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Abstract: In mixed-field source localization, the physical properties of a sensor array, such as the
degrees of freedom (DOFs), aperture, and coupling leakage, directly affect the accuracy of estimating
the direction of arrival (DOA). Compared to conventional symmetric uniform linear arrays, symmetric
non-uniform linear arrays (SNLAs) have a greater advantage in mixed-field source localization due
to their larger aperture and higher DOF. However, current SNLAs require improvements in their
physical properties through modifications to the array structure in order to achieve more accurate
source localization estimates. Therefore, this study proposes a symmetric double-supplemented
nested array (SDSNA), which translates nested subarrays based on symmetric nested arrays to
increase the aperture and inserts two symmetric supplemented subarrays to fill the holes created by
the translation. This method results in longer consecutive difference coarray lags and larger apertures.
The SDSNA is compared to existing advanced SNLAs in terms of their physical properties and DOA
estimation. The results show that, with the same number of sensors, the SDSNA has a higher DOF, a
larger aperture, and smaller coupling, indicating the advantages of the SDSNA in terms of its physical
properties. Under the same experimental conditions, the SDSNA has a lower root-mean-square error
of source location, thus indicating better performance in terms of both DOA and distance estimation.

Keywords: non-uniform linear array design; array signal processing; passive localization of
mixed sources

1. Introduction

Signal source localization technology has been an important technical development [1],
which is widely used in the fields of radar [2–4], remote sensing [5–8], microphone sys-
tems [9], unmanned aerial vehicles [10], and autonomous vehicles [11]. In source localiza-
tion techniques, array aperture and degrees of freedom (DOFs) are critical in determining
the accuracy of estimating the direction of arrival (DOA) for signal sources [12]. The DOF
essentially reflects the limitation of the array to the maximum number of estimable sig-
nal sources. In general, arrays with higher DOFs have higher DOA estimation accuracies,
indicating that they can discriminate and precisely localize signal sources more efficiently.

In the past few decades, researchers have made great progress in solving far-field (FF)
source localization problems based on plane wavefronts by applying the MUSIC [13,14],
ESPRIT [15–17], and compressed sensing [18,19] algorithms. However, near-field (NF)
sources exhibit a spherical waveform, which means that each NF source contains two
influential components: direction and range [20]. This characteristic disparity necessitates
a distinct approach in estimating the NF source instead of the methodology employed
for FF sources. This means that, when a signal source is located in the Fresnel region
of a receiving sensor, i.e., when the signal source is an NF source, the above algorithm
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will no longer be applicable. Researchers have proposed a series of methods to solve
the problem of NF source localization [21–24]. Nevertheless, in practical scenarios where
the source location remains unknown, most situations necessitate the precise localization
of the mixed-field source [25]. Early mixed source localization methods were generally
obtained from symmetric uniform linear arrays (SULAs) [26–29]. SULAs exhibit three
primary disadvantages compared to symmetric non-uniform linear arrays (SNLAs). Firstly,
the DOF in SULAs is constrained by the physical size of the array, limiting the number of
detectable sources without expanding the array size. Secondly, sensor spacing in SULAs is
typically kept within half a wavelength of the incident signal to avoid parameter estimation
ambiguity, necessitating larger apertures for longer wavelengths. This requires more
antenna sensors to enhance angle resolution and beam focusing, which can be impractical
for applications such as radio telescopes. Lastly, the arrangement in SULAs leads to
significant mutual coupling between sensors, adversely affecting the accuracy of sensor
estimations and overall algorithmic performance [30,31]. Recently, a significant amount of
research has been conducted on the use of SNLAs for localizing mixed-field sources [32,33],
emphasizing the significance of SNLAs.

The field of array designs, particularly in non-uniform arrays (NLAs), has seen signifi-
cant advancements in recent years, focusing on enhancing the array’s DOF and aperture [30].
NLAs such as nested arrays [34,35] and coprime arrays [36] have a higher DOF than tra-
ditional SULA arrays with the same number of sensors. In [37], a compressed symmetric
nested array (CSNA), by adjusting the phase reference point of the primary nested array,
was shown to mitigate the impact of array sensor extension on compressing the array
sensor. This adjustment results in an improved DOF compared to the primary nested
array with the same number of sensors. Further, the improved symmetric nested array
(ISNA) in [38] treats a central uniform linear subarray (ULA) as the standard, connecting
the gaps between nested subarrays and the central array with the sensor count of the central
ULA. This design enhances the consecutive lags of the array’s difference coarray (DCA).
Another significant advancement is the creation of the symmetrical double-nested array
(SDNA) [39]. This design, which builds upon the nested array concept, mirrors two nested
arrays to form a symmetrical structure. Its application in DOA estimation for mixed-field
sources has notably increased both the DOF and aperture of the array. Lastly, a symmetric
displaced coprime array (SDCA) [40] achieves an enhanced DOF compared to CSNA by
combining two coprime arrays and incorporating a translation related to the number of
central array sensors. Collectively, these developments signify a paradigm shift in array
design, emphasizing the potential of non-uniform arrays in various applications, especially
in enhancing array performance metrics such as DOF and aperture size.

In this study, we introduce an original array called a symmetric double-supplemented
nested array (SDSNA) for mixed NF and FF source localization. This array is combined
with three ULAs and two sets of independently supplemented sensors. The structure of the
SDSNA is based on the symmetric nested arrays (SNAs) [41], where the subarrays on either
side of the center subarray of the SNA are strategically shifted by the length of the center
subarray of the SNA. This design choice aims to increase the array’s aperture and improve
its DOF. Two independent supplemented sensors are placed on either side of the array after
the shift to address the spatial hole created by the shifting of the subarrays and further
expand the array’s aperture. This results in a symmetrically balanced double-supplemented
nested array. A key feature of the SDSNA is its ability to write closed-form expressions for
the array structure and to obtain the maximum consecutive lags in the array DCA from a
known number of sensors. The array’s configuration is characterized by its high DOF and
minimal coupling effects between sensors. Compared to other arrays under the equivalent
conditions of array sensor count, the SDSNA outperforms its counterparts in terms of
consecutive lags and exhibits reduced coupling leakage between array sensors. The SS-
MUSIC algorithm [42] was used for DOA estimation experiments on the SDSNA and other
comparison arrays. The results of these experiments demonstrate that the SDSNA achieves
superior angle accuracy, as evidenced by the lower root-mean-square error (RMSE) of the
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data obtained from the SDSNA compared to the contrasted arrays. These experiments
highlight the effectiveness of the SDSNA in mixed NF and FF source localization as well as
its advantage over other arrays.

The main contributions of this paper are summarized as follows:

1. An array design method that utilizes a reasonable arrangement of supplemented
sensors to fill DCA holes to achieve larger DOF for mixed-field source estimation.
This method strategically translates the nested subarrays on both sides based on
SNAs, introducing two additional sets of supplemented sensors and, thus, allowing
the supplemented sensors to fill the holes created by the translations. The method
results in a higher DOF for the same number of sensors and can be utilized in other
array designs.

2. An SDSNA formed using supplemented sensor design methods, which realizes higher
estimation accuracy in mixed-field source scenarios. The SDSNA can be configured
according to an array closed-form expression to achieve a higher accuracy DOA and
ranging estimates for mixed-field sources.

3. A more complete experiment was performed on SDSNAs. The number of array types
for experimental comparisons was increased, coupling effects between arrays were
considered, and numerical experiments on coupled leakage between array sensors
were extended.

The structure of this article is organized as follows: Section 2 presents the array’s
signal model and the specific algorithm implemented. Section 3 focuses on the array’s con-
figuration, introduces its closed-form expression, and delves into deriving the maximum
consecutive lags and the optimum configuration for the array. Section 4 engages in a com-
parative study of the DOF (i.e., consecutive lags) and the aperture of virtual arrays across
various arrays, supplemented by DOA numerical experiments that highlight the superior
performance of the SDSNA compared to other arrays. The numerical experiments show
that the SDSNA exhibits better performance compared to other arrays. Sections 5 and 6
present a comparative discussion and comprehensive summary of the array and its essential
characteristics.

2. Signal Model and Source Localization Algorithm
2.1. SNLA Signal Model

Firstly, consider L narrowband signals of a mixed NF and FF incident onto a spatial
sensor array, an SNLA composed of 2K + 1 sensors, and a spacing of d. Using the center of
the array as the phase reference point, the sensors in the array can be represented by xi,
which belong to a set of integers P = {xi, i = −K, . . . , 0, . . . , K}.

Assuming there are Ln NF sources and L − Ln FF sources, the output signal of the ith
sensor is [26]

yi(t) =
Ln

∑
l=1

sl(t)ejτN +
L

∑
l=Ln+1

sl(t)ejτF + ni(t) (1)

where sl(t) represents the signal of the lth signal source, and τN and τF represent the
propagation delay of the NF source and the FF source to the array, respectively. ni(t)
represents the noise of the ith sensor. The propagation delay function expression of the NF
source is [21,22,43]

τN = −2π
d
λ

xi sin(θl) + π
d2

λrl
x2

i cos2(θl) (2)

where d represents the sensor spacing and λ represents the wavelength of the incident
signal. θl and rl represent the direction parameters and the distance parameters of the
lth source, respectively. D is set as the physical array aperture and, when the source is

located in the Fresnel region, that is, 0.62
√
(D3/λ) < rl < 2D2/λ, in the interval, it is an
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NF source [44]. Conversely, if the source is in the Fraunhofer region, it is an FF source and
its rl → ∞ propagation delay function is [13,15]

τF = −2π
d
λ

xi sin θl (3)

By simplifying the correlation coefficient in the propagation delay expressions of FF
and NF sources, i.e., letting αl = −2π d

λ sin(θl ) and βl = π d2

λrl
cos2(θl ), we obtain

τN = αl xi + βl x2
i (4)

τF = αl xi (5)

By substituting Equations (4) and (5) into Equation (1), the received signal expression
of the receiving sensor is obtained as follows:

yi(t) =
Ln

∑
l=1

sl(t)ej(αixi+βl x2
i ) +

L

∑
l=Ln+1

sl(t)ejαl xi + ni(t) (6)

The expression of the above equation written into a matrix is as follows:

y(t) = ANsN(t) + AFsF(t) + n(t) (7)

where n(t) and y(t) are the noise and receiving signal vector of size (2K + 1) × 1, re-
spectively. AN and AF represent the array manifold matrices of the NF and FF sources
reaching the 2K + 1 sensors, respectively. In other words, AN and AF are matrices of size
(2K + 1)× Ln and (2K + 1)× (L − Ln), respectively. sN(t) and sF(t) represent NF signal
source vectors of size Ln × 1 and FF signal source vectors of size (L − Ln)× 1, and there are

y(t) =
[
y−K(t), ..., y0(t), ..., yK(t)

]T (8)

n(t) = [n−K(t), ..., n0(t), ..., nK(t)]
T (9)

sN(t) =
[
s1(t), ..., sLn(t)

]T (10)

sF(t) = [sLn+1(t), ..., sL(t)]
T (11)

AN = [a(θ1, r1), ..., a(θLn , rLn)] (12)

AF = [a(θLn+1), ..., a(θL)] (13)

where the FF and NF array manifolds are

a(θL, rL) =
[
ej(αLx−K+βLx2

−K), ..., 1, ..., ej(αLxK+βLx2
K)
]T

(14)

a(θL) =
[
ejαLx−K , ..., 1, ..., ejαLxK

]T
(15)

In order to better understand the receiving expression, we splice the array manifolds
of the FF and NF sources into a global matrix A as follows:

A(2K+1)×L = [a(θ1, r1), ..., a(θLn , rLn), a(θLn+1), ..., a(θL)] (16)

Finally, we obtain the signal expression of the receiving sensor as follows:

Y(2K+1)×1 = A(2K+1)×LSL×1 + N(2K+1)×1 (17)

The above equation divides the signal model of a mixed-field array into two parts—
signal propagation and additional noise—where SL×1 represents the mixed-signal source
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matrix of size L× 1, N(2K+1)×1 represents the mixed source noise matrix of size (2K + 1)× 1,
and Y(2K+1)×1 represents the received signal matrix of size (2K + 1)× 1.

2.2. DCA Signal Model

In this section, we theoretically prove the advantages brought by symmetric arrays
and why we need DCA.

This section outlines prior knowledge, namely:

(1) The source signals are statistically independent, zero-mean random processes with
nonzero fourth-order cumulants.

(2) The sensor noise sequence is zero mean Gaussian white noise and the noise is
independent of the signal.

(3) The sensor array is a symmetric NLA, in which the inter-sensor spacing is within a
quarter-wavelength.

Combined with the received signal equation in Section 2.1, the fourth-order cumulant
formula of the received signal is as follows:

cum{ym(t), y∗n(t), yp(t), y∗q(t)} (18)

where y∗l (t) represents the conjugate form of the received signal. According to Equation (6),
we combine and obtain the following:

cum{ym(t), y∗n(t), yp(t), y∗q(t)}

=
L

∑
l=1

c4,sl e
j[(xm−xn+xp−xq)αl+(x2

m−x2
n+x2

p−x2
q)βl ]

(19)

where the condition satisfied by this equation is m, n, p, q ∈
[
−K, K

]
and c4,sl = cum{sl(t),

s∗l (t), sl(t), s∗l (t)}. The source signal is a random variable and the corresponding delay propa-
gation is a constant. Equation (18) can be split by using the properties of high-order cumulants.

To mitigate the interference from higher-order cumulants caused by the NF source,
we effectively leverage the symmetric properties of the array. We select a symmetric
sensor, such as m = −n, q = −p; then, in Equation (19), we obtain the expression that
xm − xn + xp − xq ̸= 0, x2

m − x2
n + x2

p − x2
q = 0. The high-order cumulant formula is

as follows:
cum{ym(t), y∗n(t), yp(t), y∗q(t)}

=
L

∑
l=1

c4,sl e
j2(xm−xp)αl

(20)

By matrixizing the previous equation, we obtain:

F = EC4.sl E
H =

L

∑
l=1

c4,sl e(θl)e
H(θl) (21)

where C4.sl = diag(c4,s1 , c4,s2 , ..., c4,sl ), F is a cumulant matrix, and E =
[
e(θ1), e(θ2), ..., e(θl)

]
,

where e(θl) =
[
ej2αl x−K , ej2αl x−K+1 , ..., 1, ..., ej2αl xK−1 , ej2αl xK

]T . We vectorize F to obtain

z = vec(F) = Ecc (22)

where c =
[

c4,x1 , c4,x2 , ..., c4,xl

]T and Ec denotes the matrix after Kronecker multiplication
of the original matrix. Ec = [ec(θ1), ec(θ2), ..., ec(θl)], where ec(θl) = e∗(θl)⊗ e(θl). Matrix
Ec is equivalent to the manifold matrix of set P, where P = {xp − xq, p, q = −K, ..., 0, ..., K}.
We call a set such as set P a DCA.
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2.3. The Technology of Source Localization

According to the previous section, we need to apply a symmetrical array to eliminate the
high-order cumulants caused by NF sources and require a DCA to perform related algorithm
analysis. In particular, we need to apply an SNLA to perform DOA and range assessments.
Based on the consecutive lags in the virtual array of SNLAs, we apply the array model
theory and the spatial smoothing method [42,45] to construct the correlation matrix and
apply the MUSIC algorithm [46] to distinguish the DOA of the signal source.

Firstly, we obtain the covariance matrix Rxx of the received signal according to the
received signal matrix X(t), where Rxx = E{X(t)XH(t)}. Afterward, we use the longest
continuous subarray in the DCA, which is equivalent to a continuous ULA, to apply
the spatial smoothing algorithm. Let the longest consecutive lags of the DCA be U =
[−Hm, Hm]. By using the difference index of the elements generated in the difference
operation and the covariance matrix Rxx of the received signal, the smooth value of each
index of each element in U = [−Hm, Hm] is obtained (the concept of the index can be
explained via the difference index in Appendix A) and the corresponding construction
vector is obtained:

z = Essc (23)

where Ess is a (2Hm + 1)× l manifold matrix of a continuous array element U. The vector
z has (2Hm + 1) elements. Using vector z to construct a spatial smoothing matrix [42], we
obtain the following:

Rss ≜
1

Hm + 1

Hm+1

∑
l=1

zlz
H
l (24)

where zl denotes the subvector corresponding to the Hm + 1 − lth row to the 2Hm + 2 − lth
row in the vector z. Then, we perform eigenvalue decomposition on Rss and we obtain
the following:

Rss = UsΣsUH
s + UNΣNUH

N (25)

where Us is the subspace spanned by the feature vector corresponding to the large eigen-
value, that is, the signal subspace. Furthermore, UN is the subspace spanned by the feature
vector corresponding to the small eigenvalue, that is, the noise subspace. Using the orthog-
onal relationship between the steering vector in the signal subspace and the noise subspace,
we can write the 1D spectral peak search function:

f (θ) =
[

aH(θ)UNUH
Na(θ)

]−1

(26)

In the one-dimensional MUSIC spectrum, there are L distinct peaks, with each corre-
sponding to the arrival angles of L different sources. These angles of arrival are denoted as
θi = {θ1, . . . , θLn , θLn+1 . . . , θL}. Here, θN = {θ1, . . . , θLn} specifically represents the angles
of arrival for NF sources. However, in practical scenarios, the angular difference between FF
and NF sources remains uncertain. To address this, we utilize the orthogonal relationship
between the steering vector in the signal subspace and the noise subspace, enabling us to
delineate the spectral peak in a two-dimensional framework:

f (θ, r) =
[
aH(θ, r)UNUH

Na(θ, r)
]−1

(27)

After conducting a one-dimensional MUSIC spectral peak search using Equation (26),
the obtained arrival angles are θi = {θ1, ..., θLn , θLn+1 ..., θL}. Subsequently, inserting these
identified arrival angles into Equation (27) yields the desired result:

p(θi, r) =
[
aH(θi, r)UNUH

Na(θi, r)
]−1

(28)
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At this time, the spectral peak search is performed on the distance r and the corre-
sponding result of the search is [45] as follows:

rm = min
r

[aH(θi, r)UNUH
Na(θi, r)]−1 (29)

If the search result is located in the NF region, then the i-th angle corresponds to the
NF source; if it is located in the FF region, it is an FF source.

3. Array Configuration
3.1. Array Structure

In this section, we introduce an SNLA configuration, named a symmetric double-
supplemented nested array, designed for mixed source localization in both NF and FF
scenarios. The SDSNA configuration exhibits several outstanding characteristics. Firstly,
both its array configuration and maximum consecutive lags can be written as expressions.
Additionally, it surpasses other SNLAs in terms of its longer consecutive lags and a more
expansive physical array aperture. These features collectively enhance its performance in
source localization tasks.

The configuration of SDSNA is shown in Figure 1, which consists of seven parts,
including three ULAs and four symmetrical supplemented sensors. ULA1 has N sensors
with an interval of d, where d is the spacing between sensors. ULA2 and ULA3 are ULAs
with (N + 1)d internal sensor spacing and (N + 1)d spacing from ULA1. Supplement
1, as an independent supplemented sensor, can effectively fill in the holes generated by
the DCA of ULA1 and ULA2. It is separated from ULA2 and ULA3 by Nd. As another
independent supplemented sensor, Supplement 2 is (N + 1)d away from Supplement 1
and its function is to effectively expand the physical aperture of the array, introducing
greater space for improvement in the DOF. For SDSNA, we assume that M > 3, N > 3,
Q = N + 2M + 4 > 13.

Figure 1. Symmetric double-supplemented nested array (SDSNA) geometry.

The sensors position of SDSNA can be expressed as R=R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪R6 ∪
R7, where R1 is the central ULA array; R2 and R3 are ULA2 and ULA3, respectively; R4
and R5 represent the right and left parts of Supplement 1, respectively; and R6 and R7
represent the right and left parts of Supplement 2, respectively. The SDSNA configuration
is described as follows:

R1 = {Rm1 |Rm1 = m1 − (N − 1)/2} (30)

R2 = {Rm2 |Rm2 = (3N + 1)/2 + (N + 1)m2} (31)

R3 = {Rm3 |Rm3 = −(3N + 1)/2 − (N + 1)m3} (32)

R4 = {Rm4 |Rm4 = (N + 1)M + (N − 3)/2} (33)

R5 = {Rm5 |Rm5 = −(N + 1)M − (N − 3)/2} (34)

R6= {Rm6 |Rm6 = (N + 1)(M + 1) + (N − 3)/2} (35)

R7 = {Rm7 |Rm7 = −(N + 1)(M + 1)− (N − 3)/2} (36)
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where m1 ∈ [0, N − 1], m2, m3 ∈ [0, M − 2].
For the SDSNA configuration, the DCA is S = Ss ∪ Sc, where Ss is a self-differential

set and Sc is a cross-differential set. Simultaneously, the DCA can be divided into two
components: S = S+ ∪ S−. Due to the symmetric structure of the array, theoretical
derivations only focus on the positive half-axis of the DCA. For the DCA component S+,
the relationship can be expressed as follows: S+ = S+s ∪ S+c . Then, S+s is

S+s = S11 ∪ S22 ∪ S33 (37)

where
S11 = {s11|s11 = m1},

S22 = {s22|s22 = (N + 1)m2},

S33 = {s33|s33 = (N + 1)m3},

(38)

where m1 ∈ [0, N − 1], m2, m3 ∈ [0, M − 2]. Since R4, R5, R6, and R7 are independent single
sensors, their self-differential set is zero, i.e., S44, S55, S66, and S77 are all zero. The set of S+c
is as follows:

S+c = (S13 ∪ S21) ∪ (S15 ∪ S41) ∪ (S61 ∪ S17) ∪ (S42 ∪ S35)

∪ (S62 ∪ S37) ∪ (S43 ∪ S25) ∪ (S63 ∪ S27)

∪ (S64 ∪ S57) ∪ (S65 ∪ S47) ∪ S23 ∪ S45 ∪ S67

(39)

where
S13 = {s13|s13 = N + 1 + (N + 1)m3 + m1} (40)

S21 = {s21|s21 = 2N + (N + 1)m2 − m1} (41)

S15 = {s15|s15 = (N + 1)M + m1 − 1} (42)

S41 = {s41|s41 = (N + 1)M − m1 + N − 2} (43)

S61 = {s61|s61 = (N + 1)(M + 1)− m1 + N − 2} (44)

S17 = {s17|s17 = (N + 1)(M + 1)− m1 − 1} (45)

S35 = {s35|s35 = (N + 1)(M − m3)− N − 2} (46)

S42 = {s42|s42 = (N + 1)(M − m2)− N − 2} (47)

S37 = {s37
∣∣s37 = (N + 1)(M + 1 − m3)− N − 2} (48)

S62 = {s62|s62 = (N + 1)(M + 1 − m2)− N − 2} (49)

S25 = {s25|s25 = (N + 1)(M + m2) + 2N − 1} (50)

S43 = {s43|s43 = (N + 1)(M + m3) + 2N − 1} (51)

S27 = {s27
∣∣s27 = (N + 1)(M + 1 + m2) + 2N − 1} (52)

S63 = {s63|s63 = (N + 1)(M + 1 + m3) + 2N − 1} (53)

S23 = {s23|s23 = (N + 1)(m2 + m3) + 3N + 1} (54)

S45 = {s45|s45 = 2(N + 1)M + N − 3} (55)

S67 = {s67|s67 = 2(N + 1)(M + 1) + N − 3} (56)

S64 = {s64|s64 = N + 1} (57)

S57 = {s57|s57 = N + 1} (58)

S65 = {s65|s65 = (N + 1)(2M + 1) + N − 3} (59)

S47 = {s47|s47 = (N + 1)(2M + 1) + N − 3} (60)

where m1 ∈ [0, N − 1], m2, m3 ∈ [0, M − 2].
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3.2. Array Propositions and Deductions

We present the DCA properties of the SDSNA in the following sections.

3.2.1. Array Symmetry Propositions and Deductions

Proposition 1. Due to the symmetry of the SDSNA, the DCAs of SDSNA are

S13 = S21,S41 = S15,S61 = S17,

S42 = S35,S62 = S37,S43 = S25,

S63 = S27,S64 = S57,S65 = S47.

(61)

Proof of Proposition 1. According to the set expression Equation (43), the expression of
element s41 in set S41 is s41 = (N + 1)M − m1 + N + 2, where m1 ∈ [0, N − 1], m2, m3 ∈
[0, M − 2]. Let m′

1 = −m1 + N − 1, m′
1 ∈ [0, N − 1]; then, s41 can be expressed as follows:

s41 = (N + 1)M + m
′
1 − 1 (62)

By comparing the set expression Equation (62) and the set expression Equation (42),
we obtain s41 ∈ S15.

According to the set expression Equation (42), the expression of element s15 in set
S15 is s15 = (N + 1)M + m1 − 1, where m1 ∈ [0, N − 1], m2, m3 ∈ [0, M − 2]. Let m

′
1 =

−m1 + N − 1, m
′
1 ∈ [0, N − 1]; then,

s15 = (N + 1)M + m′
1 + N − 2 (63)

By comparing the set expression Equation (63) and the set expression Equation (43),
we obtain s15 ∈ S41.

In summary, we obtain S15 = S41. Similarly, we can prove other equations in Equation (61).
Therefore, the proof is complete.

In this way, S+ and S+c can be expressed as follows:

S+c = S21 ∪ S41 ∪ S61 ∪ S42 ∪ S62 ∪ S43

∪ S63 ∪ S23 ∪ S45 ∪ S67 ∪ S64 ∪ S65
(64)

S+ = S+c ∪ S11 ∪ S22 (65)

3.2.2. The Longest Continuous Lag Propositions and Deductions

Proposition 2. In the SDSNA, the DCA set S has the longest continuous lags [−MN − M −
2N, MN + M + 2N] and the maximum continuous length is 2MN + 2M + 4N + 1, which is the
DOF of the SDSNA.

Proof of Proposition 2. Setting Sa = S11 ∪ S21 ∪ S35, we first prove that the longest consec-
utive element in Sa is [0, (N + 1)M + 2N − 1].

According to the set expression Equation (41), S21 = {s21|s21 = 2N + (N + 1)m2 −m1}.
Let m′

1 = −m1 + N − 1, m′
2 = m2 + 1; then, we obtain

S21 = (N + 1)m′
2
+ m′

1
(66)

where m
′
1 ∈ [0, N − 1], m

′
2 ∈ [1, M − 1]. By comparing with the set expression Equation (38),

we obtain s11 = m1, where m1 ∈ [0, N − 1]; the following can be obtained:

s11 ∪ s21 = (N + 1)m
′
a1
+ m1 (67)
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where m
′
a1
∈ [0, M − 1], m1 ∈ [0, N − 1]. Therefore, the integer elements of S11 ∪S21 are con-

secutive in the ranges
[
0, (N − 1)

]
,
[
N + 1, 2N

]
, ...,

[
(N + 1)M, (N + 1)M + N − 1

]
. We

can observe that there are holes between the intervals expressed by

sh = (N + 1)mh + N (68)

where mh ∈ [0, M − 2]. According to the set expression Equation (46), we obtain that
s35 in S35 is s35 = {s35|s35(N + 1)(M − m3)− N − 2}, m3 ∈ [0, M − 2]. By setting m′

3 =
M − 2 − m3, we obtain

s35 = (N + 1)m′
3
+ N, m′

3
∈ [0, M − 2] (69)

Compared with the set expression Equation (68), we can obtain S35 = Sh; thus, it
can be identified that the set expression Equation (69) just fills the hole. We obtain that Sa
are consecutive in [0, (N + 1)(M − 1) + N − 1]. Furthermore, the set expression of Sa is
as follows:

sa = ma, ma ∈
[
0, (N + 1)(M − 1) + N − 1

]
(70)

Then, we set Sb = Sa ∪ S41. According to set expression Equation (43), we obtain
s41 = {s41|s41 = (N + 1)M − m1 + N − 2}. Let m′

4 = N − m1, m′
4 ∈ [1, N], s41 become

s41 = (N + 1)(M − 1) + N − 1 + m
′
4 (71)

Compared to the set expression Equation (70), we obtain

sb = mb, mb ∈ [0, (N + 1)(M − 1) + 2N − 1] (72)

Then, we set Sc = Sb ∪ S23 and, from the set expression Equation (54), we obtain
s23 = {s23|s23 = (N + 1)(m2 + m3) + 3N + 1}, m2, m3 ∈ [0, M − 2]. Let m

′
5 = m2 + m3 + 1,

m′
5 ∈ [1, 2M − 3]. Then, we obtain

s23 = (N + 1)m
′
5 + 2N, m

′
5 ∈ [1, 2M − 3] (73)

when m′
s = M − 1, s23 = (N + 1)(M − 1) + 2N. Then, compared to the set expression Equa-

tion (72), we know that Sc are consecutive in [0, (N + 1)(M − 1) + 2N] and the expression
of Sc is as follows:

Sc = {mc1} ∪ {(N + 1)mc2 + 2N} (74)

where mc1 ∈ [0, (N + 1)(M − 1) + 2N], mc1 ∈ [M, 2M − 3]. Then, we set Sd = Sc ∪
S25, forming the set expression Equation (50), and we obtain S25 = {s25

∣∣∣s25 = (N +

1)(M + m2) + 2N − 1}, m2 ∈ [0, M − 2]. Setting m
′
6 = M − m2 − 1, m

′
6 ∈ [M − 1, 2M − 3],

we obtain
s25 = (N + 1)m′

6 + 3N (75)

where m′
6 ∈ [M − 1, 2M − 3]; then, we obtain

Sd = {md1} ∪ {(N + 1)md2 + nd} ∪ {2(N + 1)M − 3} (76)

where md1 ∈ [0, (N + 1)(M − 1) + 2N], md2 ∈ [M − 1, 2M − 4], nd ∈
[
3N, 3N + 1

]
. Accord-

ing to the set expression Equation (38), we obtain S22 = {s22|s22 = (N+1)m2}, m2 ∈ [0, M−2]
and we can know that 0 ≤ s22 ≤ (N + 1)(M − 2). In other words, s22 ∈ Sa. Similarly, S41 also
exhibits the condition that S41 ∈ Sa. According to Equations (55), (56), and (59), we obtain that
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S45, S67, and S65 only contain one element, which is not consecutive with others. Thus, we
obtain Se = Sd ∪ S45 ∪ S67 ∪ S65, the closed form of which expression is as follows:

Se = {me1} ∪ {(N + 1)me2 + ne} ∪ {2(N + 1)(M + 1) + N − 3}
∪ {2(N + 1)M − 3} ∪ {(N + 1)(2M + 1) + N − 3}
∪ {2(N + 1)M + N − 3}

(77)

where me1 ∈ [0, (N + 1)(M − 1) + 2N], me2 ∈ [M − 1, 2M − 4], ne ∈
[
3N, 3N + 1

]
. We

set S f = Se ∪ S61 and, using Equation (44), the expression of s61 is S61 = {s61|s61 =
(N + 1)(M + 1)− m1 + N − 2}, m1 ∈ [0, N − 1]. After making some mathematical changes,
we obtain

s61 = (N + 1)(M − 1) + 2N − m1 (78)

Let m
′
7 = N − m1, m

′
7 ∈ [1, N]; then, we obtain

s61 = (N + 1)(M − 1) + 2N + m′
7 (79)

Comparing Equation (79) with Equation (77), Se has a consecutive length, which is
(N + 1)(M − 1) + 2N. On the basis of (N + 1)(M − 1) + 2N, S61 increases the length of
another m

′
7. Thus, we obtain that S f are consecutive in [0, (N + 1)(M − 1) + 3N]. On

the basis of (73), we obtain s23 = (N + 1)m′
5 + 3N + 1 when m′

5 = M − 1. Thus, S f are
consecutive in [0, (N + 1)(M − 1) + 1 + 3N] and the expression of S f is as follows:

S f = {m f1} ∪ {2(N + 1)(M + 1) + N − 3}
∪ {2(N + 1)M − 3} ∪ {(N + 1)(2M + 1) + N − 3}
∪ {2(N + 1)M + N − 3}

(80)

where m f1 ∈ [0, (N + 1)(M − 1) + 3N + 1]. According to the set expression Equation (49),
S62 = {s62

∣∣s62 = (N + 1)(M + 1 − m2)− N − 2}, where m2 ∈ [0, M − 2]. After performing
some mathematical changes, we obtain

s62 = (N + 1)(M − 1) + N − (N + 1)m2 (81)

We can see that 0 ≤ s62 ≤ (N + 1)(M − 1) + 3N + 1; thus, S62 is covered by the
consecutive part of S f . We set S+ = S f ∪ S63 and s63 in S63, which is s63 = (N + 1)(M + 1+
m3) + 2N − 1, m3 ∈ [0, M − 1]. When we set m3 = M − 2, we obtain s63 = 2(N + 1)M +
N − 2. Compared to Equation (80), we can obtain the final expression of consecutive lags
as follows:

S+ = {m f } ∪ {2(N + 1)(M + 1) + n f }
∪ {2(N + 1)M − 3} ∪ {(N + 1)(2M + 1) + N − 3}
∪ {2(N + 1)M + N − 3}

(82)

where m f1 ∈ [0, (N + 1)(M − 1) + 3N + 1], n f ∈ [N − 3, N − 2].
Therefore, the maximum number of consecutive lags of S+ is in the range of [0, (N +

1)(M − 1) + 3N + 1]. Since S+ is symmetric with S−, S has the longest consecutive lags
in the range of [−(N + 1)(M − 1)− 3N − 1, (N + 1)(M − 1) + 3N + 1], and the number
of lags is 2MN + 2M + 4N + 1, thus completing the proof. In order to obtain the longest
consecutive lags, we provide the optimal configuration of M and N in the array.

3.2.3. Array Optimal Configuration Propositions and Deductions

Proposition 3. When N = round(Q+1
2 ) and M = 1

2

(
Q − round

(
Q+1

2

)
− 2

)
, the maximum

number of consecutive lags can be achieved.
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Proof of Proposition 3. We know the consecutive lags in the DCA based on the previous
discussion. The key to maximizing these consecutive lags lies within optimizing the
quantities of sub-nested arrays, denoted as M and N. The formula for the total number of
array sensors is given by Q = N + 2(M − 1) + 4. By simplifying this expression, we obtain
Q = N + 2 + 2M. Therefore, we can express M as follows:

M =
1
2
(
Q − N − 2

)
(83)

By substituting Equation (83) into the maximum number of consecutive lags, we
obtain the following:

L = 2MN + 2M + 4N + 1

= 2 × 1
2
(
Q − N − 2

)
N + 2 × 1

2
(
Q − N − 2

)
+ 4N + 1

= −N2 + (Q + 1)N + Q − 1

(84)

We can obtain the maximum value of the quadratic function by deriving the quadratic
concave function L.

Then, there is a maximum value when N = round(Q+1
2 ), which also means that it is

the best configuration for the array. Here, M = 1
2 (Q − N − 2) = 1

2

(
Q − round

(
Q+1

2

)
− 2

)
,

where round() is a rounding operation. This completes the proof.

Based on the above calculation results, we discuss the four cases of the number of
sensors Q and we provide the optimal array configuration of the sensor in Table 1.

Table 1. Optimum array configuration for SDSNA.

Q Optimal M, N Number of Consecutive Lags

4k M = Q−4
4 , N = Q

2
Q2+6Q−4

4
4k + 1 M = Q−5

2 , N = Q+1
2

Q2+6Q−3
4

4k + 2 M = Q−6
2 , N = Q+2

2
Q2+6Q−4

4
4k + 3 M = Q−3

2 , N = Q−1
2

Q2+6Q−7
4

4. Numerical Experiment

In this section, five arrays, namely, ISNA [38], SDNA [39], SDCA [40], CSNA [37], and
SFNA [47], were used for the comparison experiments, where the SFNA was used for the
coupling part of the comparison due to its better coupling properties.

The numerical experiment is divided into three main parts:

1. The DOF and aperture sizes of the ISNA, SDNA, SDCA, CSNA, and SDSNA are
compared under varying numbers of sensors.

2. Both the coupling matrix amplitude diagrams of the ISNA, SDNA, SDCA, CSNA,
SFNA, and SDSNA under a limited number of sensors and the specific values of
coupling leakage under different numbers of sensors are compared.

3. The performance errors of the ISNA, SDNA, SDCA, CSNA, and SDSNA for mixed-
field sources under different experimental conditions are compared.

The numerical experiments were carried out from two perspectives, firstly, 1.2 exper-
iments were carried out for the physical properties of the arrays to compare the arrays’
intrinsic properties and, thus, measure the array performance. Subsequently, the DOA
correlation algorithm was applied to the arrays, and DOA and range were resolved under
different experimental conditions to compare the estimation errors between the arrays.

To ensure the reliability of the DOF experimental comparisons, we provided four
optimal array configurations for comparing SNLAs (Table 2) so that the compared arrays
can achieve the maximum DOF for a certain number of sensors.
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Table 2. Optimum array configurations for four symmetric non-uniform linear arrays (SNLAs).

Name Q Optimal M, N Number of Consecutive Lags

ISNA 4K + 1 M = Q−1
4 , N = Q+3

4 * Q2+4Q−1
4 *

4K + 3 M = Q−3
4 , N = Q+5

4 * Q2+4Q−1
4 *

SDNA 4K + 1 M = Q+3
4 , N = Q−1

4
Q2+10Q−3

8 *
4K + 3 M = Q+1

4 , N = Q+1
4

Q2+10Q+1
8 *

SDCA

4K M = Q
4 , N = Q

4
Q2+4Q+15

4
4K + 1 M = Q−1

4 , N = Q+1
4

Q2+4Q+15
4

4K + 2 M = Q−2
4 , N = Q+2

4
Q2+4Q+15

4
4K + 3 M = Q−3

4 , N = Q+3
4

Q2+4Q+15
4

CSNA

4K M = Q
4 , N = Q

2
Q2

4 + Q − 1
4K + 1 M = Q−1

4 , N = Q+1
2

Q2−1
4 + Q

4K + 2 M = Q−2
4 , N = Q+2

2
Q2

4 + Q
4K + 3 M = Q−3

4 , N = Q+3
2

Q2−1
4 + Q

* Derived by the authors based on the methodology described in [38,39]. These derivations were made to further
analyze the impact of aperture and DOF.

4.1. Comparison of Aperture and DOF

In order to visually describe the involved arrays of the five SNLAs, this subsection
provides an example of the fifteen sensor locations of the five SNLAs, as shown in Figure 2.
Since the CSNA and ISNA have the same array configuration when the number of sensors
is odd, only the array configuration of the ISNA is given in the figure. All of the above
arrays are symmetric, i.e., the two sides of the origin are composed of positive locations
and negative locations, and only the array configuration of the non-negative part is given
on the way. In Figure 2, the horizontal axis reflects the positional relationship between
sensors, the red circles denote the physical sensor locations, the black circles denote the lags
of the DCAs, and the black crosses denote the holes between the DCAs. The DOF denotes
the maximum consecutive lags in the DCA, representing the maximum number of field
sources that can be detected simultaneously. The array aperture refers to the maximum
diameter of the array in the DCA, which is compared.

Figure 2. Sensor locations.

On this basis, experiments compare the DOFs and apertures for five SNLAs with
sensor numbers ranging from 14 to 49. In Figure 3a, we verify the relationship between the
array DOF and the number of sensors. When the number of sensors increases, the DOF
becomes more significant and the difference in DOFs between different SNLAs becomes
larger. The corresponding DOF follows the order: SDSNA > SDCA > ISNA = CSNA
> SDNA. In Figure 3b, the aperture becomes more significant as the number of sensors
increases. This introduces a more significant difference with the change in the number of
sensors and the aperture follows the order: SDSNA > SDCA > ISNA = CSNA > SDNA. The
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conclusion above highlights that the ISNA configuration restricts the number of sensors to
an odd number; thus, ISNA = CSNA holds for an odd number of sensors.

(a) DOF (b) Apeture

Figure 3. Comparison of degrees of freedom (DOFs) and aperture of five SNLAs when changing the
number of sensors.

The experimental results show that the SDSNA outperforms the other SNLAs in terms of
the DOFs and apertures under the comparison conditions with the same number of sensors.

4.2. Comparison of Array Coupling Effects

In this section, we focus on the coupling between sensors in the array, which is
influenced by the physical distance between the sensors and the array configuration. In
order to better illustrate the disparity of coupling effects between different arrays, this
experiment will compare two aspects. The experiment is set so that the coupling coefficient
c1 is 0.3ejπ/6 and ci = c1ej(i−1)π/8, where i = 1, 2, . . . , 19. The number of snapshots is 500,
with a Monte Carlo experiment repetition of 100 and a signal-to-noise ratio (SNR) of zero.

Firstly, the degree of mutual coupling between the array sensors is investigated by
analyzing the coupling matrix amplitude diagram to understand the energy transfer under
different SNLAs. In this experiment, five SNLAs—SDCA, CSNA, SDNA, SFNA, and ISNA—
were used to experimentally compare the coupling matrix magnitude with the SDSNA. The
color of the elements in the coupling matrix amplitude diagram from light to dark indicates
their corresponding energies from large to small. The energy transfer state of each array is
represented in Figure 4 when the number of array sensors is 19. Compared with the mutual
coupling matrix, the coupling matrix amplitude diagram can visualize the energy transfer
of each SNLA. In Figure 4, the SDCA, CSNA, and ISNA exhibit a larger area of bright
regions compared to the SDSNA, and they are all concentrated in the middle of the array,
with an overall larger coupling effect; the SDNA exhibits a smaller area of the central bright
region but there is also a bright region at the edge of the coupling matrix amplitude diagram.
The bright area energy distribution of the SDSNA is more concentrated in the center of the
array. There is no bright area at the edge of the coupling matrix amplitude diagram and the
total number of bright areas is small. The SFNA coupling effect is concentrated on both
sides of the array element and the coupling of the center array element is minimal, with the
overall effect being better than that of the SDSNA. After the experimental comparison, we
can conclude that the size of the coupling effect follows the order SDCA ≈ CSNA ≈ ISNA
> SDNA > SDSNA > SFNA.
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Figure 4. Comparison of mutual coupling matrix amplitude diagrams of each array.

Secondly, based on the coupling matrix amplitude diagram, a quantitative analysis of
the coupling effect is carried out experimentally. The coupling effect of the array can be
calculated using the known array mutual coupling matrix. The equation is as follows:

Leak =
∥C − diag(C)∥F

∥C∥F
(85)

where ∥∗∥F denotes the Frobenius norm of the matrix and, the larger the value Leak, the
stronger the mutual coupling effect of the array.

By comparing the coupling leakage of the five SNLAs with the SDSNA in the range
of 23 to 83 sensors, the coupling leakage coefficient of the array is derived, as shown
in Figure 5. The coupling leakages of the SDCA, CSNA, and ISNA have minimal gaps.
The SFNA performs well in the experiment of the coupling matrix amplitude diagram.
However, after quantitatively analyzing the coupling leakage values, the overall coupling
leakage follows the order: SDCA ≈ CSNA ≈ ISNA > SFNA > SDNA > SDSNA.

Figure 5. Comparison of coupling leakage of each array under varying the number of sensors.
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The experimental results show that the coupling matrix magnitude diagram can
visualize the mutual coupling matrix; however, there are some differences between the
observation and the actual coupling effect. A comparison of the coupling leakage values can
better reflect the coupling effect of the array and the SDSNA exhibits a lower coupling effect.

4.3. DOA Estimation of Mixed Sources

This subsection applies the DOA and range estimation algorithm using the five SNLAs.
The specific performances of the arrays in the localization of mixed-field sources are
measured by comparing the RMSE of their estimation results. The RMSE expression is
as follows:

RMSE =

√√√√ 1
TL

T

∑
t=1

L

∑
i=1

(ŷi(t)− yi(t))
2 (86)

where L is the number of detected sources, T is the number of independent Monte Carlo
experiments, ŷi(t) is the corresponding estimate for the Tth experiment, and yi(t) is the
true value of the angle of arrival. The experiments provide basic information about the
array and the index set of non-negative parts of sensors in each array is as follows:

RSDSNA = {0, 1, 2, 3, 4, 14, 24, 33, 42} (87)

RCSNA = {0, 1, 2, 3, 4, 13, 22, 31, 40} (88)

RSDCA = {0, 1, 2, 3, 4, 14, 23, 32, 41} (89)

RSDNA = {0, 1, 2, 3, 4, 9, 14, 19, 24, 29} (90)

The corresponding ranges of the five SNLAs for the NF and FF are shown in Table 3.

Table 3. Array parameters and range of far-field (FF) and near-field (NF) sources.

Name Number of
Sensors Aperture (d) NF Lower

Bound (λ)
FF Lower Bound

(λ)

SDSNA 17 84 84.38 1764
CSNA 17 80 78.42 1600
ISNA 17 80 78.42 1600
SDCA 17 82 81.38 1681
SDNA 17 58 48.41 841

For the mixed-field source estimation of the array, the experiments are considered in
terms of both SNR and snapshot. The experimental results are then obtained.

4.3.1. Comparison of DOA Estimation Performance under Different SNRs

In this experiment, we verify the estimation performance of each array under different
SNRs. The interval range of the SNR is −10 dB to 25 dB, the number of array sensors is
Q = 17, the sensor interval is d = λ/4, the number of Monte Carlo experiments is T = 1000,
and the number of snapshots is 1000. By analyzing the range of FF and NF sources in Table 3,
we conclude that the common NF source interval of the contrast array is [84.38 λ, 841 λ].
We select five source points: three FF source points ((20◦,+∞), (30◦,+∞), (34◦,+∞)) and
two NF source points ((−25◦, 440 λ), (−22◦, 450 λ)). The selected source points meet the
requirements of NF sources, as shown in Table 3.

We experimentally apply the spatial smoothing method and MUSIC algorithm to
conduct a performance comparison of an identical number of array sensors and different
SNR intervals.

The experimental results are shown in Figure 6a. The RMSE of DOA estimation for
the five SNLAs for NF and FF signals are demonstrated. In the figure, the red line indicates
the RMSE of DOA for the FF and the blue line indicates the RMSE of DOA for the NF. As
the SNR increases, the RMSE of the overall estimation result of the array decreases. Under
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the condition of a fixed SNR, the SDNA’s estimation performance is the worst, and the
SDCA’s estimation results are better than the results of the CSNA and ISNA. However, the
performances of the CSNA and ISNA are better in terms of the FF, and the overall RMSE of
the SDSNA in the NF and FF is the smallest.

The RMSE of the five SNLAs in estimating the NF signal range is demonstrated in
Figure 6b. As the SNR increases, the range estimation of the arrays improves. Under the
condition of a fixed SNR, the range estimation error follows the order CSNA > ISNA >
SDNA > SDCA > SDSNA. The RMSE of the SDSNA’s range estimation is the smallest. The
experimental results show that the SDSNA’s DOA and range estimation perform best over
an SNR interval from −10 db to 25 db.

(a) The RMSE of DOA (b) The RMSE of range

Figure 6. Comparison of direction of arrival (DOA) and range of each array under different SNRs.

4.3.2. Comparison of DOA Estimation Performance under Different Number of Snapshots

Here, we verify the estimation performance comparison of each array under different
snapshots. In this experiment, we set the number of array sensors to Q = 17, the interval
of the sensors to d = λ/4, the number of Monte Carlo experiments to T = 1000, the
SNR = 10 dB, and the snapshot selection intervals from 1000 to 10,000. Four source points
are selected, which are three FF source points ((20◦,+∞), (30◦,+∞), (34◦,+∞)) and one
NF source point ((−25◦, 410 λ)).

We also experimentally apply the spatial smoothing method and MUSIC algorithm to
conduct a performance comparison with the same number of array sensors and different
number of snapshots. The performance comparison under different snapshots with the
same number of array sensors is shown in Figure 7.

(a) The RMSE of DOA (b) The RMSE of range

Figure 7. Comparison of DOA and range of each array under different number of snapshots.
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Figure 7a illustrates the RMSE of the NF and FF DOA estimation, wherein the red line
indicates the RMSE of the DOA for FF and the blue line indicates the RMSE of the DOA
for NF. In the experimental results, it can be seen more clearly that the RMSEs of the NF
and FF DOA estimation follow the order SDNA > SDCA > CSNA = ISNA > SDSNA. The
SDSNA exhibits better mixed-field source DOA estimation performance in the snapshot
range of 1000 to 10,000.

Figure 7b shows the range estimation of the five SNLAs, in which the SDNA and
ISNA show similar estimation accuracies, with the ISNA being slightly better than the
SDNA. The SDCA exhibits intermediate estimation accuracy, and the SDSNA and CSNA
exhibit the best estimation results, with the SDSNA being better than the CSNA in some
snapshots. The experimental results show that the SDSNA has a more minor RMSE in
range estimation at snapshot lengths between 1000 and 10,000.

5. Discussion

In the field of DOA estimation, the current challenges arise from the limitations of
FF source estimations, which do not adequately address real-world applications. These
applications often involve multiple sources with indeterminate locations, necessitating the
estimation of DOA for mixed-field sources. Traditional methods struggle to separate the
FF and NF signal components within the constraints of physical array structures, such as
limited apertures and DOF. The SNLA offers significant improvements for DOA estimation
of mixed-field sources. Its symmetrical structure simplifies the DOA parameter analysis
of NF sources. The non-uniformity of the SNLA enables larger array apertures compared
to the SULA with the same number of sensors, thus enhancing accuracy in mixed-field
source location and DOA angle resolution. Moreover, the SNLA’s DCA has a virtual array
with longer continuous uniform subarrays, affording a higher DOF and the capability of
detecting more sources for underdetermined DOA estimation. The SNLA also benefits from
lower cost and complexity, achieving a greater DOF with fewer sensors. However, there is
still potential to improve the DOF and aperture of existing SNLA arrays and enhance DOA
estimation accuracy. A new design, the symmetric double-supplemented nested array
(SDSNA), is proposed to address these challenges. This design adds sensor elements to fill
holes in the DCA, creating more continuous array structures. The SDSNA surpasses the
conventional SNLA in terms of physical array properties, such as aperture, DOF, coupling
effect, and DOA estimation accuracy. Performance comparisons between arrays typically
consider physical properties and algorithmic applications. As demonstrated in Figure 3,
the SDSNA shows superiority in terms of both DOF and aperture compared to the other
arrays, indicating its enhanced capability to detect more signal sources with higher accuracy.
Figures 4 and 5 compare subjective and objective coupling effects, respectively, revealing
minimal coupling leakage for the SDSNA. Finally, after applying the DOA algorithm to the
SDSNA and setting appropriate conditions for DOA estimation, the RMSE of the SDSNA
under various experimental conditions is lower than that of other arrays, confirming
its superior DOA estimation performance. Future research and limitations will include
the following:

1. In the experiments in Section 4.3, we found that the error introduced by the distance
estimation of the array is large when the SNR is low. In the future, we will explore
mixed-field source localization at low SNRs to achieve better estimation results.

2. We aim to extend this supplemented design approach to optimize array performance
and apply specialized array algorithms for mixed-field sources. The ultimate goal is to
design both arrays and algorithms that achieve higher precision in DOA estimation.

3. This paper concentrates on the design and evaluation of the SDSNA, with its perfor-
mance validated via simulation experiments. However, it does not include practical
field tests. Future work will aim to conduct comprehensive testing and enhance the
structural design of the antenna, tailored to specific real-world application contexts.
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6. Conclusions

In this study, a symmetrical double-supplemented nested array for mixed NF and FF
source localization is proposed. This array integrates a unique nested array configuration
with two sets of supplemented sensors. The design utilizes a single supplemented sensor
to fill the DCA’s holes, thus expanding the array’s physical aperture. An essential feature of
the SDSNA is its representation through a closed-form expression, enhancing its practical
applicability and simplifying design processes. One aspect of this study involves the
mathematical derivation of the array’s maximum continuous virtual array length. By
analyzing the maximum consecutive lag expression, the optimal array configuration is
determined, thus ensuring a maximal DOF. The experimental design compares the physical
properties of the SDSNA with existing SNLA arrays, demonstrating its superiority in terms
of both DOF and aperture size. Additionally, a coupling leakage experiment is conducted,
highlighting the unique coupling characteristics of the SDSNA and its advantages in this
area. The array’s estimation performance is validated by applying the DOA algorithm.
This analysis, conducted with various SNRs and numbers of snapshots, concludes that the
SDSNA offers better DOA estimation capabilities. In summary, the SDSNA exhibits better
performance in FF and NF direction estimations, as well as NF distance measurements. Its
efficacy in the passive detection of mixed-field sources renders it suitable for applications
in radar systems, microphone arrays, and military remote sensing auxiliary systems. This
array design approach improves performance and expands the range of applications for
source localization techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

ULA Uniform linear array
SULA Symmetric uniform linear array
SNLA Symmetric non-uniform linear array
SDSNA Symmetric double-supplemented nested array
SDNA Symmetrical double nested array
ISNA Improved symmetric nested array
CSNA Compressed symmetric nested array
SDCA Symmetric displaced coprime array
DCA Difference coarray
FF Far-field
NF Near-field
DOA Direction of arrival
MUSIC Multiple signal classification
ESPRIT Estimating signal parameter via rotational invariance techniques
DOF Degrees of freedom
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SNA Symmetric nested array
NLA Non-uniform linear array
RMSE Root-mean-square error
SNR Signal-to-noise ratio

Appendix A

In this section, we introduce the programmatic approach to implementing the DCA.
Additionally, we provide an overview of the spatial smoothing principle applied in the SS-
MUSIC algorithm, as detailed in Section 2.3. Given that the primary focus of this article is
on array design, further elaboration on the algorithmic aspects is relegated to the appendix
for comprehensive understanding.

Appendix A.1

Firstly, in Figure A1, the array is composed of 2K + 1 sensors and the position in-
formation of the array is transformed into a matrix. In order to facilitate the subsequent
differential operation, we transpose and copy the array 2K + 1 times to make the original
matrix become a dimension of (2K + 1) × (2K + 1) matrix P, and the transpose of the
matrix P is PT ; then, D = P − PT .

Figure A1. Matrix processing of array differential operations—a visual guide 1.

In Figure A2, the element in D is the redundant difference in the array, where the
yellow part of D is P and the blue part is PT . By expressing D as a column vector, we
can change D into 2K + 1 column vectors. The dimension of each column vector dK is
(2K + 1)× 1.

Figure A2. Matrix processing of array differential operations—a visual guide 2.

In Figure A3, all column vectors of D are merged into one column, which becomes
(2K + 1)2 × 1 column vector D′. At this time, the column vector is sorted to obtain D′

sort.
During the sorting process, we obtain an index position before sorting. This position index
specifically represents the information on the subtraction of the two elements in the array.
For example, if the index is 0, it is the result of the difference between the −Kth elements of
the array and the −Kth elements of the array. In the sorted D′

sort vector, we combine the
indices with the same difference results to form an index map, i.e., if XK − XK = X0 − XK,
then their indexes are put together.
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Figure A3. Matrix processing of array differential operations—a visual guide 3.

In the process of spatial smoothing, we smooth the index of the continuous array
elements in the middle of the DCA, that is, the mean value of the index map of the array
elements in U = [−Hm, Hm], that is,

z(jj) = mean(R(index_map{ii})) (A1)

where ii denotes the continuous array element in U; index_map{ii} denotes the index map
of the array element, for which there are a series of index values in the index map; R
denotes the covariance matrix; and mean() denotes the mean operation. Based on this, the
vector z is formed; then, the spatial smoothing matrix R can be constructed according to
Equation (24).
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