Unbiased Teacher v2,
includes semi-supervised object detection techniques that provide favorable improvements
to the regression branch [20]. However, until the advent of Transformer [21], attention
mechanisms were not fully utilized in single- and two-stage object detection methods,
regardless of whether anchor boxes were used. The reason for this may not be difficult to
guess: it is challenging to determine how to best model the relationships between objects,
given the variations in scale, position, category, and quantity, all of which are different

Remote Sens. 2024, 16, 1031 4 of 19

due to changes between images. Most CNN-based methods currently in use are relatively
simple, having regular network structures that cannot handle more complex scenarios.

In this context, Relation Net [22] and DETR [23] are methods that utilize transformer-
based attention mechanisms for object detection. DETR has shown the best performance so
far. It uses CNNs to extract features from images, adds position encoding, and then inputs
the serialized data into an encoder that leverages attention mechanisms to extract features.
In the decoder stage, N initialized vectors are input, and each object query focuses on a
different position. Through decoding, N vectors corresponding to the detected objects are
generated. Finally, the neural network outputs the classes and positions of the targets.

In practical applications, such as remote sensing detection using drones and satellites,
the detection accuracy and precise localization of remote sensing objects are often challeng-
ing due to their small and densely distributed shapes. Some improvements have been made
in this regard, including partial modifications to the YOLO-V5 network structure and the in-
tegration of coordinate attention mechanisms in the YOLO-extract algorithm [24]. Another
approach mentioned earlier is the incorporation of Transformers into the feature extraction
layer, such as in RAST-YOLO [25]. This method proposes using the Swin Transformer as
the backbone and leveraging the region attention mechanism as the feature extractor and
utilizing the C3D module to fuse deep and shallow semantic information to optimize the
multi-scale problem in remote sensing target detection.

2.2. Sparse Convolution

Traditional convolution treats each position in the input equally. However, for sparse
data, this approach results in a significant waste of computational resources. Thus, how
to reduce unnecessary computations has become a focus of research. The authors of [26]
were the first to introduce sparse convolution, which reduces the computational cost of
convolution by discarding the computation of irrelevant locations in sparse input data.
To address the reduction in sparsity caused by convolution, Ref. [27] proposed a new
approach named the submanifold sparse convolutional network. The output location is
activated only when the corresponding input location is valid. This method avoids the
generation of too many active locations. Methods like [28–31] accept dense data and trim
unimportant portions based on masks to achieve efficient inference.

Several approaches have been proposed in previous studies to address this issue.
Adding a network to learn to extract the foreground region in the image is a common
approach [29,32]. For instance, SACT [33] predicts the halting score of each position in
the residual structure to decide whether to mark a position as inactive, and then skips the
subsequent calculation at these positions. Ref. [9] selects suitable regions from different
FPN scales for concatenation. Ref. [30] treats the mask matrix as a probability field. Each
point is sampled and calculated based on its probability, and the points not sampled are
interpolated by the network.

To reduce the computational cost of high-resolution images, QueryDet [10] uses low-
resolution feature maps to guide the sparse convolution of adjacent high-resolution feature
maps. To adapt to the dramatic variations in foreground regions in drone images, Ref. [11]
has designed an adaptive multi-layer masking method to optimize the mask ratio of
the foreground.

3. Proposed Method
3.1. Overall Framework

The overall framework for adaptive sparse convolutional networks based on class
maps for real-time onboard detection (SCCMDet) is introduced in Section 3.1. The details
on how the real class maps are generated are presented in Section 3.2. The generate class
map network (GCMN) and its functions are illustrated in Sections 3.3 and 3.4.

As shown in Figure 1, taking YOLOv8 as its base detector, SCCMDet replaces the
detection head with adaptive sparse convolutional networks based on class maps (SCCM)
in each FPN layer. Note that our SCCM approach is not limited to RetinaNet, as it can be

Remote Sens. 2024, 16, 1031 5 of 19

applied to any one-stage detector and to the region proposal network (RPN) in two-stage
detectors with FPNs.

Figure 1. Framework of SCCMDet. Taking YOLOv8 a base detector, SCCMDet replaces the detection
head with adaptive sparse convolutional networks based on class maps (SCCM) in each FPN layer.
The generate class map network (GCMN) is designed to extract meaningful regions from input
features under the supervision of a real class map.

In SCCM, the input is the features from the FPN. Through the GCMN, the input feature
turns into a sparse feature, representing a spare meaningful region. The generate class
map network (GCMN) is designed to extract the meaningful regions from input features
under the supervision of a real class map. Class maps determine the sparse features, and
therefore it is important to extract a reasonable class map from the input features. We
define the pixels in the object as meaningful regions and define the real class map as a
map that contains the activation ratio in each position. According to this definition, we
can generate the real class map from the training dataset. The size of the real class map is
different according to the feature maps of the different layers of the FPNs. For example,
the real class map in the P5 layer is not the same size as the map of the same feature in
the P4 layer. Moreover, the number of real class maps depends on the number of detector
headers. Under the supervision of a real class map, the model can be trained to generate
more reasonable class maps and sparse features to improve the accuracy of the sparse-
convolution-based detectors. After generating the sparse features, sparse convolution
replaces the YOLOv8’s original convolution method, which can accelerate the execution of
onboard UAV-RS detection tasks.

3.2. Class Map

Class maps, which supervise the delineation of meaningful areas, are the core of our
proposed method. This section will introduce how to generate a class map from an original
feature map.

As previously mentioned, we define the pixels in the object as meaningful pixels and
define the real class map as a map that contains the activation ratio in each position. The
original input image’s size is (H×W×3); after extracting features through the backbone and
FPN layers, the original input image, whose size is (H×W×3), is split into three features,
whose size is (H/n, w/n, channels), by the three FPN layers. Here, n is the down-sampling
multiplier of the feature map compared to the original image. Each value of the feature
map represents a receptive field; for example, the value in (1, 1, :) represents the areas in
the upper left corner of the original image, and the value in (1, W/n, :) represents the areas
in the upper left corner of the original image. The value is most importantly impacted
by the areas of (1 : H/n, 1 : W/n, 3). The value is also influenced by other areas, and the
closer the distance, the greater the influence.

To select more meaningful areas from feature maps, class maps should be the same
size as feature maps. Like feature maps, the value of a class map also depends on the
receptive field. Feature maps depend on the RGB value in the receptive field, while class

Remote Sens. 2024, 16, 1031 6 of 19

maps depend on the number of pixels in the receptive field. Considering the receptive
field is large when processed through deep convolutional networks and the impact differs
according to distance, we choose the patch ((p− 1)H/n : pH/n, (q− 1)H/n : qW/n, 3) of
the original image as the receptive field of class map (p, q). Therefore, the value of the real
class map of position (p, q) is the rate of meaningful pixels in the patch ((p− 1)H/n : pH/n,
(q− 1)H/n : qW/n, 3). The formula is as follows:

RF(p, q) = image(
(p− 1)H

n
:

pH
n

,
(q− 1)w

n
:

qW
n

, 3) (1)

RFM(p, q) = I f Meaning f ul(i) , for i in RF(p, q) (2)

I f Meaning f ul(i) =

{
0 , if i is a pixel in object
1 , if i is not a pixel in object

(3)

RCM(p, q) =
(n,n)

∑
(1,1)

(j) , for j in RFM(p, q) (4)

where RF represents the receptive field and RFM represents the meaningful pixel in RF.
RCM is the real class map, and (p,q) represents the position of the class map.

The pseudo-code for this process is introduced below (Algorithm 1).

Algorithm 1: The algorithms to generate real class map.
Data: original image: Img, object informations: Objects, the mutiple of

down-sampling : n, width of image : width, height of image : height,
judgement whether a block in object: conf, coordinate of
object:xmin/xmax/ymin/ymax,

Result: RCM
initialization;
while Imgs not null do

Img = getImg(Img);
height,width=getImgInfo(Img);
RCM = zeros(height/n,width/n);
xmin,ymin,xmax,ymax= getObjInfo(Objects);
while Objects not null do

for obj in Objects do
conf(xmin:xmax,ymin:ymax)=1;
//If the pixel in objects,turn conf into 1;

end
for i in height do

for j in width do
block← conf(i,j);
block_ sum← ∑m

i=1 block;
i← i+n;
j← j+n;
RCM(i/n,j/n)← block_ sum/n2;

end
end
return RCM;

end
end

As shown in Figure 2, the feature consists of eight multiple down-samplings through
the backbone and FPN layers. In the sample patch (6,7), there are 8 × 8 pixels in total and

Remote Sens. 2024, 16, 1031 7 of 19

20 in the objects. As a result, position (6,7) of the real class map is 20
64 . After calculating the

position of each real class map and each layer of the FPN, the process of generating real
class maps is complete.

Figure 2. The process of generating a real class map from a ground truth.

3.3. The Generating Class Map Network

After obtaining the real class map, the generating class map network (GCMN) is
designed to generate a class map under the supervision of the real class maps (Figure 3).

Figure 3. The process of generating a real class map from a ground truth.

The real class map of the FPN layer and the feature map of the same layer are the
inputs of the GCMN. After some convolutional layers, the (H×W×C) feature maps turn
into a (H×W×1) class map. The values of the class map are between 0 and 1, which
represents the meaningful area rate in this patch. In addition, a learnable threshold T,
which depends on the learnable parameter l, is set to binarize the class map. The formula
for this step is as follows:

Remote Sens. 2024, 16, 1031 8 of 19

T =
2
5

1
1 + e−p +

1
10

(5)

Binary(i) =

{
1 , if i > T
0 , if i < T

(6)

CM(p, q) = Binary(CM(p, q)) (7)

where T is the threshold to binarizing the class map with a value between 0.1 and 0.5, l is
the learnable parameter, Binary() is the binary function, and CM is the class map.

Then, the real class map is used to supervise the generation of further class maps
based on the feature maps. Our method proposes a metric to evaluate the equality of the
class map and design a loss function according to the metrics. This metric is simply the
mean square error (MSE) between the generated class map and the real class map and this
method can really represent the error between a class map and a real class map. However,
this simple method presents a problem in that a learnable threshold T cannot be trained
by a real class map. As a result, the binary class map can sometimes differ greatly from
the real class map. This means that the binary class map should also be supervised by the
real class map. The value of the binary class map is either 0 or 1, and the threshold T is
between 0 and 0.5. The MSE is not a suitable metric for the two maps because the rate of
meaningful areas is not high in drone images. To solve this class imbalance problem, our
method introduces a focal loss function between BCM and RCM. In addition, there is a
negative phenomenon that the binary class map is also likely to fix the real class map by
setting it to 0 by learning a higher threshold T. The original purpose of introducing the real
class map is not only to supervise the generated class map but also to supervise the binary
class map. Therefore, another loss function to fit this situation is designed. The formula for
this loss function is as follows:

LossCM = ∑ (CM(p,q) − RCM(p,q))
2 (8)

pt =

{
RCMp,q , if the position (p, q) of BCM = 1
1− RCMp,q , otherwise

(9)

LossBCM =
n,n

∑
0,0
(−(1− pt)·log(pt)) (10)

Lossmap = α · LossCM + (1− α)·LossBCM (11)

where LossCM and LossBCM represent the loss of the class map and binary class map,
respectively; Lossmap is the total loss of the class map; and α is a manual parameter set
between 0 and 1.

Finally, the Losstotal can be defined as

Losstotal = w1·Lossmap + w2·Losscls + w3·Lossreg, (12)

where Losscls and Lossreg are same as the base detector and w1, w2, and w3 are the weights
for each loss.

Compared with an adaptive multi-layer masking (AMM) module, our proposed
method does not use the activation rate but rather the activation of areas. SCCMDet can
adaptively choose the activation areas using the GCMN, and focuses on more meaningful
areas in images to improve performance. The rate of the AMM module is the average
rate of a dataset, and although this setting can meaningfully improve the performance of
the method, it tends to predict the activation rate in an image as that of the dataset’s. For
example, if the rate in VisDrone is 37%, for an image with no objects, AMM will predict a
mask with an approximately 37% activation rate, which causes unnecessary computation.

Remote Sens. 2024, 16, 1031 9 of 19

3.4. Sparse Convolution Networks

Most existing detection heads for UAV images convolve on the whole set of feature
maps. Making full use of background information can be advantageous for small object
detection. However, it will result in a significant computational cost, which is not applicable
for resource-constrained UAV platforms. Moreover, the foreground regions occupy only a
small portion of the image. Therefore, traditional convolution wastes a substantial amount
of computational resources on useless information. This observation reveals the potential
to accelerate the detection head’s performance by focusing on the foreground regions.

Sparse convolution has only recently been proposed. Sparse convolution learns
to focus on foreground regions by using sparse masks. A diagram of this process is
shown in Figure 4. The use of sparse convolution can reduce the number of unnecessary
computations performed on background regions and effectively speed up the inference
phase on a variety of vision tasks. To understand sparse convolution, we first need to
comprehend the computational formula for sparse convolution.

Figure 4. Activation areas considered as meaningful regions are put into sparse convolution. Only
the meaningful regions and their neighboring regions need to be calculated; other regions are ignored.

An input feature s with input channels cin and output channels cout and data dimension
d is processed by a kernel w of size K(w ∈ Rcin×Kd×cout). For sparse convolution, the
input feature is restricted to Pin, where Pin represents the effective region containing the
foreground. The output feature is Pout. At position p, the sparse convolution is represented
as follows:

yp = ∑
k∈Xp

wk · spk (13)

pk = p + k represents the positions around p, where k is an offset distance from p and k
enumerates all discrete locations in the kernel space X. Xp is a subset of X, leaving out the
empty positions of X, calculated as follows:

Xp = {k | p + k ∈ Pin, k ∈ X} (14)

If Pout includes a union of all dilated positions around Pin and covered by X, this
process is formulated as follows:

Pout = ∪
p∈Pin

Pn (15)

where Pn is
Pn = {p + k | k ∈ X} (16)

Under these conditions, the formula represents conventional sparse convolution.
However, this method extends the position containing the foreground region in subsequent
layers, thus increasing the computational cost.

Remote Sens. 2024, 16, 1031 10 of 19

When Pin = Pout, this form of sparse convolution is called submanifold sparse con-
volution. Convolution in this method is performed when the center of the convolution
kernel is in the foreground region. This design reduces the number of computations and
is thus commonly used. However, this approach discards essential information from the
background, which degrades the model’s capabilities

4. Experiments and Results
4.1. Dataset

We adopt the VisDrone [34] dataset for training and evaluation in our experiments.
VisDrone is designed for UAV platforms and consists of 7019 aerial images belonging to
10 categories, including pedestrians, people, cars, vans, buses, trucks, motorcycles, bicycles,
canopies of tricycles, and tricycles. Of note, a person is classified as a pedestrian if they
are standing or walking in the image; otherwise, they are classified as people. Meanwhile,
objects with a truncation ratio greater than 50% are skipped during the computation. Images
in VisDrone contain different scenes to ensure variety in the training data. The dataset
is collected from a UAV’s perspective. Therefore, VisDrone offers a broader field of view
and enables researchers to conduct studies more effectively compared to other datasets.
Moreover, VisDrone provides abundant annotation information, including occlusion ratios
and truncation ratios, which assist in evaluating the conditions of the objects and in the
adjustment of our algorithms and models.

4.2. Evaluation Metrics

We employ the mean average precision (mAP) as the metric for evaluating accuracy,
as well as FPS as the metric for efficiency.

TP is defined as a positive sample that is classified as true; FP is a negative sample
classified as true; TN is a negative sample classified as false; and FN is positive sample
classified as false. Moreover, Precision and Recall are calculated as follows:

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

where Precision means the rate of accuracy in our prediction and Recall means the rate of
accuracy of identifying positive samples. When we adjust the IOU threshold from 0 to 1,
we obtain a series of values for Precision and Recall, and these values can be used to form
a curve.

The AP is the integral of the curve. APIOU=0.50 means that the IOU larger than 0.5 is a
TP. APIOU=0.50,0.05,0.95 means that the intersection to union ratio starts from 0.5 and increases
at an interval of 0.05, taking a final value of 0.95, and the mean is calculated from this.

The mAP is obtained by averaging the APIOU=0.50,0.05,0.95 across all classes and is used
to measure the accuracy of the model. It is a comprehensive metric that can evaluate
the performance across multiple classes of the model. A higher mAP means a better
performance in object detection. The mAP@50 is obtained by averaging the APIOU=0.50.

FPS (frames per second) represents the number of image frames processed by the
model per second and is used to measure the model’s efficiency at handling image data. It
can be calculated as follows:

FPS =
num

t
(19)

where num is the number of images collected in time t.

4.3. Implementation Details

We implement our approach based on PyTorch [35] and a Python package called
spconv. All models are trained on NVIDIA 4090 GPUs and tested on an NVIDIA 3090 GPU.
For VisDrone, the batch size is set to 8. The optimizer used is the stochastic gradient

Remote Sens. 2024, 16, 1031 11 of 19

descent (SGD) with an initial learning rate of 0.01. The weights of each loss are set to 0.2,
0.4, and 0.4. The value of α in Lossmap is set to 0.6.

In particular, the real class maps are used as the input labels when training, and each
image has three maps, one for each FPN layer.

4.4. Baseline

To evaluate the performance of the model, we used eight methods as a baseline:
Cascade RCNN, RetinaNet, YOLOV5, YOLOV8, YOLOX, DETR, QueryDet, and CEASC
(RetinaNet). The following is a brief description of the eight methods:

Cascade RCNN [36]: Cascade R-CNN is an object detection algorithm that features
a cascade structure. Its fundamental idea is to progressively improve detection accuracy
through multiple stages of cascaded detectors. Each stage of the cascade builds upon
the previous stage’s output, further processing and refining it to arrive at more precise
detection results. This cascade structure effectively reduces the number of false positives
and enhances the detector’s accuracy.

RetinaNet [37]: RetinaNet is a state-of-the-art object detection algorithm that addresses
the class imbalance problem between the foreground and background in object detection.
It introduces a novel loss function called focal loss, which effectively down-weights the
contribution of a large number of easily classified negative samples during training and
focuses more on the hard-to-classify samples.

YOLOV5n: Compared to previous versions, YOLOv5 employs a more efficient net-
work architecture, allowing for real-time detection across a range of hardware devices.
Additionally, it utilizes sophisticated training techniques and data augmentation strategies,
greatly enhancing the model’s overall performance.

YOLOV8n: YOLOv8 represents the latest iteration in the real-time object detection
algorithm series known as YOLO (You Only Look Once). This version combines the
strengths of its predecessors with new technological advancements, resulting in a significant
improvement in both speed and accuracy.

YOLOX [38]: YOLOX is a cutting-edge object detection algorithm that builds upon
the YOLO series, introducing a range of innovations and optimizations. It leverages an
efficient network architecture that integrates techniques such as CSPNet, a SiLU activation
function, and PANet, enabling it to excel in real-time object detection tasks.

DETR [39]: DETR, short for Detection Transformer, is a groundbreaking model for
object detection tasks. It marks the first time that the Transformer architecture has been
adapted for object detection, enabling a truly end-to-end approach.

QueryDet [10]: QueryDet is a novel algorithm designed for object detection tasks. It
employs a query-based approach to detect objects, utilizing a set of predicted query vectors
to represent targets’ locations and category information. Compared to traditional object
detection methods, QueryDet offers greater flexibility and efficiency.

CEASC (RetinaNet) [11]: A context-enhanced adaptive sparse convolutional network
(CEASC) that first develops a context-enhanced group normalization layer.

4.5. Comparisons of Performance

Figures 5 and 6 illustrate the performance of our method and benchmark methods
on the VisDrone dataset. The detail is shown in Table 1. The results show that SCCMDET
performs the best. We can draw five primary conclusions from the table:

(1) Cascade RCNN is a two-step detector, and DETR is a transformer-based detector.
Cascade RCNN is the best method and the DETR is the second best method in terms
of accuracy due to its detector-type long latency. SCCMDet is a single-step detector,
so its accuracy is a bit lower than that of Cascade RCNN and DETR. Although the
performances of these models are good, they are are too slow to infer an image in real
time and are thus not suitable for UAV-RS tasks.

(2) YOLO-based detectors always achieve a balance between accuracy and inference
speed. As a result, SCCMDet chooses YOLOv8 as a base detector.

Remote Sens. 2024, 16, 1031 12 of 19

(3) Compared with sparse-convolution-based detectors like QueryDet and CEASC, in
VisDrone, our method is better because the other networks use RetinaNet as their
base detectors. More experiments comparing the details of these methods are carried
out in the ablation study.

(4) Compared with other methods, our method’s use of YOLOv8 as a base detector in
VisDrone results in a performance enhanced by 2.52% in terms of accuracy and by
41.94% in terms of inference speed.

(a)

(b)

(c)

Figure 5. Comparison 1 of original image (a), YOLOv8n detector (b), and SCCMDet (c) based
on YOLOv8n.

Remote Sens. 2024, 16, 1031 13 of 19

(a)

(b)

(c)

Figure 6. Comparison 2 of original image (a), YOLOv8n detector (b), and SCCMDet (c) based
on YOLOv8n.

Remote Sens. 2024, 16, 1031 14 of 19

Table 1. Comparison of baseline methods with SCCMDet.

Method mAP@50 FPS

Cascade RCNN [36] 54.81 5
RetinaNet [37] 40.24 11

YOLOV5 49.84 33
YOLOV8 (base detector) 50.66 31

YOLOX [38] 50.37 34
DETR [39] 53.74 3

QueryDet [10] 48.14 13
CEASC + RetinaNet [11] 46.27 15

Ours 51.94 44

improve% 2.52 41.94

4.6. Ablation Study
4.6.1. GCMN, CSQ, and AMM

To prove the usefulness of the GCMN, we compared its performance to that of CSQ
and AMM. CSQ was first proposed in paper and AMM was first proposed in paper. All of
these methods are used to generate masks to select meaningful regions in feature maps to
input sparse convolution layers. As shown in Table 2, we have observed that the accuracy of
the YOLOv8 detector is higher than that of RetinaNet due to YOLOv8 being more powerful.

Table 2. Ablation learning on resolution, mask methods, and base detector.

Base Detector Method Image Size mAP@50 mAP FPS

Baseline 35.56 20.72 62
CSQ (QuerryDet) 34.49 20.31 66
AMM (CEASC) 34.85 20.41 70YOLOv8

Ours 33.06 18.41 73

Baseline 26.48 15.88 17
CSQ (QuerryDet) 25.13 15.03 20
AMM (CEASC) 24.37 14.83 23RetinaNet

Ours

640

23.53 14.62 23

Baseline 50.67 32.59 31
CSQ (QuerryDet) 52.01 33.34 36
AMM (CEASC) 50.97 31.63 45YOLOv8

Ours 51.94 33.17 44

Baseline 40.28 21.76 11
CSQ (QuerryDet) 41.05 21.85 13
AMM (CEASC) 40.21 14.8 16RetinaNet

Ours

1280

41.47 22.09 16

In addition, the resolution of the image has a great influence on the sparse-convolution-
based detector. Compared with baseline, the accuracy of the three methods all decreased
on the image with a resolution of 640 × 640, while they all increased on the higher-
resolution 1280 × 1280 image. To explain this phenomenon, we posit that the sparse
convolution method can effectively extract the foreground and eliminate the noise from the
background in the high-resolution image. However, sparse convolution also loses some
important information when the resolution is low. Overall, sparse convolution is suitable
for onboard detection in UAV-RS images, and we will analyze the results on an image with
a 1280× 1280 resolution.

Compared with the AMM method, the GCMN has nearly the same inference speed
but performs better in terms of accuracy. The AMM method is a simple method used to
generate masks without real labels. As a SOTA approach, CAESC mainly depends on the
context-enhanced (CE) module to increase its accuracy. In contrast, the CSQ method has

Remote Sens. 2024, 16, 1031 15 of 19

the highest accuracy using the YOLOv8 detector and the second highest accuracy using the
RetinaNet detector, albeit with the slowest inference speed. The CSQ method employs full
convolution in the P5 layer and needs to perform inferences in a certain order.

In conclusion, the GCMN, which simply makes use of the label from the ground truth,
shows better performance in both accuracy and inference speed.

4.6.2. On BCM and RCM

Figures 7 and 8 show a comparison between the RCM from the ground truth and the
BCM from the GCMN. The white regions in the BCM represent the meaningful regions
which will be input into the sparse convolution layer. When there are fewer regions to be
computed, the computational demand will evidently be decreased. As we expected, the
inference time is significantly shorter using sparse convolution, and this method has the
potential to be used onboard UAV platforms for remote sensing detection at low heights.

The loss function is designed to reduce the number of errors between the BCM and
RCM in order to find meaningful regions. The BCM should be the same as the RCM in
each layer. However, there is a significant gap in the BCM in each layer, especially the P5
layer, in which there is not even a region selected to input into the next layer. In addition,
the P3 and P4 layers tend to select regions with objects whose size is suitable to predict in
the P3 or P4 layer. We suppose that the CM in different layers not only has the ability to
find meaningful regions, but also has the ability to identify the scale of the objects in these
selected regions. There are almost no large objects in the VisDrone dataset, and as a result,
the BCM in the P5 layer has fewer white regions.

BCM p3 BCM p4 BCM p5

RCM p3 RCM p4 RCM p5

BCM p3 BCM p4 BCM p5

RCM p3 RCM p4 RCM p5

Figure 7. Comparison 1 of real class map with binary class map.

In addition, the RCM in each layer is still different from the BCM layer. We inspect the
loss function to ensure it is convergent and find that the total loss has decreased to a low
level and is stable. However, the Lossmap is decreased to a moderate level. If we set a large

Remote Sens. 2024, 16, 1031 16 of 19

weight for Lossmap, the Lossmap will be decreased to a low level, but the Lossreg becomes
incorrect. To explain this phenomenon, we posit that if the weight for Lossmap is too large,
the backbone and FPN layers tend to be a classifying network, which is not suitable for the
final remote sensing detection task.

BCM p3 BCM p4 BCM p5

RCM p3 RCM p4 RCM p5

BCM p3 BCM p4 BCM p5

RCM p3 RCM p4 RCM p5

Figure 8. Comparison 2 of real class map with binary class map.

4.6.3. Class Performance

To gain a better understanding of the model’s performance for different kinds of
classes within the Visdrone dataset, the performance table for various classes is shown in
Table 3. If the mAP@50 of our method is 5% higher than YOLOv8’s, we define that as high.
If the mAP@50 of our method is 5% lower than YOLOv8’s, we define that as low. Otherwise,
the mAP is considered moderate.

Compared with YOLOv8, SCCMDet’s APs are high in the car, van, truck, and bus
categories and low in the bicycle and motorcycle categories. SCCMDet can improve the
accuracy of the detection of large objects while maintaining the accuracy of small objects
like people and pedestrians. However, in the bicycle and motorcycle classes, the accuracy
is very low.

Table 3. Performance table for various classes.

Method mAP@50 Pedestrian People Bicycle Car Van Truck Tricycle Awning-
Tricycle Bus Motor

RetinaNet 54.81 55.4 32.5 9.9 82.6 74.4 52.4 31.3 17.6 80.1 42.5
Cascade RCNN 40.24 43.2 24.3 10.6 69.1 53.5 39.9 22.6 14.0 60.5 34.5

YOLOv5 49.84 48.0 30.5 9.2 76.2 67.0 44.5 26.7 17.0 76.1 40.2
YOLOv8 50.66 51.4 39.2 23.1 79.5 44.3 42.0 35.9 18.1 53.1 52.4
QueryDet 48.14 45.5 28.6 8.2 71.0 65.9 46.7 26.6 14.7 63.9 38.5

CEASC 46.27 44.1 27.2 7.9 74.4 62.9 44.3 26.0 15.1 63.7 37.1
Ours 51.94 49.5 35.5 8.8 85.5 70.6 49.8 29.2 17.0 71.5 35.7

Compared with YOLOv8 moderate moderate moderate low high high high moderate moderate high low

Remote Sens. 2024, 16, 1031 17 of 19

5. Discussions and Conclusions

When comparing our results to those of previous studies, it must be pointed out that
our method makes use of the ground truth to train the activation regions and uses sparse
convolution to accelerate the inference speed, and this makes it complex to train. The
performance of our method is enhanced by 2.52% in terms of accuracy and by 41.94% in
terms of inference speed. From the ablation study, we can learn that the GCMN is more
efficient at activating the meaningful regions. The sparse convolution method and the
backbone are the main reasons behind the accelerated inference speed in our proposed
model. In addition, SCCMDet can improve the accuracy of detecting large objects while still
maintaining the accuracy of detecting small objects like people and pedestrians. However,
why the accuracy of detecting motors and bicycles is so poor remains an open question. It
is possible that it is a problem of data distribution.

Moreover, future iterations of edge deployment may in fact demonstrate even greater
potency. For example, if we deploy our method using TensorRT or ONNX, the inference
speed will be accelerated greatly. However, employing the TensorRT operator on a GPU is
not suitable for performing sparse convolution. Designing a TensorRT operator suitable for
sparse convolution on a GPU is a direction of our next work. For now, SCCMDet is suitable
for platforms which have restricted resources but need a real-time detector, especially
for UAV-RS.

This paper focuses on enhancing the selection of meaningful parts of RS images by
convolving them via sparse convolution and accelerating the inference speed. This study
proposes an adaptive sparse convolutional network based on class maps for real-time
onboard detection in UAV-RS images (SCCMDet), which solves the selection problem for
sparse convolution. From the data pre-processing perspective, SCCMDet obtains the real
class maps as labels from the ground truth to supervise the selection process. In addition,
the generated class map network (GCMN), equipped with a newly designed loss function,
explores the importance of features to generate a binary class map that filters for more
meaningful features. Comparative experiments show that our method is suitable for a
platform that has restricted resources but needs a real-time detector.

Author Contributions: Methodology, Q.T.; Software, J.H.; Validation, X.Y.; Resources, Y.J.; Writing—
original draft, X.Y.; Writing—review & editing, J.L. and Y.W.; Visualization, J.H.; Project administra-
tion, C.Q.; Funding acquisition, C.Q. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by The Fund of the Science and Technology on Metrology and
Calibration Laboratory (Grant No. JLKG2021001B001) and The Talent Fund of Beijing Jiaotong
University (Grant No. 2022RC014).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
2. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. Inverted Residuals and Linear Bottlenecks: Mobile Networks for

Classification, Detection and Segmentation. arXiv 2018, arXiv:1801.04381.
3. Howard, A.; Pang, R.; Adam, H.; Le, Q.V.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.; Tan, M.; Chu, G.; et al. Searching

for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Republic of Korea, 27 October–2 November 2019; IEEE: Hoboken, NJ, USA, 2019; pp. 1314–1324. [CrossRef]

4. Tessier, H. Convolutional Neural Networks Pruning and Its Application to Embedded Vision Systems (Élagage de Réseaux de
Neurones Convolutifs et son Application aux Systèmes Embarqués de Vision par Ordinateur). Ph.D. Thesis, IMT Atlantique
Bretagne Pays de la Loire, Brest, France, 2023.

5. Wang, J.; Cui, Z.; Zang, Z.; Meng, X.; Cao, Z. Absorption Pruning of Deep Neural Network for Object Detection in Remote
Sensing Imagery. Remote Sens. 2022, 14, 6245. [CrossRef]

http://doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.3390/rs14246245

Remote Sens. 2024, 16, 1031 18 of 19

6. Thavamani, C.; Li, M.; Cebron, N.; Ramanan, D. FOVEA: Foveated Image Magnification for Autonomous Navigation. In Pro-
ceedings of the 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, BC, Canada, 10–17 October
2021; IEEE: Hoboken, NJ, USA, 2021; pp. 15519–15528. [CrossRef]

7. Bejnordi, B.E.; Habibian, A.; Porikli, F.; Ghodrati, A. SALISA: Saliency-Based Input Sampling for Efficient Video Object Detection.
In Proceedings of the Computer Vision-ECCV 2022—17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 13670, pp. 300–316. [CrossRef]

8. Yan, Y.; Mao, Y.; Li, B. SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
9. Song, L.; Li, Y.; Jiang, Z.; Li, Z.; Sun, H.; Sun, J.; Zheng, N. Fine-grained dynamic head for object detection. Adv. Neural Inf.

Process. Syst. 2020, 33, 11131–11141.
10. Yang, C.; Huang, Z.; Wang, N. QueryDet: Cascaded sparse query for accelerating high-resolution small object detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 13668–13677.

11. Du, B.; Huang, Y.; Chen, J.; Huang, D. Adaptive Sparse Convolutional Networks with Global Context Enhancement for Faster
Object Detection on Drone Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Vancouver, BC, USA, 18–22 June 2023; pp. 13435–13444.

12. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA,
23–28 June 2014; IEEE Computer Society: Hoboken, NJ, USA, 2014; pp. 580–587. [CrossRef]

13. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

14. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [CrossRef]
[PubMed]

15. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection
Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.

16. Yan, C.; Zhang, H.; Li, X.; Yuan, D. R-SSD: Refined single shot multibox detector for pedestrian detection. Appl. Intell. 2022,
52, 10430–10447. [CrossRef]

17. Cao, Y.; Li, C.; Peng, Y.; Ru, H. MCS-YOLO: A Multiscale Object Detection Method for Autonomous Driving Road Environment
Recognition. IEEE Access 2023, 11, 22342–22354. [CrossRef]

18. Wang, C.; Bochkovskiy, A.; Liao, H.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC,
Canada, 17–24 June 2023; IEEE: Hoboken, NJ, USA, 2023; pp. 7464–7475. [CrossRef]

19. Wang, T.; Zhu, X.; Pang, J.; Lin, D. FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, Montreal, BC, Canada, 11–17 October
2021; IEEE: Hoboken, NJ, USA, 2021; pp. 913–922. [CrossRef]

20. Liu, Y.; Ma, C.; Kira, Z. Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
18–24 June 2022; IEEE: Hoboken, NJ, USA, 2022; pp. 9809–9818. [CrossRef]

21. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In
Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008.

22. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.S.; Hospedales, T.M. Learning to Compare: Relation Network for Few-Shot
Learning. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, 18–22 June 2018; Computer Vision Foundation/IEEE Computer Society: Hoboken, NJ, USA, 2018; pp. 1199–1208.
[CrossRef]

23. Choi, H.K.; Paik, C.K.; Ko, H.W.; Park, M.; Kim, H.J. Recurrent DETR: Transformer-Based Object Detection for Crowded Scenes.
IEEE Access 2023, 11, 78623–78643. [CrossRef]

24. Liu, Z.; Gao, Y.; Du, Q.; Chen, M.; Lv, W. YOLO-Extract: Improved YOLOv5 for Aircraft Object Detection in Remote Sensing
Images. IEEE Access 2023, 11, 1742–1751. [CrossRef]

25. Jiang, X.; Wu, Y. Remote Sensing Object Detection Based on Convolution and Swin Transformer. IEEE Access 2023, 11, 38643–38656.
[CrossRef]

26. Graham, B. Spatially-sparse convolutional neural networks. arXiv 2014, arXiv:1409.6070.
27. Graham, B.; Van der Maaten, L. Submanifold sparse convolutional networks. arXiv 2017, arXiv:1706.01307.
28. Su, H.; Jampani, V.; Sun, D.; Gallo, O.; Learned-Miller, E.; Kautz, J. Pixel-adaptive convolutional neural networks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019;
pp. 11166–11175.

29. Verelst, T.; Tuytelaars, T. Dynamic convolutions: Exploiting spatial sparsity for faster inference. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2320–2329.

http://dx.doi.org/10.1109/ICCV48922.2021.01525
http://dx.doi.org/10.1007/978-3-031-20080-9_18
http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TPAMI.2018.2844175
http://www.ncbi.nlm.nih.gov/pubmed/29994331
http://dx.doi.org/10.1007/s10489-021-02798-1
http://dx.doi.org/10.1109/ACCESS.2023.3252021
http://dx.doi.org/10.1109/CVPR52729.2023.00721
http://dx.doi.org/10.1109/ICCVW54120.2021.00107
http://dx.doi.org/10.1109/CVPR52688.2022.00959
http://dx.doi.org/10.1109/CVPR.2018.00131
http://dx.doi.org/10.1109/ACCESS.2023.3293532
http://dx.doi.org/10.1109/ACCESS.2023.3233964
http://dx.doi.org/10.1109/ACCESS.2023.3267435

Remote Sens. 2024, 16, 1031 19 of 19

30. Xie, Z.; Zhang, Z.; Zhu, X.; Huang, G.; Lin, S. Spatially adaptive inference with stochastic feature sampling and interpolation.
In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 531–548.

31. Qin, R.; Huangfu, L.; Hood, D.; Ma, J.; Huang, S. Kernel Inversed Pyramidal Resizing Network for Efficient Pavement Distress
Recognition. In Proceedings of the 29th International Conference, ICONIP 2022, Virtual Event, 22–26 November 2022; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 1793, pp. 302–312. [CrossRef]

32. Chen, Y.; Li, Y.; Zhang, X.; Sun, J.; Jia, J. Focal sparse convolutional networks for 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5428–5437.

33. Figurnov, M.; Collins, M.D.; Zhu, Y.; Zhang, L.; Huang, J.; Vetrov, D.; Salakhutdinov, R. Spatially adaptive computation time for
residual networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 1039–1048.

34. Zhu, P.; Wen, L.; Du, D.; Bian, X.; Fan, H.; Hu, Q.; Ling, H. Detection and tracking meet drones challenge. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 44, 7380–7399. [CrossRef] [PubMed]

35. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703.

36. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; Computer Vision
Foundation/IEEE Computer Society: Hoboken, NJ, USA, 2018; pp. 6154–6162. [CrossRef]

37. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002.
38. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.
39. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers.

arXiv 2020, arXiv:2005.12872.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-981-99-1645-0_25
http://dx.doi.org/10.1109/TPAMI.2021.3119563
http://www.ncbi.nlm.nih.gov/pubmed/34648430
http://dx.doi.org/10.1109/CVPR.2018.00644

	Introduction
	Related Works
	Object Detection
	Sparse Convolution

	Proposed Method
	Overall Framework
	Class Map
	The Generating Class Map Network
	Sparse Convolution Networks

	Experiments and Results
	Dataset
	Evaluation Metrics
	Implementation Details
	Baseline
	Comparisons of Performance
	Ablation Study
	GCMN, CSQ, and AMM
	On BCM and RCM
	Class Performance

	Discussions and Conclusions
	References

