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Abstract: For the challenges of high-precision mapping in complex terrain, a novel airborne Interfero-
metric Synthetic Aperture Radar (InSAR) system is designed. This system, named ASMIS (Airborne
Short-Baseline Millimeter-Wave InSAR System), adopts the coplanar antenna and a pod-type struc-
ture. This design makes the system lightweight and highly integrated. It can be compatible with
small general aviation flight platforms. The baseline is millimeters in size, which greatly simplifies
the unwrapping process. The coplanar antennas have two advantages: they maximize the baseline
utilization and minimize the Doppler decorrelation and the motion error inconsistency. Acquisi-
tion campaigns of the system have been carried out in Boao, Bayannur, and Chengde, China. In
the Chengde experimental area, we designed an antiparallel flight experiment to account for the
topographic relief. High-precision Digital Orthophoto Maps (DOMs) and Digital Surface Models
(DSMs) at a scale of 1:5000 were obtained. The coordinate Root Mean Square Error (RMSE) of the
checkpoints within the obtained DSM is less than 0.82 m in altitude and 3 m horizontally. The RMSE
of the Sparse Ground Control Points (GCPs) within the obtained DSM is less than 0.3 m in altitude.
Experimental results from different areas, including plains, mountains, and coastlines, demonstrate
the system’s performance.

Keywords: airborne millimeter-wave InSAR; short-baseline; antenna coplanar; motion error; DSM

1. Introduction

InSAR is widely used for high-precision Digital Elevation Models (DEMs) of the
ground, which are utilized in various applications such as topographic mapping, glacier
monitoring, disaster monitoring, and deformation estimation [1–6].

Satellites and airplanes are the primary carriers of InSAR systems. Different orbital
models give spaceborne and airborne systems distinct advantages. Spaceborne systems
are suitable for obtaining global DEMs because of the orbit geometry. In 1994, Zebker [7]
analytically validated the generation of DEMs from ERS-1 repeat orbit data in Alaska
and the western U.S., with relative accuracies of less than 5 m in localized areas. In 1998,
Rufino et al. [8] used a DEM generated from ERS-1 TanDEM model data to obtain GCPs
elevation accuracies at about 4 m, with elevation accuracies of 20 m. The TanDEM-X
satellite, launched by Deutsches Zentrum für Luft- und Raumfahrt (DLR) in 2010, adopts a
star formation flight mode and can achieve an elevation coverage area of 150 million square
kilometers with an absolute spatial resolution of 12 m, a relative elevation accuracy of 2 m,
an absolute elevation accuracy of 4 m, and a revisit period of 11 days [9,10]. The C-band GF-
3 satellite, launched by China in 2016, can perform global observation and imaging with a
500 km swath using the across-track interferometry (XTI) mode. It has an elevation accuracy
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of 2.9 m in Guangdong, China, and a revisit period of 4 days [11]. Existing spaceborne
systems generally use interferometric measurements in the X-band and lower bands with a
mapping accuracy of 1:50,000 for DOM and DSM. This is more suitable for global large-scale
mapping. However, the spaceborne system faces some technical difficulties, such as limited
orbit geometry, launch power, and attitude-orbit control [12]. The spaceborne system
generally adopts the formation of XTI or Repeat Orbit Interferometry (RTI), which leads to
baseline and temporal decorrelation due to the longer baseline and revisit period [13–15].
The inconsistent motion error of the interferometry antennas introduces additional phase
error, requiring complex processing algorithms [16–18]. The small look angle of high-orbit
characteristics results in the layover of complex terrain areas, which affects the accuracy of
surveying and mapping. Additionally, the revisit period is longer, which means a mission
cannot be completed quickly [19,20].

Airborne systems are more flexible and can quickly respond to work requirements.
The use of millimeter-wave transmitting signals, such as Ka and W, along with dual-
antenna XTI, is an important direction for the development of high-precision topographic
mapping [21,22]. Fixing antennas on the airplane ensures the feasibility of acquiring multi-
scene images in a single pass. It can improve baseline measurement accuracy, reduce the
effects of temporal decorrelation and atmospheric decorrelation, and improve elevation
accuracy. Some of the typical airborne systems include GeoSAR, a dual antenna system
that uses multiple bands and was developed jointly by the National Aeronautics and Space
Administration (NASA) and Jet Propulsion Laboratory (JPL). The system is positioned
under a single wing and has a baseline of 20 m/2.5 m (P/X-band). It is particularly
useful for mapping the vegetation canopy with high accuracy [23]. Pi-SAR2, an X-band
system developed by the National Institute of Information and Communications (NICT)
of Japan, mounted on both sides of the fuselage, with a baseline length of 2.6 m for
disaster emergency monitoring, achieved 2 m elevation accuracy [24]. Dual-antenna X-
band InSAR developed by East China Research Institute of Electronic Enginery (ECRIEE),
China, with a baseline length of 1.7 m, used for topographic mapping in western China,
achieved an elevation accuracy of 2–5 m [25]. The Institute of Electrics, Chinese Academy
of Sciences (IECAS) developed the first Chinese airborne millimeter-wave triple-baseline
InSAR principle prototype in 2011. The triple baseline adopted a separate structure, with
a spatial resolution of 0.5 m and an elevation accuracy of 1 m [26]. Airborne systems are
flexible, making them more suitable for monitoring rapidly changing geologic hazards,
such as earthquakes, volcanoes, and landslides [27–29]. However, the airborne platform
is greatly affected by airflow, resulting in technical difficulties with flight attitude and
trajectory, as well as obvious Doppler decorrelation. When the baseline is too long, the
flexible baseline problem should be appreciated. Since the individual antenna has limited
application, it requires customization and design to suit the carrier structure and maintain
airworthiness. This is not ideal for small general aviation flight platforms because the
platform has strict requirements for compliance.

In this work, we present a novel airborne short-baseline millimeter-wave InSAR
system. The system has several important characteristics. Firstly, the antenna has been
designed with an integrated pod-type structure and is strategically placed on the symmetry
axis at the center of the airplane. This provides exceptional stability and makes it easy to
install on a variety of small general aviation flight platforms, including the Harbin Y-12
and the Cessna 208. Secondly, the short baseline avoids the flexible baseline problem and
simplifies the interferometric phase unwrapping algorithm [30–32]. Thirdly, the design of a
dual-channel coplanar antenna allows for precise control of distance and angle between
the antennas. It can maximize baseline utilization and avoid the influence of the vertical
component of the baseline. In addition, the attitude of antennas is consistent, which helps
to improve the inconsistency of the doppler decorrelation and motion error. It reduces the
difficulty of motion compensation and registration. The proposed system is designed to be
used in complex terrain and for high-precision mapping scenarios, as outlined in Table 1.
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Table 1. Applications and design requirements of ASMIS.

Applications Characteristics Mode Design Requirements

Plain Low-lying and
undulating terrain

XTI
flight altitude: 2000–4000 m

Spatial resolution:
0.1 m × 0.1 m/0.3 m × 0.3 m

Elevation accuracy: 0.42 m

Hill, mountain Undulating terrain and complex
weather

XTI
flight altitude: 3000–4000 m

Spatial resolution:
0.1 m × 0.1 m/0.3 m × 0.3 m

Elevation accuracy: 1 m

Coastal and
island Wide coverage and rapid change

Large look angle (70◦)
and swath image mode

flight altitude: 2000–6000 m

Spatial resolution:
0.3 m × 0.3 m

Swath: 10,000 m

The main research work of this paper includes: the advantages of the pod-type
structure are analyzed by comparing different antenna installation forms, and the baseline
is designed according to safety requirements. The theoretical basis for ASMIS elevation
accuracy and coherence is obtained by analyzing sensitivity and motion error. After
completing the system performance analysis, we describe the system structure composition
in detail, as well as the functions and indispensability of each module. We designed
different flight routes according to the experimental area’s terrain characteristics.

In 2022 and 2023, flight experiments were conducted in Boao, Bayannur, and Chengde,
China, covering different terrain and features such as fields, plains, coastal zones, and
mountains. While experimenting, the flight platform was affected by the troposphere,
causing some of the flight data to be acquired under non-steady conditions. This accounts
for approximately 10% of the data. After processing the flight data, we were able to obtain
high-precision DOM and DSM standard products at a scale of 1:5000.

The work is organized as follows: Section 2 analyzes the baseline design and error;
Section 3 briefly describes the structure and parameters of the system; Section 4 covers
the flight experiment and data processing; Section 5 describes the experiment results and
elevation accuracy analysis; finally, Section 6 reports the discussion and conclusion.

2. Design and Analysis

2.1. Baseline Design

2.1.1. Antenna Mount Analysis

In a dual-antenna airborne system, a long interferometric baseline can cause elastic
deformation and instability, leading to large differences in antenna phases. This is known
as the flexible baseline and has no standard reference value, as it depends on platform
parameters [32]. External influence disrupts motion trajectory, making motion estimation
and compensation challenging. Design stability is crucial for performance analysis and
data processing.

The installation of XTI airborne systems is divided into separate and integrated types.
The separate type includes single and double wings, as shown in Figure 1a. Different
methods of antenna installation have varying impacts on systems. The separate type can
improve the sensitivity of the interferometric phase and help generate a high-precision
DEM. However, the flexible baseline effect may cause issues with motion compensation
and result in geometric phase error. The integrated type (Figure 1b) is relatively stable, and
the antennas share the same attitude. The use of a lever arm in connecting antennas can
lead to the flexible baseline effect, which increases motion error. However, this issue is
eliminated in the integrated design since the antennas are not connected through the lever
arm. This design is suitable for various small general aviation flight platforms. Nonetheless,
obtaining a high-precision DEM with a short baseline can be challenging, but it can be
solved through baseline angle design and algorithm processing [31].
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the placement of the Cessna optical window behind the rear wheel. To ensure the safe 
installation of the antenna unit, the center of gravity is shifted forward by 263 mm towards 
the nose. In Figure 2a, this design places the antenna installation envelope within the 

Figure 1. The dual-antenna system mounting methods for the Cessna 208: (a) three different mounting
methods (1, 2 represents interferometric antenna pairs) and (b) integrated type in detail.

To achieve accurate mapping, ASMIS utilizes a pod-type mounting design with inte-
grated antennas. Two millimeter-wave antennas in a single pod with a short baseline and
coplanar configuration ensure consistent geometry for interferometric images.

2.1.2. Baseline Length Limit

The antenna installation envelope design must account for the safe ground clearance
when the system is under the carrier’s center of gravity during loading, take-off, and
landing. Figure 2 shows the installation and design dimensions of the antenna system’s
outer envelope for normal platform operation. The example uses Y-12 and Cessna 208 with
safety distances of 210 mm and 250 mm respectively.
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Figure 2. Installation of airborne SAR equipment on (a) Cessna 208 and (b) Harbin Y-12. (The unit of
the figure is mm).

Special safety considerations are taken into account for the departure angle due to
the placement of the Cessna optical window behind the rear wheel. To ensure the safe
installation of the antenna unit, the center of gravity is shifted forward by 263 mm towards
the nose. In Figure 2a, this design places the antenna installation envelope within the
baggage compartment envelope. In addition, to provide adjustment within a certain range
of baseline angle, a rotating mechanism is added during antenna integration (see Figure 3b),
thus ensuring the utilization rate of the baseline. Based on this, considering the safety
and the normal operation of the rotating mechanism, the maximum length of the design
baseline is 0.32 m. Figure 3a is the installation of ASMIS. The pod-type antenna is mounted
at the center of gravity under the Cessna 208. The details of the antenna structure are
shown in Figure 3b.
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Before the flight experiment, we analyze the system’s performance using a short
baseline and the coplanar antenna design characteristics. We focus on elevation accuracy,
coherence indicators, and providing reference performance indicators for ASMIS and
system parameters. The simulation data used are derived from real data from laboratory or
flight experiments.

2.2. Elevation Error

It is important to quantitatively analyze and evaluate various error sources that affect
elevation accuracy measurements. This analysis helps in selecting appropriate InSAR
system parameters, such as baseline length, work altitude, radar parameters, and look
angle. The imaging geometry of ASMIS is illustrated in Figure 4. The system employs a
ping-pong mode, where two antennas use time-sharing to alternately transmit and receive
their respective signals. According to the interferometry principle and the geometric
relationship, the elevation h of the ground point P can be obtained by Equation (1) [33]:

h = H − R cos θ

θ = α − arcsin
(

δ2+2δR−B2

2BR

) (1)

where H is the relative altitude of antenna 1, θ = θ1 is the look angle of antenna 1, R is the
distance from antenna 1 to point P, α is the baseline angle, δ is the difference in distance
from the antennas to point P, and B is the baseline length. There is a relationship in the
InSAR system: δ ≪ R, B ≪ R. Therefore, the approximate relationship can be taken as:
δ ≈ B sin(θ − α).
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In Equation (1), the error terms affecting the accuracy of elevation measurement are
mainly the flight altitude, range, baseline angle, baseline length, and interferometric phase
error. The baseline utilization is 100% when satisfied θ = α, which can be achieved by
rotating the mechanism (Figure 3b). When calculating the relative error at the same work
altitude, the system’s flight altitude error can be compensated by the Inertial Measurement
Unit (IMU) data. The item can be disregarded when analyzing the elevation accuracy.
Then, according to Equation (1), by calculating the differential coefficients, the relationship
between the error source and the elevation error can be obtained by Equation (2) [34]:

dh
dR = − cos θ
dh
dα = R sin θ
dh
dφ = − λR sin θ

4πB cos(θ−α)
dh
dB = − R sin θ tan(θ−α)

B

(2)

where φ is the interferometric phase. Table 2 gives the system parameters of ASMIS and
the accuracies used as a quantitative analysis of elevation error and coherence.

Table 2. System parameters and their accuracy of ASMIS.

Parameter Value

Carrier frequency 35 GHz
Transmitted power 17 w

Bandwidth 2800 MHz
Pulse width 5 µs

Baseline length 0.32 m
Naz × Nrg 8 × 8
Resolution 0.1 m × 0.1 m (Range × Azimuth)

Baseline angle 45◦

Pulse repeat frequency 2000 Hz
Look angle 36◦–54◦

Phase error 1◦

Baseline length error 0.0005 m
Baseline angle error 0.005◦

Slant range error 0.1 m

According to the law of covariance propagation, assuming that these error sources are
independent of each other, the elevation error σ2

h can be obtained by Equation (3):

σ2
h =

[
dh
dR

2 dh
dα

2 dh
dφ

2 dh
dB

2
]
[σ2

R σ2
α σ2

φ σ2
B]

T
(3)

where σ2
φ = ( 1−γ2

2NazNrg
)

2
+ σ2

θ and σR, σα, σφ, σB, and σθ are slant error, baseline angle error,
interferometric phase error, baseline length error, and look angle error, respectively. γ is the
correlation coefficient. Naz and Nrg are the azimuth and range multi-look numbers, respectively.

The relative elevation errors due to each error are given in Figure 5a–c for typical
flight altitudes of 2 km, 3 km, and 4 km, respectively. The x-axis of the graph is the range
of look angle (36◦–54◦) and the y-axis is the elevation error. Comparative analysis shows
that the elevation errors due to baseline length error and baseline look error are greatly
affected by the slant range, and reducing the platform flight altitude will narrow these two
errors. As the flight altitude decreases, it will increase the elevation accuracy error due to
the interferometric phase error. The variation of elevation error with look angle at different
altitudes is shown in Figure 5d.
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Figure 5. Elevation error versus look angle curves at different altitudes, elevation error due to
different error sources at (a) 2 km altitude; (b) 3 km altitude; (c) 4 km altitude; and (d) variation of
total altitude error at different altitudes.

As shown in Figure 5, the elevation error rises with the flight altitude. The baseline
angle error at the scene center is the most significant, while the baseline length error is the
least. Considering the effect of flight error, it is recommended that the relative use altitude
of the XTI mode is 4000 m and below to get better elevation accuracy. The elevation error of
the irradiated scene is usually less than 0.4 m, satisfying the 1:5000 high-precision mapping
requirement. Using the scene center as the reference, the far- and near-end elevation data
can be externally calibrated for higher elevation accuracy.

In Equation (2), the altitude change corresponding to a phase change caused by
interferometric phase error is the cause of elevation ambiguity hamb, which can be obtained
by Equation (4):

hamb =
λR sin θ

2B cos(θ − α)
(4)

Figure 6 shows the variations in elevation ambiguity with look angle and altitude. The
experimental results in Figure 5 confirm that ASMIS has no elevation ambiguity at different
altitudes within the elevation error range. A short baseline results in high coherence, greater
sensitivity to terrain altitude variations, and higher accuracy during interferometry and
phase unwrapping, without elevation ambiguity.
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Figure 6. Altitude ambiguity of the ASMIS in different altitudes.

According to the results in Figure 5d, when the flight altitude is 4 km, the elevation
error is 0.4136 m at the look angle of 45◦. The small elevation error results in small azimuth
and range offsets and negligible azimuth variation residual error on the planar positioning.
This enables the system to achieve the 1:5000 mapping theoretically [35].

2.3. Coherence

The analysis in Section 2.2 shows that the interference phase accuracy is the key
factor for the elevation accuracy, other than the system measurement error. The effect of
interferometric phase accuracy on image phase information also dominates. There are
two main factors affecting the interferometric phase accuracy: random phase errors due to
various decorrelation factors and fixed phase errors introduced by inaccuracies in motion
compensation. The phase error caused by the decorrelation is usually reduced by phase
filtering to improve the coherence. The interferometric phase error introduced by the motion
error is complex, and different interferometric systems are affected differently to some
extent. The corresponding compensation means should be analyzed before interferometry
processing to ensure accuracy.

2.3.1. Decorrelation

There are numerous sources of random errors affecting the coherence, and the decor-
relation is reflected in the interferometric phase that affects the performance and the
measurement accuracy. In addition to external factor errors, the effects of decorrelation
arising from system design include baseline decorrelation γgeom, Doppler decorrelation
γdoppler, and thermal noise decorrelation γnoise. The effect of short baseline and coplanar
antenna design on the decorrelation of the ASMIS is analyzed in the following.

1. Baseline Decorrelation

When using XTI to observe the same surface area with a short baseline, the backscat-
tering coefficients of the targets within the area are considered the same. However, as
the baseline length increases, the dual antenna’s orbital geometry becomes more different,
and the backward scattering coefficients within the same resolution cell are no longer
approximately equal, causing baseline decorrelation. The echo spectrum causes a ground
distance band offset from the look angle deviation of the two antennas in the interferogram
formation. Interferometric preprocessing eliminates the spectral offset, as only the same
ground range band has coherent information. For systems with a defined bandwidth and
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carrier frequency, according to the spectral shift theory of F. Gatelli [36], there is a limit to
the baseline length of the interferometric system, which can be obtained by Equation (5):

Bnc =
λR tan θ

2ρr
(5)

where ρr = c/2Br is the range resolution. Equation (5) shows that when the spectral shift
of a two-channel InSAR exceeds the system bandwidth Br, it loses coherence and can no
longer interferometric processing. Accordingly, under the condition of B⊥ ≤ Bnc, we can
obtain the baseline decorrelation by Equation (6):

γgeom = 1 − B⊥
Bnc

= 1 − 2B⊥ρr cos θ

λH tan θ
(6)

In Equation (6), the baseline decorrelation is affected by the combination of baseline length,
resolution, wavelength, slant range, and look angle. In a certain look angle, Equation (6)
illustrates that the baseline decorrelation is inversely proportional to the baseline length and
directly proportional to the flight altitude. The baseline decorrelation for the range of look
angles at different altitudes is shown in Figure 7. The x-axis in the figure is the range of baseline
decorrelation, and the y-axis is the numbers in each range. From Figure 7, the short baseline
design leads to a very high decorrelation, which makes the effect of baseline decorrelation on
the coherence of the interferometric image pairs almost negligible.
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Figure 7. Baseline Decorrelation at (a) different heights and (b) different baseline lengths.

2. Doppler Decorrelation

Similarly to baseline decorrelation, doppler decorrelation γdoppler is caused by the
inconsistency of the doppler center frequencies of the interferometric image in azimuth,
which will decrease linearly with the increase of the doppler center frequency difference
irrespective of the directional map weighted of the spectra [37,38]. γdoppler can be obtained
by Equation (7):

γdoppler =

1 −
∣∣∣∆ fdop

∣∣∣/Ba

∣∣∣∆ fdop

∣∣∣ ≤ Ba

0
∣∣∣∆ fdop

∣∣∣ > Ba
(7)

where
∣∣∣∆ fdop

∣∣∣ is the Doppler center frequency difference. Ba is the azimuth bandwidth.
Regarding the ASMIS, it can be assumed that the doppler decorrelation factor is zero. This
is because the phase centers of the two antennas are the same in the azimuthal direction,
and the structure of the co-array surface exhibits the same form of dual-antenna error when
subjected to external perturbations.

3. Thermal Noise Decorrelation
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γnoise is the result of random thermal noise generated by the electronic components of
the radar system, which affects the accuracy and stability of the interferometric phase and
can be improved by filtering. For dual-channel InSAR, assuming that the thermal noise of
the channels is incoherent and the transmit signal is incoherent with the noise, the thermal
noise decorrelation can be calculated by Equation (8) [38]:

γnoise =
1√

(1 + SNR−1
1 )(1 + SNR−1

2 )
(8)

where SNR1 and SNR2 are the Signal-to-noise Ratio (SNR) for channels 1 and 2, respectively.
The SNR can be estimated from the ratio of the echo signal to the system sensitivity (NEσ0).

Figure 8a shows the curve of system sensitivity as a function of look angle at dif-
ferent flight altitudes. Since the system was designed with a limit of 6 km for the flight
altitude design, the system sensitivity at lower altitude will be better, with higher thermal
noise decorrelation, and will be optimized at the center of the scene (45◦) for the same
operating parameters.
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2.3.2. Motion Error Analysis

Since the airborne system operates mainly in the troposphere, its position and atti-
tude are subject to deviation from the expected trajectory due to atmospheric influences,
which are more pronounced in dual-antenna systems. Firstly, motion errors may lead to
inconsistencies in the doppler center frequencies of interferometric images, which directly
affects the coherence of the interferograms (see Equation (7)). In addition, the motion
inconsistency of the antennas introduces more errors. The residual error inconsistency
component ∆incon of the dual antennas can be expressed by Equation (9) [35]:

∆incon ≈
[

1
cos α(t) − 1

]
[∆x(t) cos ϕ1 + ∆z(t) sin ϕ1]∆ϕ

+
[

1
cos α(t) − 1

]
[δx(t) sin ϕ2 − δz(t) cos ϕ2]

− h
xs−xA

[∆x(t) sin ϕ1 − ∆z(t) cos ϕ1]∆ϕ

+ h
xs−xA

[δx(t) cos ϕ2 + δz(t) sin ϕ2]

− hB cos α

(xs−xA)
2 [∆x(t) cos ϕ1 + ∆z(t) sin ϕ1]

(9)

where ∆ϕ = ϕ2 − ϕ1, ϕ1, and ϕ2 are the look angles of antennas 1 and 2 to the same
illuminated target, respectively. ∆x and ∆z are the motion error of the carrier in the doppler
plane in the vertical flight direction (x and z directions). t is carrier flight time. xs and zs is
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the position of antenna 1 in the zero doppler plane, xA is the location of the ground target
point A. δx and δz are the inconsistent motion errors of the two antennas in the x and
z directions, respectively.

Considering the design of the short baseline of the ASMIS, the variation due to the
difference in look angle is on the order of 10−5 at an interference height of 2000 m. Therefore,
it is considered that the look angles of the two antennas are approximately equal, that is,
∆ϕ = 0. By designing the antenna coplanar, the error caused by the movement of the two
antennas in the same direction can be reduced significantly. This is achieved by eliminating
the first four terms in Equation (9).

As a result, the impact of residual error inconsistency is greatly minimized. When
taking aerial photographs during a flight, we can use the same motion compensation
algorithm without considering the inconsistency factor in echo imaging as long as it falls
within the maximum allowed deviation value. We mainly use motion compensation based
on a high-precision Inertial Measurement Unit (IMU). ASMIS has a precise navigation
unit, the Applanix POS-AV610, with a Global Navigation Satellite System (GNSS) and an
IMU. This navigation unit and proper postflight processing techniques ensure precise flight
parameter measurability (Table 3) [39].

Table 3. Absolute Accuracy Specifications (RMS) of the IMU.

Parameter Value

Position accuracy 0.02 m
Velocity accuracy 0.005 m/s

Roll and Pitch accuracy 0.0025◦

True Heading accuracy 0.005

Before applying motion compensation, it is essential to accurately measure the coor-
dinates of the GPS antenna, IMU, and SAR antennas. This is because the phase centers
of these three components are positioned differently on the carrier. By measuring their
coordinate relationship accurately, we can calculate the attitude and speed measured by the
IMU to the phase center of the antenna with precise accuracy. In the actual measurement,
the IMU and GPS are inside the cabin and the antenna is outside the cabin, so it is difficult to
measure the relationship after installation. To ensure accurate measurements, the antenna
and transition frame in the cabin can be fixed indoors. The total station can then be used
to measure the relative position of each part with an accuracy of up to 0.0001 m. When
calculating the phase center position of the antenna, the FRD (front, right, down) coordinate
system is first established with the IMU as the origin, and the GPS position information is
calibrated to the IMU, which can be obtained by Equation (10):

Pimu = R−1
gps(Pgps − Tgps) (10)

where Rgps and Tgps are the rotation matrix and the translation vector from GPS to IMU,
respectively. These can be obtained from Equation (11):

Rgps =

cos ψgps − sin ψgps 0
sin ψgps cos ψgps 0

0 0 1

 cos θgps 0 sin θgps
0 1 0

− sin θgps 0 cos θgps

1 0 0
0 cos ϕgps − sin ϕgps
0 sin ϕgps cos ϕgps


Tgps =

∆x1
∆y1
∆z1

 (11)

where ϕgps, θgps, and ψgps are the angle of rotation around x, y, and z, respectively. ∆x1, ∆y1,
and ∆z1 are the position coordinate difference from GPS to IMU. Then, according to the
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position relationship between the antenna and the IMU, the IMU information is calibrated
to the phase center of the antennas. This step can be obtained by Equation (12):

Pmaster = R−1
master(Pimu − Tmaster)

Pslave = R−1
slave(Pimu − Tslave)

(12)

where Rmaster, Rslave, Tmaster, and Tsalve are the rotation matrixes and the shift vectors from
the IMU to the phase center of the antennas, respectively. Therefore, the attitude and
position information of the antenna can be calculated by Equations (10)–(12).

For obtaining well-focused and accurate interferometric images, we first need to
perform joint motion compensation using corrected position and attitude information.
After that, we can use frequency domain imaging to obtain high-quality images. Due to the
large azimuth aperture of millimeter wave InSAR and the moderate swath of the airborne
systems, it is more accurate and robust to choose the frequency domain for imaging after
motion compensation. We performed radiometric calibration operations on the complex
images after motion compensation using radiometric calibration data in the experiment area.
This step is crucial in the process of transforming remote sensing data to SAR images as it
helps to ensure reliability and standardization. Accurate interpretation and quantitative
analysis of the images rely heavily on this process. The processing flow from the original
data to the complex images is completed, as summarized in Figure 9.
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2.3.3. Coherence Analysis

For the purpose of validating the antenna motion compensation effectiveness, we se-
lected partial data acquired under unstable conditions from both flatland and mountainous
experimental areas. Following the processing flow in Figure 9, we obtained coherence
comparison results before and after dual-antennas consistent motion compensation in
different regions. Figure 10a,b depict the SAR imaging results after antenna motion com-
pensation for flatland and mountain data, respectively. Figure 10c,d show the coherence
before compensation, revealing noticeable azimuthal stripes caused by motion errors. After
compensation, these stripes have been eliminated in Figure 10e,f. Additionally, the differen-
tial distribution of coherence coefficients after compensation is illustrated in Figure 10g,h,
indicating a reduction in areas with coherence coefficients below 0.9 and an increase in
areas above 0.9.

To quantitatively describe the effect after compensation, we define a coherence opti-
mization coefficient (κ), which can represent the coherence improvement of the coherence
after motion compensation. The calculation is shown in Equation (13):

κ =
∆γ

∑ γ
(13)

where ∆γ is the number of incremented values within (0.9–1) in the coherence plot af-
ter motion compensation. ∑ γ is the total number of points in the experimental sam-
ple data. Based on this calculation, the coherence optimization coefficient of the plain
experiment area and the mountain experiment area were 0.0297 (Chengde) and 0.0053
(Bayannur), respectively.
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By comparing the coefficients, it can be seen that the coherence of the experimental
images in the plain is better than that in the mountainous area, which is in line with the
practical theory. In addition, through the consistent motion compensation of the two
antennas, the coherence of the interferogram can be improved to different degrees in
different experimental areas, which is sufficient to prove the stability of the ASMIS.

Based on the above analysis, the coherence coefficients of the ASMIS flight experiment
area of about 1.4 km × 2.5 km (distance × azimuth) (Figure 11a) are statistically analyzed.
After coarse registration based on the coherence function method and fine registration of
cross-correlating matching parameters, the interference fringe diagram in Figure 11b is
obtained after image reacquisition.
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(b) interferogram.

In Figure 11b, there is still a large amount of phase noise in the image after fine
registration, which affects the clarity of the interferometric fringes and the subsequent
phase unwrapping accuracy. It is an important operation to filter the coherence. Before
generating the coherence, we use Assumed Density filtering (ADF) adaptive filtering, which
can effectively remove the phase noise in the registration image and improve the phase
unwrapping accuracy.

Figure 12 shows the comparison before and after filtering of the coherence. The
low coherence area in the figure corresponds to the shadow area not illuminated by the
InSAR. We have marked points with a coherence coefficient of 0.5 in black in the figure.
By comparing the images before and after filtering, it can be seen that the region with the
coherence coefficient of 0.5 after filtering is significantly reduced and the overall coherence
is improved. Figure 13 shows the distribution curve of correlation coefficients; the x-axis is
the segmented interval of coherence coefficients, and the y-axis is the number of coherence
coefficients in each interval. It can be seen that high coherence values are mainly distributed
in the interval [0.9,1.0], and are mainly concentrated above 0.95, accounting for 81% of
the total.
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3. System Description

ASMIS consists of two parts: airborne equipment and ground processing system. The
airborne equipment includes a Ka-band millimeter-wave SAR consisting of an antenna unit,
an integrated electronics unit, an integrated processing unit, a data logging unit, a power
distribution unit, a combined GPS/IMU navigation device, and a radome. The antenna
unit is installed under the belly of the carrier, and the other equipment is installed on the
integrated electronic equipment cabinet in the cabin. The specific structure and connection
of the airborne equipment are shown in Figure 14.
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Figure 14. System Structure.

The airborne equipment can generate and transmit the radar signal and obtain the
original echo. The integrated electronic unit can generate the reference signal, the clock
signal, the transmit signal, and the timing signal to coordinate the work of the radar system.
The integrated processing unit completes the task management and real-time imaging
processing of the system. The data record unit mainly realizes real-time data recording
of the original echo data. The power distribution unit distributes power from the carrier
to each system unit. ASMIS also integrates a Phase camera (IXU-RS1000), which can be
controlled through the radar operator interface. It has an unattended mode in conjunction
with the radar system. The system structure is described in more detail below.

1. Antennas

ASMIS adopts 35 GHz electromagnetic waves as the signal carrier frequency, which
can propagate through the atmosphere in the presence of clouds and precipitation without
being greatly affected [40]. At the same time, the short-wave interferometry is weakly
penetrating the ground vegetation, which makes it easy to extract the surface features
of the observation area under high operations and generate DSM [41]. Polarization is
a target feature in microwave remote sensing that improves identification accuracy. In
practical applications, grass and roads with low scattering rates are better with horizontal
polarization. Spaceborne systems for mapping also use horizontal polarization because HH
polarization provides higher coherence and lower phase noise, which improves the accuracy
and reliability of elevation estimation [42,43]. Therefore, the selection of HH polarization
can better describe and discriminate multiple features and facilitate DSM generation.

Millimeter-wave antenna using a waveguide slot array, the rectangular grid arrange-
ment is adopted in azimuth, and the design of the choke slot increases the isolation. To
achieve the scanning requirements, the group array unit is spaced in 6 mm intervals. The
individual antenna specifications were as follows: 64 units in azimuth and 1 unit in range,



Remote Sens. 2024, 16, 1020 17 of 28

with the array layer of the electrical dimensions of 384 mm (azimuth) × 27 mm (range).
Each unit is driven by a single channel T/R module, and four gaps in each waveguide
radiate electromagnetic waves. In the case of uniform distribution, the antenna directivity
coefficient is 32.5 dB, and the difference between high- and low-frequency directivity coeffi-
cients is 1 dB [44]. In the normal direction, the maximum side lobe of the two main plane
directions of the antenna array azimuth and distance is lower than −12dB, and the side
lobe outside the main plane is not more than this value. The planar near-field test was used
for the antenna radiation diagram, and the test results are shown in Figure 15 [45].
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2. Integrated Electronic Unit

The unit can be used to realize the generation, processing, and transmission of radar
signals, as well as the control and monitoring of the radar. It consists of the following parts:
a reference frequency source is used to generate initial radar signals, including reference
signals, clock signals, timing signals, and control signals, and to monitor the output of
each signal. The microwave combination and internal calibrator are used to complete the
amplified output of Radio frequency (RF) signals and the duplex transmission of echo
signals. As well as the formation of reference calibration, these also receive calibration and
transmit calibration signals.

The transmitter and receiver (T/R) channel is based on Low-Temperature Co-fired
Ceramic (LTCC) technology, which is used for secondary frequency conversion, filtering
and amplifying the initial signal to be output to the microwave combining module. It is also
used for down-conversion, Manual Gain Control (MGC) adjustment, signal amplification,
and quadrature demodulation of the low-noise amplified echo signal.

The data generation unit is used to extract, filter, and quantize the echo signal, pack it
with auxiliary data into frames, and format them to obtain the echo data. The monitor and
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timer module are used to set parameters, generate signals, and monitor the system. It can
also calculate the wave control code according to the working mode and parameters of the
radar and the attitude data of the carrier. This is then sent to the antenna unit to realize the
real-time motion compensation and beam control of the radar, as well as the servo control
of the antennas.

3. Integrated Processing Unit

The integrated processing unit is composed of the main board, signal processing board,
power supply board, and backplane. It manages radar missions, displays imaging, controls
recording operations, and summarizes monitoring data through man-machine interaction.
Additionally, it has an unmanned mode of operation that allows it to read the IMU’s raw
data and forward it to the data recording unit. In the system, the backplane is used to
interconnect high-speed signals and power signals between boards within the unit.

4. Experiment and Interferometric Processing

4.1. Flight Experiment Areas

ASMIS carried out several flight experiments in Boao, Bayannur, and Chengde
aboard the Cessna 208B, with the experimental areas covering a wide range of landforms
(Figure 16a). The details are as follows: in the Boao experimental area, considering the
experimental purpose of large swath observation, a long route (Figure 16b) was designed
with a flight altitude of 4000 m. The average elevation of the irradiated area was 50 m, and
the terrain was dominated by the coastal area (including the coastline). The latitude and
longitude range of the covered area is 18.315◦N~18.753◦N, 109.783◦E~110.473◦E.
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In the Bayannur experimental area, the flight altitude was 3000 m and the average ele-
vation of the irradiated area was 1003m, which contained typical landscapes such as plains
and farmland. A total of seven strips were designed in the Bayannur experimental area
(Figure 16c), with a 20% overlap between neighboring strips (see the yellow transparent
area of neighboring strips in Figure 16c). The latitude and longitude range of the coverage
area is 40.638◦N~40.691◦N, 107.098◦E~107.335◦E. In addition, we set up a radiometric cali-
bration field in the flight coverage area for subsequent radiometric calibration processing.
The calibration experiment field site was selected and set at a large area with flat terrain
and weak ground object backscattering. Radiometric calibration eliminates the influence
of sensor characteristics, terrain, and other factors on the SAR image radiation value and
makes the image reflect the real radiation characteristics of ground objects [46].

In the Chengde experimental area, the flight altitude was 2800 m, and the average
altitude of the irradiated area was 460 m. Due to the undulating topography and the
predominance of mountainous and forested areas, the Chengde experimental area is prone
to a higher proportion of layovers and shadows caused by SAR squint imaging. As a result,
the interferometric phases obtained may appear unconnected or even full of noise, leading
to a degradation in the accuracy of the DEM [47]. To compensate for areas of geometric
aberration at one angle, a common approach is to combine multi-angle observations of the
same region [48].

Therefore, we designed an antiparallel flight experiment in the Chengde experimental
area, and the system worked with a left-side view for all six strips (Figure 16d). When the
carrier completes a route on a particular strip, it follows an “8” turnaround flight pattern
and flies in the opposite direction. This helps to reduce the errors caused by the POS system
when collecting data from the same irradiated area multiple times. There is a 20% overlap
between neighboring strips (see the yellow transparent area of the neighboring strips in
Figure 16d), and the latitude and longitude range of the covered area is 40.813◦N~41.119◦N,
117.204◦E~117.578◦E. In addition, a few GCPs were set up in an area of 2.3 km × 2.6 km
in size at the Chengde Flight Center (see Section 5.1) to provide a basis for subsequent
accuracy assessment.

During aerial operations, the POS recorded its 3D coordinates, attitude angle, velocity,
acceleration, and other information at a frequency of 500 Hz. The flight parameters of each
experimental area are shown in Table 4.

Table 4. Experimental area flight parameters.

Parameter Bayan Nur Chengde Boao

Model Cessna 208B
Average velocity 240 km/h–320 km/h

Bandwidth 2800 MHz/1200 MHz (0.1/0.3 m resolution)
Baseline angle 45◦ 70◦

Resolution 0.1 m × 0.1 m, 0.3 m × 0.3 m 0.3 m × 0.3 m
Look angle 37◦–53◦ 62◦–78◦

Carrier altitude 3000 m 2800 m 4000 m
Swath width 1.70 km 1.70 km 11.30 km
Swath length 20 km 40 km 77 km

4.2. Interferometric Processing

Once motion compensation and imaging are completed, the acquired complex image
requires several additional processing steps to generate the final coherence image. These
steps include registration, filtering, decorrelation, and coherence estimation. After that, the
DEM is obtained by performing unwrapping, calibration, phase-to-height conversion, and
geocoding. Finally, the large-scale DSM and DOM images are generated by performing
GCPs calibration, geometry calibration, and image stitching. The precise alignment and
filtering of the images have been explained in detail in the decorrelation analysis, which is
covered in Section 2. The specific steps involved in this process are illustrated in Figure 17.
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However, we will not go into further detail on this aspect here as our focus is on the other
primary processing flows.
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verted to altitude (HGT) by using the interferometric baseline and the slant range. Then, 
the HGT is geocoded to obtain the DEMs by using the orbit parameters and the range–
Doppler equation. The orthorectification and the control point elevation calibration are 
performed to obtain the DOMs and the DSMs by using the DEM and the SAR intensity 
image. Finally, the geometric calibration and the mosaic are applied to the DOM and the 
DSM to obtain the large-area DSM and DOM images. The specific process is shown in 
Figure 17. 

5. Results 
5.1. Result of Evaluation Accuracy 

In the Chengde experimental area, we used a dispersed arrangement of eight calibra-
tors as GCPs, including control point mapping the area in Figure 18, covering the area in 
the latitude and longitude range of 40.958°N~40.979°N to 117.375°E~117.406°E. When po-
sitioning the GCPs, we opted for areas with level terrain, limited vegetation, consistent 
characteristics, and strong echo intensity, based on the recommendations for distributed 
placement. Since the flight path was two-way, the calibration points were arranged in 
pairs, facing in opposite directions. Figure 19 depicts the location of calibration point No.5, 
which is part of such a pair, and its placement ensures the reliability of data processing in 
both directions. 

Figure 17. Interferometric processing flow.

1. Unwrapping

Phase unwrapping is the process of reducing the phase values wrapped in 2π to
their true continuous phase values. MCF (Minimum Cost Flow) is a phase unwrapping
algorithm. The advantage of the MCF algorithm is that it is extremely robust and accurate
and can deal with complex nonlinear problems. The steps of the MCF algorithm to realize
unwrapping are shown in Figure 17. We remove the image of the flat earth phase first, and
perform secondary ADF filtering on the interferograms and coherence before unwrapping.
During unwrapping, we choose not to process the image in chunks, but to treat the whole
image as a network flow map, which can avoid the error propagation at the boundary of
chunks and improve the accuracy of unwrapping.

2. Generation and Splicing of DOM and DSM

The interferometric phase of InSAR after phase unwrapping is calibrated and con-
verted to altitude (HGT) by using the interferometric baseline and the slant range. Then, the
HGT is geocoded to obtain the DEMs by using the orbit parameters and the range–Doppler
equation. The orthorectification and the control point elevation calibration are performed
to obtain the DOMs and the DSMs by using the DEM and the SAR intensity image. Finally,
the geometric calibration and the mosaic are applied to the DOM and the DSM to obtain
the large-area DSM and DOM images. The specific process is shown in Figure 17.
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5. Results

5.1. Result of Evaluation Accuracy

In the Chengde experimental area, we used a dispersed arrangement of eight cali-
brators as GCPs, including control point mapping the area in Figure 18, covering the area
in the latitude and longitude range of 40.958◦N~40.979◦N to 117.375◦E~117.406◦E. When
positioning the GCPs, we opted for areas with level terrain, limited vegetation, consistent
characteristics, and strong echo intensity, based on the recommendations for distributed
placement. Since the flight path was two-way, the calibration points were arranged in
pairs, facing in opposite directions. Figure 19 depicts the location of calibration point No.5,
which is part of such a pair, and its placement ensures the reliability of data processing in
both directions.
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The evaluation of interferometric elevation measurement accuracy is realized by
testing the DSM products. The elevation accuracy of DSM data products is mainly examined
by using the GCPs of the field measurements. The elevation measurement accuracy is
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characterized by using the elevation RMSE of the GCPs, and the calculation is obtained in
Equation (14):

σH =

√√√√√ n
∑

i=0
(Hi − H̃i)

2

n
(14)

where n is the number of GCPs, Hi is the elevation of the DSM, H̃i is the measured elevation
of the GCPs, and σH is the elevation RMSE. The statistical results of the GCPs are shown
in Figure 20 and Table 5, which show that the elevation RMSE is 0.30 m. In addition,
by analyzing the field checkpoints arranged in the modified area, the elevation RMSE
of checkpoints is less than 0.82 m in altitude and 3 m horizontally. According to the
requirements of the Chinese surveying and mapping industry, ASMIS can satisfy the
production standards of 1:5000 [49].
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Table 5. GCPs coordinates and elevation results.

Name Coordinates Measured DSM Error

JF01 40◦58′51.06′′N 117◦23′17.49′′E 491.13 491.46 −0.33
JF02 40◦58′48.60′′N 117◦22′34.53′′E 483.95 483.74 0.20
JF03 40◦58′14.28′′N 117◦22′31.14′′E 464.52 464.75 −0.23
JF04 40◦58′00.31′′N 117◦23′24.18′′E 495.21 494.91 0.30
JF05 40◦57′27.21′′N 117◦24′12.62′′E 496.65 496.26 0.38
JF06 40◦57′26.03′′N 117◦22′29.96′′E 528.62 528.71 −0.08
JF07 40◦57′42.81′′N 117◦22′58.23′′E 505.87 506.36 −0.49
JF08 40◦57′48.16′′N 117◦23′06.45′′E 503.18 502.98 0.20

RSME 0.30

5.2. Results of DOM and DSM

Through geometric calibration, image stitching, and grid interpolation of DSM ob-
tained after processing the regional data of the Chengde center experimental area, a stan-
dard map sheet with a resolution of 0.3 m and a mapping scale of 1:5000 was obtained, as
shown in Figure 21. Figure 21a,b show the DOM and DSM results obtained by the carrier
flying from east to west, and Figure 21c,d show the DOM and DSM results obtained by
the carrier flying from west to east, respectively. To overcome the challenge of shadowing
caused by undulating terrain, a useful technique is to combine data from antiparallel flights.
This integration results in a multi-look image of the same observation area, which is highly
beneficial for mapping applications. This approach may effectively resolve the problem of
undulating terrain, making it important for all-terrain mapping and applications.
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Figure 21. Results of the 1:5000 mapping of the Chengde experimental area (a) DOM (east-west);
(b) DSM (east-west); (c) DOM (west-east); and (d) DSM (west-east).

In the Bayannur experimental area, the terrain is dominated by plains and deserts,
and no two-way flight experiment was designed considering its flat terrain with less
superimposed layover and shadow. The findings of the flat region acquired after processing
are illustrated in Figure 22. When we integrate high-resolution SAR imaging images with
the DSM results of the experimental area, we can enhance the accuracy of feature recognition
and classification. This is of significant importance in terrain analysis.
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Figure 22. Mapping results of the Bayannur experimental area: (a,c) the original SAR image and
(b,d) the corresponding DSM image.

In the Boao experimental area, the primary objective was to test the large swath
imaging capability of ASMIS. To achieve this, a center look angle of 70◦ was set up, and
the imaging results with 0.3 m resolution were obtained after transportation and imaging
processing. Figure 23a,b show the results of this high-resolution, wide-area observation.
This can significantly improve mapping efficiency and information along the coastline. By
utilizing optical images, it becomes possible to accurately differentiate between land and
water in coastal areas. This method can lead to numerous opportunities for further research
and practical applications in this field.
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6. Conclusions and Discussion

In this paper, we present a millimeter-wave InSAR system (ASMIS). The sensitivity
effects are analyzed in detail based on the system design. ASMIS carried out topographic
modeling experiments in the plains, mountains, and coastal areas of China, and the data
were processed and analyzed. The experimental results prove the theoretical analysis, as
well as the performance and stability of the system. The most important conclusions of this
paper are as follows:

1. Short-baseline airborne InSAR is capable of combining elevation accuracy and coher-
ence. ASMIS has obtained the correlation coefficient of better than 0.95 within 81% of
the area in mountainous areas. By designing a few GCPs in the Chengde experimental
area, ASMIS realizes the requirement of 1:5000 topographic mapping. The coordinate
RMSE of the checkpoints within the obtained DSM is less than 0.82 m in altitude and
3 m horizontally. The RMSE of the GCPs within the obtained DSM is less than 0.3 m
in altitude.

2. The motion inconsistency error of short-baseline InSAR can be ignored to some extent.
The processing directly compensates for the motion consistency of the reference and
secondary antennas, which can simplify the algorithm to improve efficiency.
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3. The multiple work modes of ASMIS have obtained great experimental results, in-
cluding 0.1 m × 0.1 m (azimuth × range) resolution imaging, and 0.3 m × 0.3 m
(azimuth × range) resolution wide-swath imaging.

4. Undulating terrains can cause shadow, but the antiparallel flight experiments can
provide an effective solution to this problem.

The system proposed in this paper is advanced in performance and stability. Com-
pared with the Ka-Band Fixed-Baseline InSAR developed by the Beijing Institute of Radio
Measurement and the AXIS (Airborne X-band Interferometric SAR) system developed
by the Institute for Remote Sensing of Environment (IREA), National Research Council
(CNR) [39,50], ASMIS has a better spatial resolution (0.1 m), fewer GCPs required for
elevation assessment, and more imaging modes. We take into account the effects of the
undulating terrain, and design antiparallel flight experiments in mountainous areas to
obtain data. The work in this paper focuses on system design and sensitivity analysis. The
data were processed, calibrated across strips, and spliced to obtain a 1:5000 DSM product.
The results demonstrate the accuracy of the system on topographic mapping. However, the
system still has the following limitations to be developed for further research:

1. In the elevation accuracy, a laser baseline measurement system can be considered to
compensate for the deformation of the facilities. This can control the baseline length
and angle errors to 0.1 mm and 0.002◦, respectively, and further improve the elevation
error according to the theoretical analysis.

2. The experimental area data is multi-temporal, multi-angle, and multi-parameter.
It can support more remote sensing applications such as feature classification and
deformation assessment.

3. At present, only the antiparallel flight data of the Chengde experimental area has
been processed independently. Joint correction and splicing processing are needed in
the future.
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