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Abstract: Polarimetric target decomposition algorithms have played an important role in extracting
the scattering characteristics of buildings, crops, and other fields. However, there is limited research
on the scattering characteristics of grasslands and a lack of volume scattering models established for
grasslands. To improve the accuracy of the polarimetric target decomposition algorithm applicable to
grassland environments, this paper proposes an adaptive polarimetric target decomposition algorithm
(APD) based on the anisotropy degree (A). The adaptive volume scattering model is used in APD to
model volume scattering in forest and grassland regions separately by adjusting the value of A. When
A > 1, the particle shape becomes a disk, and the grassland canopy is approximated as a cloud layer
composed of randomly oriented disk particles; when A < 1, the particle shape is a needle, simulating
the scattering mechanism of forests. APD is applied to an L-band AirSAR dataset from San Francisco,
a C-band AirSAR dataset from Hunshandak grassland in Inner Mongolia Autonomous Region, and
an X-band COSMO-SkyMed dataset from Xiwuqi grassland in Inner Mongolia Autonomous Region
to verify the effectiveness of this method. Comparison studies are carried out to test the performance
of APD over several target decomposition algorithms. The experimental results show that APD
outperforms the algorithms tested in terms of this study in decomposition accuracy for grasslands
and forests on different bands of data.

Keywords: adaptive polarimetric target decomposition; anisotropy degree; volume scattering
model; grassland

1. Introduction

Grassland ecosystems are an important component of the terrestrial ecosystem. Among
them, typical grasslands are predominant, which are composed of typical xerophytic herba-
ceous plants, with bunchgrass as the main species, accompanied by a small number of
xerophytic and mesoxerophytic mixed grasses; these are sometimes mixed with xerophytic
shrubs, forming a unique shrub–grassland. In recent years, desertification in grasslands
has become increasingly serious. The unique geographical and meteorological characteris-
tics of grassland areas have further exacerbated this issue. Therefore, the monitoring of
grassland areas is of great significance [1]. Compared to conventional optical and infrared
systems, synthetic aperture radar (SAR) offers strong penetration capabilities, overcom-
ing diurnal variations [2]. It is able to provide information regardless of the weather and
sun illumination conditions [3]. Polarimetric target decomposition is one of the most widely
used methods for polarization feature extraction in synthetic aperture radar (SAR) [4].
This approach represents target scattering by using several basic scattering mechanisms [5,6].
The obtained polarization characteristic parameters have seen widespread application in
fields such as geological disaster monitoring [7,8], forest monitoring [9,10], soil moisture
inversion [11,12], and land cover classification [13]. In the past few years, researchers have
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gained a better understanding of polarimetric target decomposition. From the perspective
of coherent decomposition, polarimetric target decomposition methods can be divided into
two categories: one consists of methods based on eigenvalue decomposition, which quanti-
tatively analyzes the eigenvectors and eigenvalues of the coherent matrix or covariance
matrix [14]; the other consists of methods based on model decomposition, which represents
the physical scattering phenomenon [15–18]. Since Freeman and Durden proposed the
three-component scattering model (FDD) for PolSAR data target decomposition in 1993 [19],
the use of physical scattering models to simulate targets has become widespread with the
application of PolSAR technology. The simple and clear model has good application
benefits [20–24]. Subsequently, model-based decomposition has developed rapidly [25].

To improve the effectiveness of model-based approaches, scholars have conducted ex-
tensive research. In early research, model-based decomposition methods exhibited negative
double-bounce and surface scattering components on some pixels. To address this issue,
Cloude [26] proposed a hybrid Freeman/eigenvalue decomposition method, where surface
scattering is orthogonal to double-bounce scattering. Singh [27] extended the volume
scattering model and combined it with the rotation transformation of the coherence matrix
to overcome the negative power and improve the decomposition accuracy. Maurya [28] in-
troduced a hybrid technique for polarimetric synthetic aperture radar data decomposition,
aiming to address the negative power issue encountered in model-based decomposition
methods. With the development of model-based approaches, researchers have developed a
large number of polarimetric target decomposition algorithms based on different feature
scattering characteristics and specific application scenarios, by developing corresponding
volume scattering models to be combined with surface and double-bounce scattering.
For instance, Chen et al. [29] used the Yamaguchi four-component decomposition with
rotation transformation (Y4R) [30] model in conjunction with the polarization angle (PO);
with this method, the amount of damage to the structure of an urban area after a tsunami
was examined, which is important for the assessment of natural disasters. In addition, in
an urban setting, using the rotated dihedral model, Xiang et al. [31] effectively separate the
cross scattering caused by oriented buildings from the overall HV component.. Meanwhile,
Hu et al. [32] described buildings at different azimuthal angles and distinguished built-up
and natural areas by using the rotated dihedral model. The refined volume scattering model
proposed by Wang et al. [33] can rationally explain the scattering mechanisms of various
terrain types (especially built-up areas with large azimuths), overcome the overestimation
of volume scattering, and reduce the percentage of negatively scattered power pixels.
For the forest region, they also introduced a new model to distinguish artificial structures
with compensated directional angles and natural media [34], combining the dihedral corner
reflector scattering model and the polarimetric orientation angle (POA) to better separate
the forest from the buildings [35]. Regarding the multi-target region, Yue [36] used the
expectation–maximization (EM)-based G0 distributions to fit the different target regions of
the SAR scene, and obtained the different structures in the SAR of the target backscatter.

Although these models play an important role in overcoming the negative power
and improving the accuracy of the decomposition, these models always provide a unique
mathematical result. Thus, some approximations must be applied to interpret the results in
terms of known scattering mechanisms, but different targets exhibit different scattering
mechanisms [37]. In order to solve this problem, scholars have introduced adaptive
parameters into scattering models, where the adaptive parameters are matched with the
data in the scattering model [37–39]. Cui et al. [40], Chen et al. [41], Wang et al. [42], and
Wang, T. et al. [43] used the similarity parameters, coherence parameters, wave anisotropy,
and full parameters of the remainder matrix as adaptive parameters. This enabled them
to automatically adjust the coherence matrix or covariance matrix to adapt to different
models. Wang, Z. et al. [44] proposed a novel adaptive decomposition approach in which
they established a dipole aggregation model to fit every pixel in a PolSAR image to an
independent volume scattering mechanism, resulting in a reduction in negative power and
an improvement in the adaptive capabilities of the decomposition models. However, most
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of these volume scattering models are applied to forest and urban areas; there are fewer
reports on the modeling of the scattering characteristics of grasslands. Consequently, the
accuracy of the polarimetric target decomposition algorithms when used in grasslands can
be further improved. Therefore, we aim to propose a novel volume scattering model and
its corresponding polarimetric target decomposition algorithm for the grassland canopy.

In this paper, we present an adaptive polarimetric target decomposition algorithm
based on the anisotropy degree (A). By simulating a cloud layer composed of randomly
oriented ellipsoid scatterers, the method more accurately reflects the radar scattering mech-
anism in grassland areas. By adjusting the value of A, we can simulate different vegetation
types, such as grassland and forest, thereby enhancing the synthetic aperture radar’s
resolution and identification capabilities for different ground cover types. To demon-
strate the effectiveness of the proposed method, we use an L-band AirSAR dataset from
San Francisco, a C-band AirSAR dataset from Hunshandak grassland in Inner Mongolia,
and an X-band COSMO-SkyMed dataset from Xiwuqi in Inner Mongolia as empirical cases.
Compared with the Freeman2 decomposition (FRE2) [45], Yamaguchi four-component
decomposition with rotation transformation (Y4R) [30], model-free four-component decom-
position (MF4CF) [46], hybrid three-component decomposition (HTCD) [47], and hybrid
polarimetric target decomposition (GRH) [48] algorithms, our method shows significantly
improved accuracy in extracting decomposed components.

2. Methodology

In this study, we utilized the scattering characteristics of grasslands and forests to
construct a volume scattering model employing a random particle cloud model. Firstly,
we computed the coherency matrix along the radar line-of-sight direction using the polari-
metric angle compensation method, aiming to minimize the volume scattering component.
Subsequently, we constructed covariance matrices for different regions of grasslands and
forests by introducing A. Finally, by solving the positive definite equations, we derived
the polarimetric target decomposition algorithm and successfully extracted the decomposi-
tion components of these regions, enabling a more in-depth analysis of the polarization
scattering characteristics of target objects under various environmental conditions.

2.1. Orientation Angle Compensation

For full PolSAR, the complete polarization information can be represented in the form
of a scattering matrix, which is defined as follows:

S =

[
SHH SHV
SVH SVV

]
(1)

If the PolSAR target obeys the reciprocity condition (i.e., SHV = SVH), the PolSAR data
can be expressed in terms of Pauli scattering vectors:

k =
1√
2

SHH + SVV
SHH − SVV

2SHV

 (2)

Multiview PolSAR data can be represented by a 3 × 3 coherence matrix:

⟨[T]⟩ =
〈

k ∗ kH
〉
=

T11 T12 T13
T∗

12 T22 T23
T∗

13 T∗
23 T33

 (3)

where < > denotes multiview processing, superscript H denotes a conjugate transpose, and
the coherence matrix is a Hermitian matrix.

Orientation angle compensation is a commonly used method in the processing of
polarimetric target decomposition data to reduce the cross-polarization term T33. The coher-



Remote Sens. 2024, 16, 1015 4 of 21

ence matrix is subjected to an angular rotation of θ around the line-of-sight direction [30],
which yields the oriented coherence matrix T3(θ) as

⟨[T3(θ)]⟩ = R(θ)⟨[T]⟩R
(

θ)−1 =

T11(θ) T12(θ) T13(θ)
T∗

12(θ) T22(θ) T23(θ)
T∗

13(θ) T∗
23(θ) T33(θ)

 (4)

where R(θ) is

R(θ) =

1 0 0
0 cos2θ sin2θ
0 −sin2θ cos2θ

 (5)

In order to minimize T33(θ) to bound the volume scattering overestimation problem, it
is necessary to rotate T33(θ) to a position where the derivative is 0 [49], where

T33(θ) = T33cos2(2θ) + T22sin2(2θ)− Re(T23)sin(4θ) (6)

Let T33
′(θ) = 0, which leads to

θ =
1
4

tan−1
(

2Re(T23)

T22 − T33

)
(7)

where Re(T23) is the real part of T23.
Using directional angle compensation, the cross-polarization term T33(θ) decreases

and the negative power decreases. Then, the covariance matrix of the fully measured
PolSAR data can be expressed as

C =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 = UL−PT3(θ)U−1
L−P (8)

where

UL−P =
1√
2

1 0 1
1 0 −1
0

√
2 0

 (9)

U−1
L−P =

1√
2

1 1 0
0 0

√
2

1 −1 0

 (10)

Using Equation (8), we can obtain the covariance matrix from the coherence matrix
and use the obtained covariance matrix of the polarimetric target decomposition algorithm.

2.2. Construction of Polarimetric Target Decomposition Algorithm

In this section, we construct a polarimetric target decomposition algorithm based
on a random particle model. By utilizing the random particle model, we can accurately
describe the scattering mechanism of the target and derive the covariance matrix required
by the algorithm.

2.2.1. Random Particle Model

The random particle model is obtained via three different Eulerian rotations of the
particle through two of the three mutually perpendicular axes. A comprehensive illustration
of these rotations is depicted in Figure 1, where the original triad of axes is denoted as (x,
y, z). The initial axis is rotated in a counterclockwise direction around the z-axis, thereby
forming the new axis, which is represented as (x′, y′, z′). The angular distance between
the y-axis and the y′ axis is denoted by ϕ, and it is important to note that ϕ falls within
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the range of 0 ≤ ϕ ≤ 2 π. Subsequently, it is rotated clockwise around the y′ axis, thereby
forming the new axis, which is represented as (x′′, y′′, z′′). The angular distance between
the z-axis and the z′′ axis is denoted by τ. It is important to note that τ falls within the
range of 0 ≤ τ ≤ π. Finally, it is rotated counterclockwise around the z′′ axis. This rotation
gives rise to a new axis, which is represented as (x′′, y′′′, z′′′). The angle between the x′′

axis and the x′′′ axis is denoted by θ, and it is important to note that θ falls within the range
of 0 ≤ θ ≤ 2 π [50]. After the above rotations, we can obtain the object particles at any
angle in space.
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The three angles are referred to as the spin angle ϕ, tilt angle τ, and rotation angle θ.
For each rotation, the original axis can be represented as a new axis using a rotation matrix,
and the expressions for the three rotation matrices are [50]

Bϕ =

cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

 (11)

Bτ =

 cosτ 0 sinτ
0 1 0

−sinτ 0 cosτ

 (12)

Bθ =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (13)

B = BϕBτBθ (14)

Based on the above equation, we can obtain the rotation matrix B, which provides the
theoretical basis for the subsequent calculation of the individual particle scattering matrix.

2.2.2. Volume Scattering Model

For the modeling of scattering from forest and grass canopies, which are approximated
as a cloud of randomly oriented ellipsoidal scatterers, we assume that each particle in the
cloud is independent. Based on the physical model described above, we can obtain a
matrix of backward scattering coefficients for the particles and their derivation equations
as follows [50]:

S =

[
S11 S12
S21 S22

]
(15)
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From Equation (14),

Sik = Ski = Bi1Bk1ρ1 + Bi2Bk2ρ2 + Bi3Bk3ρ3 (16)

where Bi1, Bi2, Bi3, Bk1, Bk2, and Bk3 (i,k = 1,2) are the elements in Equation (14) and
ρ denotes the polarizability of the small particles. According to reciprocity, it is obtained
that S12 = S21, i.e.,

S11 = ρ1(cosθcosτcosϕ − sinθsinϕ)2 + ρ2(sinθcosϕ + cosθcosτsinϕ)2

+ρ3cos2θsin2τ
(17)

S12 = ρ1(sinθcosτcosϕ + cosθsinϕ)2 + ρ2(cosθcosϕ − sinθcosτsinϕ)2

+ρ3sin2θsin2τ
(18)

S22 = ρ1(sinθcosτcosϕ + cosθsinϕ)(cosθcosτcosϕ − sinθsinϕ)− ρ2
(sinθcosϕ + cosθcosτsinϕ)(cosθcosϕ − sinθcosτsinϕ)

+ρ3cosθsinθsin2τ

(19)

By normalizing ρ and using A to denote it by taking ρ1 = 1, ρ2 = ρ3 = A, we change the
particle shape by changing the value of A. For A = 1, the particle has a spherical shape or is
a low-dielectric material; for A < 1, the particle has the shape of a needle; and for A > 1, the
particle has the shape of a flat disk [50]. From the above calculations, we can obtain the
scattering matrix S of individual particles. Then, by calculating the coherence matrix of
individual particles, we can derive the volume scattering model by using the algorithm
described in this paper.

From Equation (15), we can calculate the coherence matrix T of a single particle, which
can be expressed as

T =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 (20)

The coherence matrix elements tij in Equation (20) are all functions of θ, ϕ, and τ,
which are denoted as tij(θ, τ, ϕ). Then, the overall average coherence matrix elements <tij>
of the randomly distributed ellipsoidal particles can be obtained by integrating tij (θ, τ,
ϕ)sinτ over all angles as follows [50]:

〈
tij
〉
=

1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
tij(θ, τ, ϕ)sinτdϕdτdθ (21)

According to Equations (20) and (21), we can obtain coherence matrix <T3> of the
ellipsoidal particles in this algorithm as follows [50]:

⟨T3⟩ =

7A2 + 6A + 2 0 0
0 (A − 1)2 0
0 0 (A − 1)2

 (22)

Then, we derive the covariance matrix C3 in our own algorithm based on Equation (22):

C3 =

4A2 + 2A + 3
2 0 3A2 + 4A + 1

2
0 (A − 1)2 0

3A2 + 4A + 1
2 0 4A2 + 2A + 3

2

 (23)

Based on the aforementioned equations, we can derive the covariance matrix of the
volume scattering model. In this paper, for grassland vegetation, as shown in Figure 2a, the
vegetation grows uniformly, it is short and dense, and the grass leaves are slender and soft.
The flat particles can be utilized to model the volume scattering components (A > 1) [51].
For forest vegetation, as shown in Figure 2b, this vegetation grows uniformly, it is tall and
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dense, and the needle particles can be utilized to model the volume scattering components
(A < 1) [51].
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2.3. Polarimetric Target Decomposition Algorithm

SAR backscatter mainly arises from vegetation and the ground surface. In this
paper, we use the above volume scattering model combined with the surface scatter-
ing component of FER2 [45] to derive the polarimetric target decomposition algorithm.
We use Equation (23) to model volume scattering, and a second-order statistical covariance
matrix C3V can be derived:

C3V = fVC3 (24)

where the contribution of the volume scattering component is represented by ƒV.
The ground scattering is modeled using FRE2 [45], and the covariance matrix C3G can
be expressed as

C3G = fG

 1 0 α
0 0 0
α∗ 0 |α|2

 (25)

where the contribution of the double-bounce scattering or surface scattering component is
represented by ƒG and α. Then, the second-order covariance matrix C of the fully measured
PolSAR data can be expressed as

C = C3V + C3G =


(
4A2 + 2A + 3

2
)

fV + fG 0
(

3A2 + 4A + 1
2

)
fV + fGα

0 (A − 1)2 fV 0(
3A2 + 4A + 1

2

)
fV + fGα∗ 0

(
4A2 + 2A + 3

2
)

fV + fG|α|2

 (26)

According to Equation (26), we can obtain the following four equations:
C11 =

(
4A2 + 2A + 3

2
)

fV + fG

C22 = (A − 1)2 fV

C33 =
(
4A2 + 2A + 3

2
)

fV + fG|α|2

C13 =
(

3A2 + 4A + 1
2

)
fV + fGα

(27)

By solving Equation (27), we can obtain

fG =
Im2(C13

)
+ [Re(C13)− C11 + C22]

2

C33 − C11 − 2Re(C13) + 2C11 − 2C22
(28)
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Im(α) =
Im(C13)

fG
(29)

Re(α) =
Re(C13)− C11 + C22

fG
+ 1 (30)

fV =
C22

(A − 1)2 (31)

A =
(2C11 − 2 fG + 2C22)±

√
30(C11 − fG)C22 − 20C2

22

2(C11 − fG − 4C22)
(32)

From Equation (32), we can calculate the magnitude of the A-value, which in turn is
used to determine whether to simulate grassland or forest.

The total contribution of the various scattering mechanisms to Span is calculated
as follows:

Span = |SHH |2 + 2|SHV |2 + |SVV |2 = PG + PV (33)

PG = fG

(
1 + |α|2

)
PV =

(
9A2 + 2A + 4

)
fV (34)

where PV denotes the volume scattering power and PG denotes the ground scattering
power. When the ground scattering term is double-bounce scattering, and the parameter
α satisfies |α| ≤ 1 and arg(α) = ±π, then Pd = PG; when the ground scattering term is
surface scattering, and the parameter α satisfies |α| ≥ 1 and arg(α) = 2Ψ, where Ψ is the
phase difference between the co-polarized HH, VV, then Ps = PG, where Pd denotes the
double-bounce power and Ps denotes the surface scattering power.

2.4. Flowchart and Specific Steps of the Algorithm

The flowchart of the above adaptive polarimetric target decomposition algorithm
(APD) based on A is shown in Figure 3. The specific steps are as follows:
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Step 1: Extract scattering matrix S from the fully measured PolSAR data using
PolSARpro 6.0 software;

Step 2: Obtain coherence matrix T3 by using scattering matrix S and boxcar filtering
with a 3 × 3 window for the elements of the coherence matrix to reduce speckle noise;
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Step 3: Calculate θ according to Equation (7), a critical step in reducing the cross-
polarization term T33, which helps to constrain the potential overestimation of volume
scattering and coherence matrix T3 after orientation angle compensation is obtained from
Equation (4);

Step 4: Transform coherence matrix T3 into covariance matrix C3 using Equation (8);
Step 5: Calculate A, a useful metric to determine the shape of particles and further

aiding in the determination of whether volume scattering is modeled for the grass canopy
or the forest canopy;

Step 6: Obtain the value of each scattering component for each pixel by calculating the
target decomposition component in the polarimetric target decomposition algorithm using
the value of A calculated in step 5.

3. Experimental Results and Analysis

Our intention in this study is to establish a polarimetric target decomposition algo-
rithm that is applicable to grass volume scattering models, and we illustrate the feasibility of
our proposed algorithm by comparing it with classical algorithms and some comparatively
new algorithms. In order to verify the universality of APD, experiments were conducted
on different bands and different types of SAR datasets: an L-band AirSAR dataset from
San Francisco Bridge, a C-band AirSAR dataset from Hunshandak grassland in
Inner Mongolia Autonomous Region, and an X-band COSMO-SkyMed dataset from Xiwuqi
grassland in Inner Mongolia Autonomous Region.

3.1. Experiments on L-Band AirSAR Dataset

The L-band AirSAR dataset used in this paper is a four-view fully measured PolSAR
dataset with a spatial resolution of 10 m and incidence angles of 5◦–60◦ [16]. The data
were downloaded from the Institute of Electronics and Telecommunications of Rennes
(IETR) (URL: https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/, accessed on
2 December 2022). The original image has a size of 900 × 1024 pixels, and the Pauli RGB
image is shown in Figure 4.
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Figure 4. Pauli RGB image from L-band San Francisco Bridge dataset. A: situated in forest; B: located
in urban area; C: positioned in ocean.

We compared APD with FRE2, Y4R, MF4CF, HTCD, and GRH on the L-band AirSAR
dataset to illustrate the effectiveness of the proposed algorithms. The RGB synthesis images
of the above six algorithms are shown in Figure 5, with each pixel’s color represented by the
double-bounce scattering power (Pd), volume scattering power (Pv), and surface scattering
power (Ps). Specifically, Pd, Pv, and Ps correspond to red, green, and blue, respectively.
Consequently, each pixel exhibits a color that indicates the intensity of the three scattering
components. We use the color visualization in Figure 5 to compare APD with several of the
algorithms described above.

https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/
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The pseudo-color map of the proposed APD is shown in Figure 5f. Based on the color
visualization, it is found that the urban area’s volume scattering is overestimated, as seen in
Figure 5a,b. In Figure 5c, MF4CF shows the dark color of the vegetation area, which is due
to the underestimation of the volume scattering. In Figure 5d, the scattering mechanism
is more reasonable compared with Figure 5c, but compared with the results of APD, the
vegetation area in the middle has lower volume scattering components. In Figure 5e, GRH
shows a greater red area than APD in the upper middle vegetation region and presents
many double-bounce scattering components in the right vegetation triangle. Therefore, the
result shown in Figure 5f is more consistent with the scattering characteristics of the region.

In order to quantitatively evaluate the scattering components, three test regions were
carefully selected for use in a specific data analysis, as in Figure 4: region A, situated
in the forest; region B, located in the urban area; and region C, positioned in the ocean.
Each of these regions had a size of 80 × 100 pixels, and they were named region A,
region B, and region C, respectively. The polarimetric target decomposition components
accounted for by the various algorithms for region A, region B, and region C are given in
Table 1 as percentages.

As can be observed from Table 1, in forest area A, the volume scattering power stands
out as the dominant component, with the FRE2 and Y4R volume scattering percentages
reaching 82.31% and 72.27%, respectively, which is due to the overestimation of volume
scattering in combination with the color visualization of Figure 5. MF4CF’s volume scatter-
ing power is 55.28%, HTCD’s volume scattering power is 59.45%, GRH’s volume scattering
power is 58.38%, and APD’s volume scattering power is 65.42%. APD has the highest vol-
ume scattering compared to MF4CF, HTCD, and GRH. According to the color visualization
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in Figure 5f, there is no overestimation of the volume scattering, which indicates that APD’s
result is more consistent with the characteristics of the area.

Table 1. The percentage of each polarization component of L-band AirSAR dataset (%).

Region Component FRE2 Y4R MF4CF HTCD GRH APD

A
Pd 12.75 18.80 33.25 21.29 36.15 20.30
Pv 82.31 72.27 55.28 59.45 58.38 65.42
Ps 4.94 8.93 11.47 19.26 5.47 14.28

B
Pd 54.97 51.99 86.00 73.11 76.43 72.53
Pv 41.66 35.77 3.36 6.15 19.24 10.13
Ps 3.37 12.24 10.64 20.74 4.33 17.34

C
Pd 0.00 0.00 0.00 0.00 0.00 0.00
Pv 0.21 0.00 0.00 0.00 0.01 0.00
Ps 99.79 100.00 100.00 100.00 99.99 100.00

In urban area B, double-bounce scattering is dominant and surface scattering is higher
than volume scattering. For FRE2, Y4R, and GRH, the volume scattering power is higher
than the surface scattering power, which is not consistent with the characteristics of the
region. For MF4CF, combined with the color visualization in Figure 5c, it is found that
the double-bounce scattering is overestimated. The results for HTCD and APD are more
consistent with the characteristics of the region.

In marine region C, surface scattering dominates, and the percentage of surface scat-
tering power for the six decomposition algorithms is relatively high. Among them, the
proportion of double-bounce scattering power in FRE2 and GRH is not zero. From the
above analysis, it can be deduced that APD is more successful in the forested area; in
the urban area, the results of both HTCD and APD are consistent with the scattering
characteristics of the target in the area. Moreover, in combination with the color visualiza-
tion of Figure 5, it is found that the result of APD is more consistent with the scattering
characteristics of every area.

For a clearer view of the results, we transformed Table 1 above into a bar chart. Figure 6
shows the bar charts for each polarization component, for all methods applied in the three
regions. By combining data in Table 1 and Figure 6, we can find that APD is better than the
other algorithms in terms of decomposition accuracy.
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Figure 6. Bar charts of each polarization component of L-band AirSAR dataset. (a) In forest area A;
(b) In urban area B; (c) In marine region C.
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3.2. Experiments on C-Band AirSAR Dataset

The C-band AirSAR dataset utilized in this section is sourced from Hunsandak
grassland area, situated within Inner Mongolia Autonomous Region, with a spatial res-
olution of 1 m. The data were collected on 14 July 2021. The original image, which
serves as the basis for our analysis, encompasses a substantial area, with dimensions
of 3027 × 4096 pixels. This comprehensive image was further processed to generate a cor-
responding Pauli RGB map and an optical map, both of which are visually represented, in
Figures 7 and 8, respectively.
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Figure 7. Pauli RGB map of C-band Hunsandak grassland in Inner Mongolia Autonomous Region
AirSAR dataset. (A): situated in vast grassland area; (B): located in urban area; (C): located on
grassland road.
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Figure 8. Optical map of Hunsandak grassland in Inner Mongolia Autonomous Region.

The comparison methods used in the experiments described in this section are
(1) FRE2, (2) Y4R, (3) MF4CF, (4) HTCD, (5) GRH, and (6) APD. The RGB syntheses
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of the six algorithms are shown in Figure 9. The color of each pixel is represented by the
double-bounce scattering power (Pd), volume scattering power (Pv), and surface scattering
power (Ps), where Pd, Pv, and Ps correspond to red, green, and blue, respectively. Thus,
the color presented by each pixel indicates the intensity of the three scattering components.
We also compare APD to several of the algorithms described above using the color visual-
ization in Figure 9.
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The pseudo-color map of the proposed APD is shown in Figure 9f. Compared with the
result of FRE2 in Figure 9a, the urban area appears redder, the road is not completely green,
and there is an overestimation of the volume scattering in Figure 9a. For Y4R in Figure 9b,
there is also an overestimation of the volume scattering; the red color of the RGB for MF4CF
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in Figure 9c and for GRH in Figure 9e is prominent, which indicates that double-bounce
scattering is dominant, and it does not align with the characteristics of the grassland area.
For HTCD in Figure 9d, the scattering mechanism is more reasonable; however, when
comparing it with the result of APD in Figure 9f, the volume scattering of APD is better
in the grassland area. Thus, Figure 9f is more reasonable, with double-bounce scattering,
surface scattering in the urban area, and volume scattering and surface scattering in the
grassland area.

In order to conduct a comprehensive quantitative evaluation of the scattering com-
ponents, the research team strategically selected three distinct test regions for use in a
specific data analysis, as depicted in Figure 7. These regions, each measuring a size
of 100 × 120 pixels, are labeled as region A, region B, and region C. Region A is situated
in a vast grassland area, region B is located in an urban area, and region C is located on a
grassland road. Table 2 shows the percentage of each polarization component for all meth-
ods in the three regions. For a more intuitive, clearer view of the results, we transformed
Table 2 above into a bar chart, shown in Figure 10. The polarimetric target decomposition
components for a range of algorithms are detailed in Figure 10, indicating the percentage
of components in each of the three regions.

Table 2. The percentage of each polarization component of C-band AirSAR dataset (%).

Region Component FRE2 Y4R MF4CF HTCD GRH APD

A
Pd 14.86 7.93 64.34 22.38 33.33 10.70
Pv 51.41 75.04 9.02 30.54 32.77 64.00
Ps 33.73 17.03 26.64 47.08 33.90 25.30

B
Pd 18.44 6.30 75.07 26.01 40.24 38.76
Pv 49.92 83.76 8.44 34.51 28.36 25.97
Ps 31.64 9.94 16.49 39.48 31.40 35.27

C
Pd 20.77 10.38 72.94 28.25 42.30 7.57
Pv 48.59 75.49 8.16 31.55 27.32 27.31
Ps 30.64 14.13 18.90 40.20 30.38 65.12
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Figure 10. Bar charts of each polarization component of C-band AirSAR dataset. (a) Situated in vast
grassland area; (b) Located in urban area; (c) Located on grassland road.

For region A, the main scattering mechanisms are volume scattering and surface
scattering. As can be seen in Figure 10a, FRE2, Y4R, and APD have higher volume scattering
percentages relative to the other algorithms. Combined with the color visualization of
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Figure 7, it can be found that there is an overestimation of volume scattering in FRE2 and
Y4R. MF4CF’s double-bounce scattering power percentage is much higher than that of
volume scattering and surface scattering, and HTCD’s surface-scattered power percentage
is greater than its volume-scattered power percentage. These two algorithms cannot match
the scattering mechanism in this region. GRH is close in terms of the volume, surface,
and double-bounce scattering power percentages; however, double-bounce scattering is
more prominent than volume scattering, and the result does not match the target scattering
characteristics of the region.

In region B, the main scattering mechanisms are double-bounce scattering and surface
scattering. As can be seen in Figure 10b, for FRE2 and Y4R, the volume scattering percent-
ages are higher, and they do not match the scattering mechanism in this region. HTCD
has a higher percentage of volumetric scattering power than double-bounce scattering
power, which is not consistent with the scattering characteristics of the region. Compared
with the other algorithms, MF4CF has the highest percentage of double-bounce scattering.
MF4CF, GRH, and APD are all dominated by surface scattering and double-bounce scatter-
ing, making their results more consistent with the scattering characteristics of the targets
in the region.

In region C, the main scattering mechanisms are surface scattering and volume scat-
tering. For FRE2 and Y4R, the volume scattering percentage is much higher than that
of double-bounce scattering and surface scattering. Moreover, Figure 9 reveals that both
algorithms suffer from volume scattering overestimation; thus, their results are not consis-
tent with the scattering mechanism of this region. The MF4CF and GRH algorithms show
predominantly double-bounce scattering and do not match the scattering mechanisms in
the region. HTCD and APD show mainly surface scattering and volume scattering, where
the surface scattering power percentage of APD is higher than the surface scattering power
percentage of HTCD, so APD is more closely aligned with the scattering mechanism in
this region. According to the above analysis, it is found that APD is more suitable for the
grassland region.

3.3. Experiments on X-Band COSMO-SkyMed Dataset

In order to further verify the feasibility of the algorithm on high-band remote images,
experiments were conducted on the X-band COSMO-SkyMed dataset from Xiwuqi in the
Inner Mongolia Autonomous Region. It is pertinent to note that this region has a spatial
resolution of 3 m, and the data collection date was 28 August 2023. The original image had
a size of 18,663 × 7637 pixels. The corresponding Pauli RGB and optical images are shown
in Figure 11.

We compared the performance of APD with that of FRE2, Y4R, MF4CF, HTCD, and
GRH on the COSMO-SkyMed dataset. The RGB syntheses of the six algorithms are
shown in Figure 12. In the figure, the color of each pixel is represented by the double-
bounce scattering power (Pd), volume scattering power (Pv), and surface scattering power
(Pd), where Pd, Pv, and Ps correspond to red, green, and blue, respectively. Thus, the
color presented by each pixel indicates the intensity of the three scattering components.
We compared APD with the aforementioned algorithms based on the visual color effect
shown in Figure 12.

This section proposes the use of the APD to decompose pseudo-color images, as shown
in Figure 12f. Similar to FRE2 in Figure 12a and Y4R in Figure 12b, these algorithms mainly
focus on volume scattering and surface scattering. Among them, FRE2 and Y4R show
stronger surface scattering, while APD shows stronger volume scattering. MF4CF, as shown
in Figure 12c, is mainly based on double-bounce scattering and surface scattering, and its
result does not conform with the characteristics of grassland areas. Considering HTCD in
Figure 12d and GRH in Figure 12e, these algorithms are mainly based on surface scattering
and the results do not conform with the characteristics of grassland areas. Compared with
the above results, Figure 12f shows that our algorithm is more reasonably effective and can
reflect the characteristics of grassland areas.
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In order to quantitatively evaluate the scattering components, three test regions were
selected for use in a specific data analysis, as shown in Figure 11: region A, located in
a grassland area; region B, located in an urban area; and region C, a road located on
grassland. All of the test regions had a size of 100 × 200 pixels. Table 3 presents the
distribution percentages of each polarization component across all methods in the three
regions. To enhance data comprehension, we conducted a detailed analysis of Table 3,
resulting in the compilation of a data bar chart, shown in Figure 13. The percentages of
polarimetric target decomposition components of the various algorithms for region A,
region B, and region C are given in Figure 13.

For region A, the main scattering mechanisms are volume scattering and surface
scattering, but volume scattering is more prominent than surface scattering. As can be
seen from Figure 13a, for FRE2, Y4R, GRH, and APD, the volume scattering percentage is
higher compared to other algorithms, where the surface scattering percentages of Y4R and
GRH are higher than the volume scattering percentages. This does not match the scattering
mechanism in this region. Similarly, MF4CF and HTCD have higher surface scattering
power percentages than volume scattering power percentages and are not suitable for the
target scattering characteristics in this region.
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Table 3. The percentages of each polarization component of X-band COSMO-SkyMed dataset (%).

Region Component FRE2 Y4R MF4CF HTCD GRH APD

A
Pd 1.38 1.66 10.97 2.63 3.28 8.97
Pv 56.41 37.16 3.92 12.71 42.77 52.66
Ps 42.21 61.18 85.11 84.66 53.95 38.37

B
Pd 8.62 7.92 29.08 11.73 13.69 16.89
Pv 49.45 43.68 5.31 15.39 38.03 33.73
Ps 41.93 48.4 65.61 72.88 48.28 49.38

C
Pd 2.00 2.07 13.26 3.49 4.57 7.88
Pv 54.86 35.69 4.09 13.03 39.82 38.77
Ps 43.14 62.24 82.65 83.48 55.61 53.35
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Figure 13. Bar charts of each polarization component of X-band COSMO-SkyMed dataset. (a) Located
in a grassland area; (b) Located in an urban area; (c) a road located on grassland.

In region B, the main scattering mechanisms are double-bounce scattering and surface
scattering. As shown in Figure 13b, MF4CF has the highest percentage of double-bounce
scattering power compared to the other algorithms, and its surface scattering is also
relatively high, which is consistent with the urban area’s scattering mechanism. Compared
with the other algorithms, FRE2 and Y4R show a higher percentage of volume scattering
power and lower double-bounce scattering power, which does not conform with the
scattering characteristics of the target in this region. In the comparison experiments,
HTCD, GRH, and APD show relatively higher percentages of surface scattering power, but
APD shows higher double-bounce scattering, which is more consistent with the feature
characteristics of this region.

In region C, the main scattering mechanism is surface scattering, in which there are
grasses on both sides of the road, and there is volume scattering present. The percentage
of volume scattering power of FRE2 is higher than that of surface scattering, which is
inconsistent with the scattering mechanism in this region. The remaining algorithms
Y4R, MF4CF, HTCD, GRH, and APD, are dominated by surface scattering, where the
percentage of double-bounce scattering power of MF4CF is higher than its percentage of
volume scattering power. Therefore, MF4CF does not match the scattering characteristics
of this region. Combining the scattering target characteristics of the above three regions,
it is obvious that the result of the proposed APD is more consistent with the scattering
mechanism in this dataset.

We found that the scattering characteristics of different bands were different when
analyzing the above AirSAR dataset in the C-band and COSMO-SkyMed dataset in the
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X-band, as shown in Figure 13. It was found that the three regions as a whole were dom-
inated by surface scattering. A further analysis of the three regions in different bands
of the two grassland datasets was performed. From the grassland regions shown in
Figures 10a and 13a, it can be seen that APD has a higher percentage of volume scattering
power in the C-band data than in the X-band data, which is more consistent with the char-
acteristics of grassland scattering. From the urban regions shown in Figures 10b and 13b, it
can be found that APD has a higher percentage of double-bounce scattering power than
volume scattering and surface scattering for the C-band data, while the X-band data show
higher volume scattering than double-bounce scattering. In Figures 10c and 13c, depicting
the grassland road, it is seen that the surface scattering power percentage of APD in the
C-band data is much higher than that of surface scattering in the X-band data. Therefore,
C-band data are more suitable for the study of scattering target characteristics in grassland.

4. Conclusions

In this paper, we present a novel adaptive polarimetric target decomposition algorithm
based on the anisotropy degree to simulate the scattering mechanisms of grasslands and
forests. Compared with FER2, Y4R, MF4CF, HTCD, and GRH, the volume scattering model
of APD is more consistent with the characteristics of various terrain features, effectively im-
proving the volume scattering model. By applying the model to an L-band AirSAR dataset
from San Francisco Bridge, it is found that the forest’s volume scattering can be successfully
simulated by changing the value of A so that the particle shape is a needle. On a C-band
AirSAR dataset from Hunshandak grassland in Inner Mongolia Autonomous Region, it
is found that when the particle shape is changed to a disk, the scattering mechanism of
the grassland area can be better simulated. In order to further verify the reliability of this
algorithm, an X-band COSMO-SkyMed dataset from Xiwuqi, Inner Mongolia Autonomous
Region was used for verification, and it is found that APD better reflects the grassland
region compared to the other algorithms applied in the experiments. The results show that
C-band data are more suitable for the study of scattering target characteristics in grasslands.

With the deepening research on polarimetric target decomposition algorithms, various
methods have emerged. Although these algorithms have achieved significant results, the
complexity of polarimetric SAR data leads to shortcomings. The environment is complex,
and the distinction between the scattering mechanisms is not clear, especially in grassland
areas. In future research, the combination of polarimetric decomposition with deep learning
could improve the classification accuracy.

Author Contributions: Conceptualization, P.H. and B.L.; methodology, P.H. and B.L.; software, P.H.
and B.L.; investigation, X.L. and W.T.; visualization, P.H. and X.L.; writing—original draft preparation,
P.H. and W.X.; writing—review and editing, X.L., W.T. and Y.C.; project administration, P.H. and X.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Joint Funds of the National Natural Science
Foundation of China (Nos. U22A2010); in part by the Center for Applied Mathematics of Inner
Mongolia (Nos. ZZYJZD2022001); and in part by the National Natural Science Foundation of China
(Nos. 62071258, 52064039 and 52304173).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management.

J. Plant Ecol. 2016, 9, 649–671. [CrossRef]
2. Hajnsek, I.; Jagdhuber, T.; Schon, H.; Papathanassiou, K.P. Potential of Estimating Soil Moisture Under Vegetation Cover by

Means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454. [CrossRef]
3. Sun, Y.; Montazeri, S.; Wang, Y.; Zhu, X.X. Automatic registration of a single SAR image and GIS building footprints in a

large-scale urban area. ISPRS J. Photogramm. Remote Sens. 2020, 170, 1–14. [CrossRef]

https://doi.org/10.1093/jpe/rtw005
https://doi.org/10.1109/TGRS.2008.2009642
https://doi.org/10.1016/j.isprsjprs.2020.09.016


Remote Sens. 2024, 16, 1015 20 of 21

4. Chen, G.; Wang, L.; Kamruzzaman, M.M. Spectral Classification of Ecological Spatial Polarization SAR Image Based on Target
Decomposition Algorithm and Machine Learning. Neural. Comput. Appl. 2020, 32, 5449–5460. [CrossRef]

5. Alvarez-Perez, J.L. Coherence, Polarization, and Statistical Independence in Cloude–Pottier’s Radar Polarimetry. IEEE Trans.
Geosci. Remote Sens. 2011, 49, 426–441. [CrossRef]

6. Song, Q.; Xu, F. Polarimetric SAR Target Decomposition based on sparse NMF. In Proceedings of the 2016 Progress in Electromag-
netic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016. [CrossRef]

7. Chen, S.; Wang, X.; Xiao, S. Urban Damage Level Mapping Based on Co-Polarization Coherence Pattern Using Multitemporal
Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2657–2667. [CrossRef]

8. Chen, S.; Wang, X.; Sato, M. Urban Damage Level Mapping Based on Scattering Mechanism Investigation Using Fully Polarimetric
SAR Data for the 3.11 East Japan Earthquake. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6919–6929. [CrossRef]

9. Musthafa, M.; Khati, U.; Singh, G. Sensitivity of PolSAR decomposition to forest disturbance and regrowth dynamics in a
managed forest. Adv. Space Res. 2020, 66, 1863–1875. [CrossRef]

10. Varghese, A.O.; Suryavanshi, A.; Joshi, A.K. Analysis of different polarimetric target decomposition methods in forest density
classification using C band SAR data. Int. J. Remote Sens. 2016, 37, 694–709. [CrossRef]

11. Acar, H.; Ozerdem, M.S.; Acar, E. Soil Moisture Inversion Via Semiempirical and Machine Learning Methods with Full-Polarization
Radarsat-2 and Polarimetric Target Decomposition Data: A Comparative Study. IEEE Access 2020, 8, 197896–197907. [CrossRef]

12. Zhang, L.; Meng, Q.; Zeng, J.; Wei, X.; Shi, H. Evaluation of Gaofen-3 C-Band SAR for Soil Moisture Retrieval Using Different
Polarimetric Decomposition Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5707–5719. [CrossRef]

13. Zhang, X.; Xu, J.; Chen, Y.; Xu, K.; Wang, D. Coastal Wetland Classification with GF-3 Polarimetric SAR Imagery by Using
Object-Oriented Random Forest Algorithm. Sensors 2021, 21, 3395. [CrossRef] [PubMed]

14. Cloude, S.R.; Pottier, E. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996,
34, 498–518. [CrossRef]

15. Wang, Y.; Yu, W.; Wang, C.; Liu, X. A Modified Four-Component Decomposition Method With Refined Volume Scattering Models.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1946–1958. [CrossRef]

16. Yamaguchi, Y.; Yajima, Y.; Yamada, H. A Four-Component Decomposition of POLSAR Images Based on the Coherency Matrix.
IEEE Geosci. Remote Sens. Lett. 2006, 3, 292–296. [CrossRef]

17. Sato, A.; Yamaguchi, Y.; Singh, G.; Park, S.-E. Four-Component Scattering Power Decomposition with Extended Volume Scattering
Model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 166–170. [CrossRef]

18. Kumar, A.; Maurya, H.; Misra, A.R.; Panigrahi, R.K. An Improved Decomposition as a Trade-Off Between Utilizing Unitary
Matrix Rotations and New Scattering Models. IEEE Access 2021, 9, 77482–77492. [CrossRef]

19. Freeman, A.; Durden, S.L. Three-component scattering model to describe polarimetric SAR data. In Proceedings of the Interna-
tional Society for Optics and Photonics, San Diego, CA, USA, 12 February 1993. [CrossRef]

20. Jagdhuber, T.; Hajnsek, I.; Papathanassiou, K.P. An Iterative Generalized Hybrid Decomposition for Soil Moisture Retrieval Under
Vegetation Cover Using Fully Polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3911–3922. [CrossRef]

21. Van Zyl, J.J.; Arii, M.; Kim, Y. Requirements for Model-Based Polarimetric Decompositions. In Proceedings of the International
Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 8–11 July 2008; IEEE: New York, NY, USA, 2008;
Volume 5, pp. 417–420.

22. Van Zyl, J.J.; Arii, M.; Kim, Y. Model-based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative
Eigenvalues. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3452–3459. [CrossRef]

23. Lee, J.S.; Ainsworth, T.L. The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompo-
sitions. IEEE Trans. Geosci. Remote Sens. 2011, 49, 53–64. [CrossRef]

24. Yin, J.; Yang, J. Target Decomposition Based on Symmetric Scattering Model for Hybrid Polarization SAR Imagery. IEEE Geosci.
Remote Sens. Lett. 2021, 18, 494–498. [CrossRef]

25. Chen, S.-W.; Li, Y.-Z.; Wang, X.-S.; Xiao, S.-P.; Sato, M. Modeling and Interpretation of Scattering Mechanisms in Polarimetric
Synthetic Aperture Radar: Advances and perspectives. IEEE Signal Process. Mag. 2014, 31, 79–89. [CrossRef]

26. Cloude, S.R. Polarisation: Applications in Remote Sensing; Oxford University Press: New York, NY, USA, 2010.
27. Singh, G.; Yamaguchi, Y.; Park, S.; Cui, Y.; Kobayashi, H. Hybrid Freeman/Eigenvalue Decomposition Method with Extended

Volume Scattering Model. IEEE Geosci. Remote Sens. Lett. 2013, 10, 81–85. [CrossRef]
28. Maurya, H.; Bhattacharya, A.; Mishra, A.K.; Panigrahi, R.K. Hybrid Three-Component Scattering Power Characterization From

Polarimetric SAR Data Isolating Dominant Scattering Mechanisms. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [CrossRef]
29. Chen, S.-W.; Sato, M. Tsunami Damage Investigation of Built-Up Areas Using Multitemporal Spaceborne Full Polarimetric SAR

Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1985–1997. [CrossRef]
30. Yamaguchi, Y.; Sato, A.; Boerner, W.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of

coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [CrossRef]
31. Xiang, D.; Ban, Y.; Su, Y. Model-Based Decomposition with Cross Scattering for Polarimetric SAR Urban Areas. IEEE Geosci.

Remote Sens. Lett. 2015, 12, 2496–2500. [CrossRef]
32. Hu, C.; Wang, Y.; Sun, X.; Quan, S.; Xiang, D. Model-Based Polarimetric Target Decomposition with Power Redistribution for

Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8795–8808. [CrossRef]

https://doi.org/10.1007/s00521-019-04624-9
https://doi.org/10.1109/TGRS.2010.2056375
https://doi.org/10.1109/piers.2016.7735615
https://doi.org/10.1109/JSTARS.2018.2818939
https://doi.org/10.1109/TGRS.2016.2588325
https://doi.org/10.1016/j.asr.2020.07.007
https://doi.org/10.1080/01431161.2015.1136448
https://doi.org/10.1109/ACCESS.2020.3035235
https://doi.org/10.1109/JSTARS.2021.3083287
https://doi.org/10.3390/s21103395
https://www.ncbi.nlm.nih.gov/pubmed/34068106
https://doi.org/10.1109/36.485127
https://doi.org/10.1109/JSTARS.2020.2990691
https://doi.org/10.1109/LGRS.2006.869986
https://doi.org/10.1109/LGRS.2011.2162935
https://doi.org/10.1109/ACCESS.2021.3082846
https://doi.org/10.1117/12.140618
https://doi.org/10.1109/JSTARS.2014.2371468
https://doi.org/10.1109/TGRS.2011.2128325
https://doi.org/10.1109/TGRS.2010.2048333
https://doi.org/10.1109/LGRS.2020.2994540
https://doi.org/10.1109/MSP.2014.2312099
https://doi.org/10.1109/LGRS.2012.2193373
https://doi.org/10.1109/TGRS.2022.3215704
https://doi.org/10.1109/TGRS.2012.2210050
https://doi.org/10.1109/TGRS.2010.2099124
https://doi.org/10.1109/LGRS.2015.2487450
https://doi.org/10.1109/JSTARS.2023.3314129


Remote Sens. 2024, 16, 1015 21 of 21

33. Wang, Y.; Yu, W.; Liu, X.; Wang, C. Seven-Component Decomposition Using Refined Volume Scattering Models and New
Configurations of Mixed Dipoles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4339–4351. [CrossRef]

34. Zhang, S.; Yu, X.; Wang, L. Modified version of three-component model-based decomposition for polarimetric SAR data. J. Syst.
Eng. Electron. 2019, 30, 270–277. [CrossRef]

35. Han, W.; Fu, H.; Zhu, J.; Wang, C.; Xie, Q. Polarimetric SAR Decomposition by Incorporating a Rotated Dihedral Scattering Model.
IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

36. Yue, X.; Teng, F.; Lin, Y.; Hong, W. Target Scattering Feature Extraction Based on Parametric Model Using Multi-Aspect SAR Data.
Remote Sens. 2023, 15, 1883. [CrossRef]

37. Arii, M.; van Zyl, J.J.; Kim, Y. Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices. IEEE Trans. Geosci.
Remote Sens. 2010, 49, 1104–1113. [CrossRef]

38. Chen, S.-W.; Wang, X.-S.; Xiao, S.-P.; Sato, M. General Polarimetric Model-Based Decomposition for Coherency Matrix. IEEE
Trans. Geosci. Remote Sens. 2013, 52, 1843–1855. [CrossRef]

39. Bhattacharya, A.; Singh, G.; Manickam, S.; Yamaguchi, Y. An adaptive general four-component scattering power decomposition
with unitary transformation of coherency matrix (AG4U). IEEE Geosci. Remote Sens. Lett. 2015, 12, 2110–2114. [CrossRef]

40. Cui, Y.; Yamaguchi, Y.; Yang, J.; Park, S.-E.; Kobayashi, H.; Singh, G. Three-Component Power Decomposition for Polarimetric
SAR Data Based on Adaptive Volume Scatter Modeling. Remote Sens. 2012, 4, 1559–1572. [CrossRef]

41. Chen, S.-W.; Wang, X.-S.; Li, Y.-Z.; Sato, M. Adaptive Model-Based Polarimetric Decomposition Using PolInSAR Coherence. IEEE
Trans. Geosci. Remote Sens. 2013, 52, 1705–1718. [CrossRef]

42. Wang, Y.; Yu, W.; Liu, X.; Wang, C.; Kuijper, A.; Guthe, S. Demonstration and Analysis of an Extended Adaptive General
Four-Component Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2573–2586. [CrossRef]

43. Wang, T.; Suo, Z.; Jiang, P.; Ti, J.; Ding, Z.; Qin, T. An Optimal Polarization SAR Three-Component Target Decomposition Based
on Semi-Definite Programming. Remote Sens. 2023, 15, 5292. [CrossRef]

44. Wang, Z.; Zeng, Q.; Jiao, J. An Adaptive Decomposition Approach with Dipole Aggregation Model for Polarimetric SAR Data.
Remote Sens. 2021, 13, 2583. [CrossRef]

45. Freeman, A. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests. IEEE Trans. Geosci. Remote Sens.
2007, 45, 2583–2592. [CrossRef]

46. Dey, S.; Bhattacharya, A.; Frery, A.C.; Lopez-Martinez, C.; Rao, Y.S. A Model-Free Four Component Scattering Power Decomposi-
tion for Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3887–3902. [CrossRef]

47. Maurya, H.; Panigrahi, R.K. Non-negative scattering power decomposition for PolSAR data interpretation. IET Radar Sonar Navig.
2018, 12, 593–602. [CrossRef]

48. Li, X.; Liu, Y.; Huang, P.; Liu, X.; Tan, W.; Fu, W.; Li, C. A Hybrid Polarimetric Target Decomposition Algorithm with Adaptive
Volume Scattering Model. Remote Sens. 2022, 14, 2441. [CrossRef]

49. Maurya, H.; Panigrahi, R.K. PolSAR Coherency Matrix Optimization Through Selective Unitary Rotations for Model-Based
Decomposition Scheme. IEEE Geosci. Remote Sens. Lett. 2018, 16, 658–662. [CrossRef]

50. Manuel, L. Analysis and Estimation of Biophysical Parameters of Vegetation by Radar Polarimetry. Ph.D. Thesis, Universidad
Politecnica de Valencia, Valencia, Spain, 2000.

51. Liu, L. Research on Composite Electromagnetic Scattering from Grass-Containing Rough Surfaces and Targets; Xidian University:
Xi’an, China, 2020. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSTARS.2020.3011735
https://doi.org/10.21629/jsee.2019.02.06
https://doi.org/10.1109/LGRS.2020.3035567
https://doi.org/10.3390/rs15071883
https://doi.org/10.1109/TGRS.2010.2076285
https://doi.org/10.1109/TGRS.2013.2255615
https://doi.org/10.1109/LGRS.2015.2451369
https://doi.org/10.3390/rs4061559
https://doi.org/10.1109/TGRS.2013.2253780
https://doi.org/10.1109/JSTARS.2020.2996801
https://doi.org/10.3390/rs15225292
https://doi.org/10.3390/rs13132583
https://doi.org/10.1109/TGRS.2007.897929
https://doi.org/10.1109/JSTARS.2021.3069299
https://doi.org/10.1049/iet-rsn.2017.0581
https://doi.org/10.3390/rs14102441
https://doi.org/10.1109/LGRS.2018.2878654
https://doi.org/10.27389/d.cnki.gxadu.2020.001249

	Introduction 
	Methodology 
	Orientation Angle Compensation 
	Construction of Polarimetric Target Decomposition Algorithm 
	Random Particle Model 
	Volume Scattering Model 

	Polarimetric Target Decomposition Algorithm 
	Flowchart and Specific Steps of the Algorithm 

	Experimental Results and Analysis 
	Experiments on L-Band AirSAR Dataset 
	Experiments on C-Band AirSAR Dataset 
	Experiments on X-Band COSMO-SkyMed Dataset 

	Conclusions 
	References

