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Abstract: Northeast China (NEC) is one of the most important national agricultural production
bases, and its agricultural water dynamics are essential for food security and sustainable agricultural
development. However, the dynamics of long-term annual crop-specific agricultural water and its
crop type and climate impacts remain largely unknown, compromising water-saving practices and
water-efficiency agricultural management in this vital area. Thus, this study used multi-source data of
the crop type, climate factors, and the digital elevation model (DEM), and multiple digital agriculture
technologies of remote sensing (RS), the geographic information system (GIS), the Soil Conservation
Service of the United States Department of Agriculture (USDA-SCS) model, the Food and Agriculture
Organization of the United Nations Penman–Monteith (FAO P-M) model, and the water supply–
demand index (M) to map the annual spatiotemporal distribution of effective precipitation (Pe), crop
water requirement (ETc), irrigation water requirement (IWR), and the supply–demand situation in
the NEC from 2000 to 2020. The study further analyzed the impacts of the crop type and climate
changes on agricultural water dynamics and revealed the reasons and policy implications for their
spatiotemporal heterogeneity. The results indicated that the annual average Pe, ETc, IWR, and M
increased by 1.56%/a, 0.74%/a, 0.42%/a, and 0.83%/a in the NEC, respectively. Crop-specifically, the
annual average Pe increased by 1.15%/a, 2.04%/a, and 2.09%/a, ETc decreased by 0.46%/a, 0.79%/a,
and 0.89%/a, IWR decreased by 1.03%/a, 1.32%/a, and 3.42%/a, and M increased by 1.48%/a,
2.67%/a, and 2.87%/a for maize, rice, and soybean, respectively. Although the ETc and IWR for
all crops decreased, regional averages still increased due to the expansion of water-intensive maize
and rice. The crop type and climate changes jointly influenced agricultural water dynamics. Crop
type transfer contributed 39.28% and 41.25% of the total IWR increase, and the remaining 60.72%
and 58.75% were caused by cropland expansion in the NEC from 2000 to 2010 and 2010 to 2020,
respectively. ETc and IWR increased with increasing temperature and solar radiation, and increasing
precipitation led to decreasing IWR in the NEC. The adjustment of crop planting structure and the
implementation of water-saving practices need to comprehensively consider the spatiotemporally
heterogeneous impacts of crop and climate changes on agricultural water dynamics. The findings
of this study can aid RS-GIS-based agricultural water simulations and applications and support the
scientific basis for agricultural water management and sustainable agricultural development.

Keywords: agricultural water use; irrigation water requirement; crop planting structure change;
climatic change; spatiotemporally heterogeneous impacts; water-efficient management

1. Introduction

Water is one of the most important material resources for the development of human
society, and it is indispensable for any production process [1]. With rapid socio-economic
development and environmental deterioration over the past century, water scarcity has
become a thorny problem [2]. More than 40 countries (about 40% of the world’s population)
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face the challenge of water scarcity, which seriously limits their sustainable economic
development [3,4]. There are many reasons for water scarcity; specifically, global popu-
lation growth, climate change, excessive industrial production, rapid urbanization, and
the expansion of agricultural land have all led to an increased demand for water [5–7].
Agriculture accounts for 70% of the world’s water resources [8,9]. Therefore, it is critical to
understand the water supply and demand in the agricultural sector and explore rational
water allocation to help to maintain sustainable agricultural development.

As the world’s leading agricultural nation, the crop irrigation water requirement in
China constitutes over 90% of the total agricultural water requirement [10]. The agricultural
irrigation requirement is the key to growing crops and sustainable food production and
security [11]. As a result, the crop irrigation water requirement has received significant
attention [12,13]. The increase in the irrigation water requirement has resulted in an
increasing trend in crop yield [14]. Only 20% of the world’s irrigated land had grown over
40% of the grain production yield, and irrigated land yields roughly 2.5 times the grain
production compared to non-irrigated land [15]. Approximately three-quarters of the grain
production was cultivated in irrigated farmland [16,17]. In the late 1960s, our country
made great efforts to build irrigation infrastructure on farmland and this led to crop yield
increasing rapidly [10].

The crop irrigation water requirement is expressed as the difference between the
crop water requirement and the effective precipitation [18,19]. Methods for calculating
the irrigation water requirement include field observation, non-spatial crop models, and
the spatial crop method (Table 1). The first method obtains a mass conservation function
for calculating the crop irrigation water requirement by considering the relevant param-
eters [20,21]. The second method uses point data of reference evapotranspiration and
crop coefficient values from the available literature, with over 100 different crop models
available [22]. The most frequently utilized models include CROPWAT, AquaCrop, and
PolyCrop [23]. CROPWAT is a model developed by the Food and Agriculture Organi-
zation of the United Nations (FAO) in 1991 to calculate crop water requirements and it
plays a significant role in crop water requirement estimation for different regions and crop
types [24]. AquaCrop has the advantages of simple input parameters, a simple interface,
and stable simulation results [25]. PolyCrop can calculate variations in the water require-
ment for a crop cultivation system based on crop type changes and growth seasons [26].
However, these models cannot address irrigation water changes caused by the crop type
and spatiotemporal differences. The third method can predict the spatial distribution of
the relevant data, which can directly reflect spatiotemporal changes and help to reveal
spatial phenomena and laws [27,28]. However, considering the lack of a spatial crop model,
conducting long-term annual crop-specific studies has great significance for gaining insight
into the water dynamics of major crops.

Table 1. Advantages and disadvantages of methods for estimating crop irrigation water requirements.

Method Type Advantages Disadvantages References

Field observation
Obtain more accurate agricultural

water data at a finer temporal
resolution (e.g., second, minute, hour)

Time-consuming, labor-intensive,
and expensive to conduct

large-area experiments
[29,30]

Non-spatial crop model
Simulate agricultural water use for
different crops at different growth

periods at the point scale

Difficult to reveal fine-resolution
spatial characteristics [31,32]

Spatial crop model
Simulate spatiotemporal distribution

of agricultural water use at a finer
raster scale

Currently lacking a long-term
annual crop-type-specific study [33,34]

As one of the most crucial grain production bases in China, the agricultural irrigation
water requirement accounts for 78% of the total water in Northeast China (NEC) [35,36].
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The crop planting structure has been largely adjusted in recent years, especially having
rapidly expanded the area of the water-intensive crops but reduced the water-saving
soybean crops [37]. This has led to an increase in the regional crop irrigation water require-
ment [38,39]. In addition, climate changes have an impact on the crop irrigation water
requirement [40–42]. However, previous studies have mainly focused on the spatiotem-
poral changes in the crop water requirement for a specific crop type and analyzed the
effects of climate changes or crop type changes on irrigation water requirement, rather
than discussing these on a raster scale [43–46]. In addition, there are few research stud-
ies on long-term changes, annually analyzing spatiotemporal changes in the crop water
requirement [47–49]. This study used multi-source remote-sensing (RS) data and digital
agriculture technologies to map the annual crop-specific spatiotemporal distribution of ef-
fective precipitation (Pe), crop water requirement (ETc), irrigation water requirement (IWR),
and water supply–demand index (M), reveal the impacts of the crop type and climate
changes on agricultural water dynamics in the NEC from 2000–2020, and discuss the policy
recommendations and future research topics for integrated water resource management
and sustainable agricultural development.

2. Materials
2.1. Study Area

The NEC (38◦52′–53◦55′N, 115◦52′–135◦09′E) consists of three provinces of Heilongjiang,
Jilin, Liaoning, and the four eastern leagues of the Inner Mongolia Autonomous Re-
gion (Chifeng, Tongliao, Xing’an, and Hulunbeier), covering an area of 1.24 × 106 km2

(Figure 1a). The region straddles the mesothermal and subfreezing zones from south to
north and has a temperate monsoon climate with distinct seasons. It has warm, rainy sum-
mers and cold, dry winters. From the southeast to the northwest, the annual precipitation
drops from 1000 mm to less than 300 mm, and the transition is from a humid and semi-
humid area to semi-arid area. The NEC has fertile black soil, accounting for approximately
12% of the total area of the world’s total black soil area, which makes the NEC one of the
main grain-producing areas in China, representing a quarter of the country’s total food
production. The main food crops are mainly distributed in the central and southern areas
of maize, the eastern area of rice, and the northern and northwestern areas of soybean,
respectively (Figure 1b).
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2.2. Data Sources

The multi-source data used in this study included climate factors, crop type RS prod-
ucts, the digital elevation model (DEM), and the administrative boundary.

Climate factors included daily field observations of temperature (maximum, minimum,
and average), precipitation, wind speed, relative humidity, atmospheric pressure, and
sunshine hours in the NEC from 2000 to 2020, which were from 60 climate stations of the
National Meteorological Science Data Center (https://data.cma.cn/, accessed on 25 July
2023). We further spatially interpolated the field observations into 500 m spatial resolution
daily raster data using the thin-plate spline method that introduced DEM as a covariate in
the ANUSPLIN version 4.3 software [50]. The monthly averages of these climate factors in
Heilongjiang, Jilin, Liaoning, and Inner Mongolia are shown in Table 2.

Table 2. Monthly climate factors for the four areas in the NEC.

Month Area

Climate Factors

Maximum
Temperature

(◦C)

Minimum
Temperature

(◦C)

Average
Temperature

(◦C)

Precipitation
(mm)

Wind
Speed
(m/s)

Relative
Humidity

(%)

Atmospheric
Pressure (Pa)

Sunshine
Hours (h)

January

Heilongjiang −13.57 −25.45 −20.09 4.99 2.19 69.18 993.87 171.25
Jilin −7.97 −20.06 −14.60 6.96 2.01 64.94 976.46 177.41

Liaoning −2.03 −11.46 −7.21 5.40 2.76 56.12 1017.76 196.40
Inner Mongolia −12.16 −23.81 −18.70 2.41 2.40 58.97 966.54 196.40

February

Heilongjiang −8.33 −22.08 −15.63 5.05 2.44 64.36 991.40 198.53
Jilin −3.11 −15.88 −9.85 12.05 2.35 58.18 974.38 188.84

Liaoning 1.52 −7.86 −3.54 10.49 2.92 54.25 1015.39 193.63
Inner Mongolia −7.02 −20.51 −14.42 2.60 2.63 54.90 964.08 218.92

March

Heilongjiang 1.32 −11.54 −5.16 11.19 2.95 59.31 986.48 244.55
Jilin 4.88 −7.14 −1.39 18.75 2.79 58.96 969.96 221.71

Liaoning 8.22 −1.34 3.10 13.76 3.28 53.03 1010.21 242.42
Inner Mongolia 2.50 −11.40 −4.70 5.60 3.08 50.25 959.89 270.01

April

Heilongjiang 12.00 −0.83 5.58 23.52 3.25 52.18 982.10 232.49
Jilin 14.34 1.32 7.64 36.21 2.99 49.89 966.06 216.37

Liaoning 15.93 5.92 10.67 41.13 3.48 53.01 1004.48 242.30
Inner Mongolia 13.17 −0.85 6.16 14.59 3.44 41.43 955.45 265.33

May

Heilongjiang 20.26 7.04 13.72 54.52 3.08 56.55 978.81 243.01
Jilin 21.80 8.56 14.96 69.68 2.79 56.98 963.02 236.58

Liaoning 22.50 12.46 17.22 62.06 3.11 59.44 1000.48 266.99
Inner Mongolia 21.51 7.07 14.44 33.51 3.29 43.77 951.83 275.39

June

Heilongjiang 25.62 13.50 19.49 92.08 2.51 67.75 977.81 243.81
Jilin 25.85 14.23 19.66 95.09 2.24 68.18 961.38 221.58

Liaoning 26.10 17.48 21.47 86.03 2.67 71.68 997.34 225.16
Inner Mongolia 26.75 13.45 20.16 69.11 2.58 56.46 950.63 267.59

July

Heilongjiang 27.27 17.02 21.92 138.76 2.27 77.46 977.12 229.42
Jilin 27.81 18.11 22.51 156.72 2.02 76.61 960.83 206.85

Liaoning 28.43 21.18 24.48 142.83 2.52 78.98 996.18 200.08
Inner Mongolia 28.49 16.78 22.46 98.14 2.34 66.67 949.94 263.09

August

Heilongjiang 25.62 15.14 20.00 114.65 2.15 78.95 980.47 224.13
Jilin 26.97 16.95 21.38 148.62 1.84 78.20 963.81 210.89

Liaoning 28.54 20.79 24.29 179.12 2.36 79.00 999.05 218.12
Inner Mongolia 26.65 14.52 20.25 77.26 2.24 67.81 953.60 259.81

September

Heilongjiang 20.45 7.75 13.66 57.72 2.36 71.27 985.42 224.84
Jilin 22.35 9.74 15.37 59.36 1.90 72.20 969.31 217.58

Liaoning 24.86 15.16 19.61 51.74 2.42 70.77 1005.64 233.24
Inner Mongolia 21.28 7.16 13.74 33.42 2.43 60.30 958.43 247.49

October

Heilongjiang 10.73 −1.31 4.31 23.80 2.67 62.39 988.54 197.94
Jilin 14.26 1.33 7.19 35.80 2.25 62.29 972.87 205.35

Liaoning 17.53 7.45 12.14 42.84 2.74 73.14 1011.76 215.01
Inner Mongolia 11.54 −1.83 4.28 13.93 2.67 53.80 961.80 229.27

November

Heilongjiang −2.43 −13.07 −8.15 13.10 2.53 66.35 990.89 162.43
Jilin 2.78 −7.73 −2.91 26.15 2.26 64.93 974.56 160.53

Liaoning 8.02 −0.92 3.21 26.25 2.97 60.20 1014.22 177.53
Inner Mongolia −1.26 −12.91 −7.69 6.57 2.53 58.96 963.53 185.90

December

Heilongjiang −12.53 −23.06 −18.23 8.08 2.49 69.96 992.83 151.10
Jilin −6.37 −17.24 −12.24 11.22 2.12 66.11 975.93 178.28

Liaoning 0.02 −8.78 4.74 9.65 2.81 58.34 1017.14 178.28
Inner Mongolia −10.82 −21.55 −16.76 3.93 2.44 61.56 965.56 174.75

https://data.cma.cn/
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The crop type RS products were the 500 m spatial resolution annual distributions of
maize, rice, and soybean in the NEC from 2000 to 2020, which were provided by Liu and
Wang [37]. The crop type data were obtained using 111-dimensional MOD09A1 features,
recursive feature elimination, and random forest algorithms on the Google Earth Engine
(GEE) platform, with the sample-based classification accuracies of 84.73–86.93% and a
statistics-based R2 of 0.81–0.95.

DEM data were sourced from the Resource and Environmental Science and Data
Center of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 25 July
2023), with a spatial resolution of 500 m.

National and provincial administrative boundary data were the 2015 multi-level
national vector map from the Resource and Environmental Science and Data Center of the
Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 25 July 2023).

3. Methods

In this study, based on multi-source data of daily climate data, DEM, and crop type
RS data, we first used the Soil Conservation Service of the United States Department
of Agriculture (USDA-SCS) model to calculate Pe and used the RS-based FAO Penman–
Monteith (P-M) model to estimate ETc in the NEC from 2000 to 2020 (Figure 2). Second, we
used the FAO IWR formula to calculate the IWR and applied the water supply–demand
index (M) to evaluate the agricultural water supply–demand situation. Third, we adopted
transfer matrix-based statistics to estimate the IWR change and its contribution rate caused
by different crop type transfers and used a gradient boxplot to reveal the impact of climate
change on the ETc and IWR.
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3.1. Calculation of Effective Precipitation

Effective precipitation is the amount of precipitation that can be effectively used,
excluding surface runoff and seepage below the crop root zone [23]. There are more effective
precipitation influencing factors, such as crop type and physiological characteristics, soil
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texture, and climate changes. This study used the USDA-SCS model to calculate the daily
effective precipitation (Pe) during the crop growth period [51–53]. The formula for Pe was
as follows:

Pe =


P × (4.17 − 0.2)/4.17 P < 8.3

4.17 + 0.1 × P P ≥ 8.3
(1)

where Pe is the daily effective precipitation (mm), and P is the daily precipitation (mm).

3.2. Calculation of Crop Water Requirement

This study used daily climate raster data and the FAO P-M model to calculate reference
crop evapotranspiration (ETo) and the crop water requirement (ETc) [54], by adopting the
crop type RS products to obtain the crop-specific spatial distribution of key crop parameters.
Notably, the parameters for a certain crop in this study were the same in space. The formula
for ETo was as follows:

ETo =
0.408 × ∆(Rn − G) + γ × 900

T+273 × u2(es − ea)

∆ + γ(1 + 0.34 × u2)
(2)

where ETo is the reference crop evapotranspiration (mm/d); ∆ is the slope of the saturated
water vapor pressure–temperature curve (KPa/◦C); Rn is the net crop canopy surface
radiation (MJ/(m2·d)); G is the soil heat flux (MJ/(m2·d)), when calculating with daily
climate data, G = 0; γ is the psychrometric constant (KPa/◦C); T is the average temperature
at 2 m (◦C); u2 is the average wind speed at 2 m (m/s); es is the saturated water vapor
pressure (KPa); ea is the actual vapor pressure (KPa); es − ea is the saturation pressure
deficit (KPa).

The crop water requirement (ETc) is determined by crop coefficients and the reference
crop evapotranspiration. The formula for ETc was as follows:

ETc,i = Kc,i × ETo (3)

where i is the crop type; ETc,i is the crop water requirement (mm); Kc,i is the crop coefficient
during various growth periods, which is calculated using the single crop coefficient method;
Kc is categorized according to the growth periods of the crop into Kc ini (during the initial
and rapid growth period), Kc mid (during the mid-growth period), and Kc end (during the
final growth period). The Kc values for the three crops were based on the crop fertility
situation (Table 3) and relevant experimental results [55].

Table 3. The growth period and Kc coefficients of three crops in the NEC.

Growth Period and Kc Maize Rice Soybean

Sowing Date 27 April 15 May 30 April
End Date 20 September 25 September 25 September

Growth Period (d) 147 134 149
Kc ini 0.49 1.15 0.32
Kc mid 1.06 1.25 0.73
Kc end 0.58 1.05 0.32

Note: Kc is the average values of the three crops at different growth periods.

3.3. Calculation of Irrigation Water Requirement

The crop irrigation water requirement (IWR) is the difference between the crop water
requirement and the effective precipitation [56]. The formula for IWR was as follows:

IWRi =


ETc,i − Pei ETc,i > Pei

0 ETc,i ≤ Pei

(4)
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where IWRi is the irrigation water requirement of crop i during the growth period (mm);
ETc,i is the crop water requirement of crop i during the growth period (mm); Pei is the
effective precipitation of crop i during the growth period (mm).

3.4. Calculation of Water Supply–Demand Index

The water supply–demand index reflects the relationship between the effective supply
and demand of regional agricultural available water resources [46]. The formula for M was
as follows:

Mi =
Wi
Di

(5)

where Mi is the water supply–demand index for crop i; Wi is the effective water supply
for crop i during the growth period, which is the effective precipitation (Pe); Di is the crop
water requirement for crop i during the growth period (ETc). Normally, the value of M
ranges from 0 to 1. The larger the M value, the better the matching degree, whereas the
smaller the M value, the poorer the matching degree. When M ≥ 1, the crop effective
precipitation has met the irrigation water requirement.

3.5. Linear Regression Trend Analysis

This study used linear regression to analyze the trends of Pe, ETc, IWR, and M for
different crops from 2000 to 2020 in the NEC. The slope in the regression equation represents
the inter-annual variability and is calculated using the least squares method. The formula
for slope was as follows:

slope =
n × ∑n

t=1 t × Wt − (∑n
t=1 t)(∑n

t=1 Wt)

n × ∑n
t=1 t2 −

(
∑t

i=1 t
)2 (6)

slope% = slope × n
∑n

t=1 Wt
× 100 (7)

where slope is the inter-annual trend, n is the number of years; Wt is the value of this index
(Pe, ETc, IWR, M) in year t; a positive slope indicates an increasing trend and a negative
slope indicates a decreasing trend; slope% is the ratio of slope to the multi-year average W,
which aims to calculate the magnitude of change in the multi-year average of W.

4. Results
4.1. Annual Spatial Distribution and Temporal Changes in Pe

The average of Pe in the NEC from 2000 to 2020 showed a slowly increasing trend
(Figure 3). The average Pe value reached its highest value of 239.39 mm in 2019, while it
reached its lowest value of 153.13 mm in 2007. The slope of Pe in 2000–2020 was 2.99 mm/a
and the slope% was 1.56%/a (Table 4). The average Pe for maize, rice, and soybean
showed an upward trend (Figure 4a). The average Pe for maize reached its highest value of
242.72 mm in 2005, while it reached its lowest value of 158.62 mm in 2000. The average Pe
for rice reached its highest value of 266.88 mm in 2019, while it reached its lowest value of
144.83 mm in 2007. The average Pe for soybean reached its highest value of 252.33 mm in
2019, while it reached its lowest value of 131.11 mm in 2007. The multi-year average Pe for
the three crops was 195.52 mm, 180.68 mm, and 193.28 mm, respectively. The slope of Pe
from 2000 to 2020 for maize, rice, and soybean was 2.24 mm/a, 3.69 mm/a, and 4.04 mm/a,
respectively, and the slope% was 1.15%/a, 2.04%/a, and 2.09%/a, respectively (Table 4).
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Table 4. Slope and slope% of Pe, ETc, IWR, and M for different crops in the NEC from 2000 to 2020.

Crop Type
Pe ETc IWR M

Slope
(mm/a)

Slope%
(%/a)

Slope
(mm/a)

Slope%
(%/a)

Slope
(mm/a)

Slope%
(%/a) Slope (/a) Slope%

(%/a)

Maize 2.24 1.15 −3.50 −0.46 −5.77 −1.03 0.004 1.48
Rice 3.69 2.04 −9.09 −0.79 −12.73 −1.32 0.004 2.67

Soybean 4.04 2.09 −3.76 −0.89 −7.80 −3.42 0.01 2.87

The average of Pe for maize was the highest in Liaoning at 207.28 mm and the lowest
in Inner Mongolia at 155.72 mm (Table 5). The average of Pe for rice was the highest in
Liaoning at 184.10 mm and the lowest in Inner Mongolia at 151.55 mm. The average of Pe
for soybean was the highest in Heilongjiang at 206.79 mm and the lowest in Liaoning at
165.45 mm. The standard deviation of Pe for maize was the highest in Jilin at 40.08 mm and
the lowest in Liaoning at 17.98 mm. The standard deviation of Pe for rice was the highest
in Heilongjiang at 56.57 mm and the lowest in Inner Mongolia at 39.45. The standard
deviation of Pe for soybean was the highest in Jilin at 37.40 mm and the lowest in Liaoning
at 10.81 mm.

Table 5. The average and standard deviation Pe, ETc, IWR, and M values of different crops for the
four areas in the NEC from 2000 to 2020.

Crop Type Area
Pe (mm) ETc (mm) IWR (mm) M

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation

Maize

Heilongjiang 207.25 28.56 729.70 226.83 522.76 254.99 0.29 0.099
Jinlin 207.28 40.08 749.82 169.89 542.07 276.45 0.28 0.102

Liaoning 180.56 17.98 773.22 149.37 591.57 251.38 0.24 0.062
Inner Mongolia 155.72 25.56 825.91 262.58 669.69 149.16 0.19 0.069

Rice

Heilongjiang 182.47 56.57 1142.03 255.98 960.23 183.28 0.164 0.085
Jinlin 184.10 50.36 1166.39 283.61 981.91 139.70 0.162 0.077

Liaoning 161.72 41.96 1178.45 250.53 1015.12 129.48 0.14 0.068
Inner Mongolia 151.55 39.45 1249.20 158.41 1097.31 226.28 0.12 0.043

Soybean

Heilongjiang 206.79 12.83 404.78 55.22 198.02 60.07 0.53 0.06
Jinlin 174.92 37.40 450.86 49.97 275.94 77.11 0.40 0.12

Liaoning 165.45 10.81 455.04 34.04 289.59 33.82 0.37 0.03
Inner Mongolia 174.08 19.72 443.34 57.28 266.43 70.10 0.41 0.08

The Pe had different spatial changes in 2000–2020 in the NEC (Figure 5). The average
Pe from west to east showed a trend of first increasing, then decreasing and then increasing
in the whole NEC during the past two decades. The maximum standard deviation of Pe
was mainly distributed in the eastern area in Heilongjiang, and the minimum standard
deviation of Pe was mainly distributed in the southeastern area in Inner Mongolia. Pe in
Inner Mongolia generally showed a trend of being low in the central area and high in the
northern and southern areas. Heilongjiang was higher in the southeastern area, with a
southeast–northwest dividing line and a decreasing trend towards both sides. Jilin showed
a trend of gradual decrease from the southeastern to the northwestern area. Liaoning
showed a gradual trend of decreasing from the eastern to the western area. The maximum
value of Pe was mainly distributed in the southeastern area in the NEC from 2000 to 2011,
which moved gradually from the southeastern to the central–eastern area from 2012 to 2020
in the NEC. The minimum value of Pe was mainly distributed in the central and eastern
areas in the NEC.
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4.2. Annual Spatial Distribution and Temporal Changes in ETc

The average ETc in the NEC showed a gradual increase from 2000 to 2020 (Figure 3).
The average ETc reached the highest value of 763.27 mm in 2020, while reached the lowest
value of 622.93 mm in 2000. The slope of ETc was 5.09 mm/a and the slope% was 0.74%/a
(Table 4). The average of ETc for maize, rice, and soybean showed a decreasing trend
(Figure 4b). The average ETc for maize reached the highest value of 826.50 mm in 2001,
while it reached the lowest value of 699.27 mm in 2013. The average ETc for rice reached
the highest value of 1294.11 mm in 2001, while it reached the lowest value of 1019.20 mm
in 2013. The average ETc for soybean reached the highest value of 474.97 mm in 2007,
while it reached the lowest value of 368.42 mm in 2013. The multi-year average ETc values
for the three crops were 755.21 mm, 1147.53 mm, and 421.29 mm, respectively. The slope
of ETc from 2000 to 2020 for maize, rice, and soybean was −3.50 mm/a, −9.09 mm/a,
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and −3.76 mm/a, respectively, and the slope% was −0.46%/a, −0.79%/a, and −0.89%/a,
respectively (Table 4).

The average of ETc for maize was the highest in Inner Mongolia at 825.91 mm and
the lowest in Heilongjiang at 729.70 mm (Table 5). The average of ETc for rice was the
highest in Inner Mongolia at 1249.20 mm and the lowest in Heilongjiang at 1142.03 mm.
The average of ETc for soybean was the highest in Liaoning at 455.04 mm and the lowest in
Heilongjiang at 404.78 mm. The standard deviation of ETc for maize was the highest in
Inner Mongolia at 262.58 mm and the lowest in Liaoning at 149.37. The standard deviation
of ETc for rice was the highest in Jilin at 283.61 mm and the lowest in Inner Mongolia at
158.41 mm. The standard deviation of ETc for soybean was the highest in Inner Mongolia
at 57.28 mm and the lowest in Liaoning at 34.04 mm.

The ETc had different spatial changes in 2000–2020 in the NEC (Figure 6). The average
ETc from north to south and from west to east showed a gradual tread of increasing in
the whole NEC during the past two decades. The maximum standard deviation of ETc
was mainly distributed in the eastern area in Heilongjiang, and the minimum standard
deviation of ETc was mainly distributed in the southwestern area in Liaoning. The ETc of
Inner Mongolia generally showed a trend of being higher in the southern area and lower
in the northern area. Heilongjiang expanded from the center to the surroundings, which
showed a trend of being lower in the central area and higher in the surroundings. Jilin and
Liaoning had basically the same trend, both of which showed a decreasing trend from the
central area to the surroundings. The maximum value of ETc was mainly in the southern
and eastern areas from 2000 to 2001 in the NEC. Since 2002, the maximum value of ETc
has gradually moved from the southern to the northern area until the south–central area
in the NEC. The eastern area of the NEC has remained one of the major distribution areas
for the ETc maximum. The spatial distribution of the minimum value of ETc was basically
unchanged from 2000 to 2020, it was still mainly found in the central area of Heilongjiang
and eastern–central area of Inner Mongolia.

4.3. Annual Spatial Distribution and Temporal Changes in IWR

The average IWR in the NEC showed a gradual increase from 2000 to 2020 (Figure 3).
The average IWR reached the highest value of 706.71 mm in 2001, while it reached the
lowest value of 475.08 mm in 2013. The slope of IWR was 2.08 mm/a and the slope% was
0.42%/a (Table 4). The average of IWR for maize, rice, and soybean showed a decreasing
trend (Figure 4c). Crop types varied in the irrigation water requirement. The average IWR
for maize reached the highest value of 663.19 mm in 2001, while it reached the lowest value
of 480.01 mm in 2013. The average IWR for rice reached the highest value of 1138.41 mm
in 2001, while it reached the lowest value of 819.55 mm in 2013. The average IWR for
soybean reached the highest value of 343.87 mm in 2007, while it reached the lowest value
of 125.68 mm in 2013. The multi-year average IWR for maize, rice, and soybean was
559.51 mm, 967.12 mm, and 228.00 mm, respectively. The slope of IWR from 2000 to 2020
for maize, rice, and soybean was −5.77 mm/a, −12.73 mm/a, and −7.80 mm/a, and the
slope% was −1.03%/a, −1.32%/a, and −3.42%/a, respectively (Table 4).

The average of IWR for maize was the highest in Inner Mongolia at 669.69 mm and
the lowest in Heilongjiang at 522.76 mm (Table 5). The average of IWR for rice was the
highest in Inner Mongolia at 1097.31 mm and the lowest in Heilongjiang at 960.23 mm.
The average of IWR for soybean was the highest in Liaoning at 289.59 mm and the lowest
in Heilongjiang at 198.02 mm. The standard deviation of IWR for maize was the highest
in 276.45 mm and the lowest in Inner Mongolia at 149.16 mm. The standard deviation of
IWR for rice was the highest in Inner Mongolia at 226.28 mm and the lowest in Liaoning
at 129.48 mm. The standard deviation of IWR for soybean was the highest in Jinlin at
77.11 mm and the lowest in Liaoning at 33.82 mm.
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The IWR had different spatial changes in 2000–2020 in the NEC (Figure 7). The average
IWR showed a gradually increasing trend from north to south in the whole NEC during
the past two decades. The maximum standard deviation of IWR was mainly distributed in
the eastern area in Heilongjiang, and the minimum was mainly distributed in the northern
area in Heilongjiang. Inner Mongolia showed an increasing trend from the northern to the
southern area. Heilongjiang expanded from the center to the surroundings, which showed
a trend of being lower in the central area and higher in the surroundings. Jilin showed a
trend of gradual decrease from the northeastern to the southwestern area. Liaoning showed
a decreasing trend from the center to the surroundings. The maximum value of IWR was
mainly in the south–central and eastern areas in the NEC from 2000 to 2001. Since 2002,
the maximum value of IWR has gradually moved from Liaoning to the central area in the
NEC. The eastern area of the NEC has remained one of the major distribution areas for IWR
maximum. The spatial distribution of the minimum value of IWR was relatively unchanged
from 2000 to 2020; it was still mainly concentrated in the central area of Heilongjiang and
eastern–central area of Inner Mongolia.
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4.4. Annual Spatial Distribution and Temporal Changes in M

The average M showed an increasing trend in the NEC from 2000 to 2020 (Figure 3).
M reached the highest value of 0.39 in 2005, while it reached the lowest value of 0.23 in
2007. The slope of M was 0.003/a and the slope% was 0.83%/a (Table 4). The average M
for maize, rice, and soybean showed an increasing trend from 2000 to 2020 (Figure 4d). The
average M value for maize reached the highest value of 0.34 in 2005, while it reached the
lowest value of 0.20 in 2001. The average M value for rice reached the highest value of
0.25 in 2019, while it reached the lowest value of 0.12 in 2007. The average M for soybean
reached the highest value of 0.67 in 2013, while it reached the lowest value of 0.28 in 2007.
The multi-year average M values for maize, rice, and soybean were 0.27, 0.16, and 0.48,
respectively. The slope of M from 2000 to 2020 for maize, rice, and soybean was 0.004/a,
0.004/a, and 0.01/a, and the slope% was 1.48%/a, 2.67%/a, and 2.87%/a, respectively
(Table 4).

The average of M for maize was the highest in Heilongjiang at 0.29 and the lowest in
Inner Mongolia at 0.19 (Table 5). The average of M for rice was the highest in Heilongjiang
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at 0.164 and the lowest in Inner Mongolia at 0.12. The average for soybean was the highest
in Heilongjiang at 0.53 and the lowest in Liaoning at 0.37. The standard deviation of M for
maize was the highest in Jilin at 0.102 and the lowest in Liaoning at 0.062. The standard
deviation of M for rice was the highest in Heilongjiang at 0.085 and the lowest in Inner
Mongolia at 0.043. The standard deviation of M for soybean was the highest in Jilin at 0.12
and the lowest in Liaoning at 0.03.

The M had different spatial changes in 2000–2020 in the NEC (Figure 8). The average
M from south to north showed a gradual increasing tread in the whole NEC during the
past two decades. The maximum standard deviation of M was mainly distributed in the
northern area in Heilongjiang, and the minimum standard deviation of M was mainly
distributed in the southwestern area in Liaoning. Inner Mongolia showed a decreasing
trend from the southern to the northern area. Heilongjiang narrowed from the center to
the surroundings, which showed a trend of being higher in the central area and lower in
the surroundings. Jilin and Liaoning had basically the same trend, which showed a trend
of being lower in the center and higher in the surrounding areas. The maximum value
of M was mainly distributed in the central area of Heilongjiang and showed a gradually
decreasing trend from the central area to the surroundings from 2000 to 2020. The minimum
value of M was mainly distributed in the central and eastern areas of Heilongjiang.
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4.5. Impacts of Crop Type Change on IWR

The total IWR varied with crop area changes, which increased by 33.59 × 109 m3

(20.36%) in the NEC (Table 6). The total IWR of maize and rice showed an increasing trend,
while the total IWR of soybean showed a decreasing trend from 2000 to 2020. The total
IWR of maize and rice increased by 55.15 × 109 m3 (79.47%) and 32.83 × 109 m3 (109.18%),
respectively, while the total IWR of soybean decreased by 54.39 × 109 m3 (−80.81%).

Table 6. Changes in the crop cultivation area and IWR in the NEC from 2000 to 2020.

Crop Type
Cultivation Area (106 ha) IWR per Unit Area (102 m3/ha) Total IWR (109 m3)

2000 2020 Change 2000 2020 Change 2000 2020 Change

Maize 10.76 22.72 11.96 64.51 54.81 −9.69 69.40 124.55 55.15
Rice 2.71 6.73 4.02 111.07 93.47 −17.60 30.07 62.90 32.83

Soybean 21.46 7.71 −13.75 31.36 16.77 −14.59 67.31 12.92 −54.39

Crop type transfer has led to a change in irrigation water requirement, and this study
analyzed two phases (Table 7). The transfer between different crop types resulted in an
increase of 24.71 × 109 m3 in the total IWR in the NEC, which accounted for 39.28% of the
total IWR change from 2000 to 2010. The expansion of the crop area resulted in an increase
in the total IWR of 62.91 × 109 m3 (60.72%). The largest transfer from soybean to maize was
8.70 × 106 ha; the total IWR increased by 17.57 × 109 m3 (27.93%). The transfers from maize
and soybean to rice were 1.69 × 106 ha and 1.39 × 106 ha, respectively. This resulted in the
total IWR increasing by 4.78 × 109 m3 (7.60%) and 9.33 × 109 m3 (14.84%), respectively.
However, the transfer from maize to soybean and the transfer from rice to maize and
soybean resulted in reductions by 3.58 × 109 m3 (−5.69%), 2.83 × 109 m3 (−4.50%), and
0.56 × 109 m3 (−0.89%) in the total IWR, respectively.

Table 7. The contribution of crop type transfer rates to IWR in the NEC from 2000 to 2010.

Conversion Type Converted Area (106 ha) Contribution Value (109 m3) Contribution Rate (%)

Maize to Rice 1.69 4.78 7.60
Maize to Soybean 0.91 −3.58 −5.69

Rice to Maize 0.42 −2.83 −4.50
Rice to Soybean 0.06 −0.56 −0.89

Soybean to Maize 8.70 17.57 27.93
Soybean to Rice 1.39 9.33 14.84

Total 13.16 24.71 39.28

The transfer between different crop types resulted in an increase of 14.80 × 109 m3 in
the total IWR in the NEC, which accounted for 41.25% of the total IWR change from 2010
to 2020 (Table 8). The largest transfer from soybean to maize was 4.16 × 106 ha; the total
IWR increased by 11.45 × 109 m3 (31.92%). The transfers from maize and soybean to rice
were 1.11 × 106 ha and 0.50 × 106 ha, respectively. This resulted in increases in the total
IWR by 4.85 × 109 m3 (13.53%) and 3.43 × 109 m3 (9.57%), respectively. The transfer from
maize to soybean and the transfer from rice to maize and soybean resulted in decreases by
2.01 × 109 m3 (−5.60%), 2.36 × 109 m3 (−6.58%), and 0.57 × 109 m3 (−1.59%) in the total
IWR, respectively. The expansion of the crop area resulted in an increase in the total IWR of
35.87 × 109 m3 (58.75%).
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Table 8. The contribution of crop type transfer rates to the IWR in the NEC from 2010 to 2020.

Conversion Type Converted Area (106 ha) Contribution Value (109 m3) Contribution Rate (%)

Maize to Rice 1.11 4.85 13.53
Maize to Soybean 0.72 −2.01 −5.60

Rice to Maize 0.69 −2.36 −6.58
Rice to Soybean 0.08 −0.57 −1.59

Soybean to Maize 4.16 11.45 31.92
Soybean to Rice 0.50 3.43 9.57

Total 7.27 14.80 41.25

4.6. Climate Impacts on Spatial Heterogeneity of ETc and IWR

This study used gradient analysis to calculate the influences of key climate factors on
ETc and IWR. ETc increased with increasing temperature in the NEC without distinguishing
crops, and ETc was reduced by temperature when the average temperature exceeded 5 ◦C
(Figure 9). The effect of solar radiation on ETc was similar to the effect of temperature on
ETc. However, the effect of precipitation on ETc was to have basically no impact on ETc
as the precipitation increased. In terms of crop types, temperature had little effect on the
ETc for maize, while the ETc increased with increasing temperature for rice and soybean.
Precipitation for maize had little effect on ETc, but the ETc decreased with increasing
precipitation for rice and soybean. The ETc increased with increasing solar radiation for
maize, rice, and soybean.
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The IWR in the NEC increased with increasing temperature without distinguishing
crops, and the IWR increased with increasing solar radiation (Figure 10). However, the IWR
decreased with increasing precipitation. In terms of crop types, the temperature change for
maize and rice had little effect on the IWR, but the IWR increased with the temperature
increase in soybean. The IWR decreased with the increasing precipitation for maize, rice,
and soybean. Solar radiation was the opposite to precipitation, and the IWR increased with
increasing solar radiation for maize, rice, and soybean.
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5. Discussion
5.1. Reasons for the Spatiotemporal Heterogeneity of IWR

The increased irrigation water requirement is the main reason for changes in the
crop planting structure, with the expansion of cultivated land having the greatest im-
pact. Specifically, the expansion of maize and rice sowing amounted to 11.96 × 106 ha
(111.15%) and 4.02 × 106 ha (148.34%), respectively, resulting in an increase in the total
IWR by 55.15 × 109 m3 and 32.83 × 109 m3, respectively, which led to a water shortage of
87.98 × 109 m3. This is similar to Zhang’s finding [46] that the expansion of water-intensive
crops increases the amount of water used for agricultural irrigation and exacerbates the
problem of water scarcity. Farmers tend to cultivate and increase the area of highly water-
intensive maize and rice in order to increase their returns, which mainly because of the
two crops have higher yields and economic benefits than soybean [37]. However, the
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expansion has led to an increase in the agricultural water requirement, a decline in the
groundwater levels, reduction in soil organic matter, and degradation of black soil, which
is not conducive to sustainable agriculture development [57–61]. Thus, we should curb the
massive expansion of water-intensive crops and encourage an increase in the area of soy-
bean that is water-saving and soil-beneficial. In addition, we need to quantify the trade-offs
and synergies of the multi-dimensional effects of different crop yields, agricultural water
efficiency, and carbon sequestration when rationalizing the crop planting structure.

Climate change is another factor that generates heterogeneity in the irrigation water
requirement. The results showed that the IWR was gradually decreased with increased
precipitation for the three crops, but it was gradually increased with increased temperature
and solar radiation for the three crops (Figure 10). Increased precipitation makes the
land wetter, and the soil water storage function provides more adequate water during the
critical growth period of crops, thus reducing the agricultural manual irrigation [62,63].
Increased temperature and solar radiation promoted the photosynthesis of crops, which
led to increased evaporation and crops needing more water, thus leading to an increase in
the irrigation water requirement [64–66].

In addition, the reasons affecting irrigation water requirement are not only the crop
type and climate changes we analyzed, but also improvements in agricultural infrastruc-
tures and field management practices. The improvements in agricultural infrastructures
included building high-standard farmland and improving the water and irrigation facilities.
And field management practices include irrigation technology promotion and deep plough-
ing and tilling by large machinery that would enhance the soil water retention capacity.

5.2. Policy Recommendations and Practical Implications

Water resource consumption is extremely high, and agriculture uses the most water
during irrigation, which leads to a decrease in water-use efficiency in the country [67,68].
Therefore, irrigation water saving and improving water resource utilization have become
an important strategic task in maintaining sustainable socio-economic development [69,70].
There have been large-scale changes in crop type to increase economic and social incomes
in the NEC. With the expansion of total crop cultivation, the crop cultivation area has
far exceeded the maximum cultivation area that can be provided by the available water
resources, which has ultimately led to an excess irrigation water requirement and severe
water shortage [18,71]. Therefore, it is necessary to adjust the crop planting structure to re-
duce the cultivation of water-intensive crops and alleviate the imbalance in the agricultural
water supply [72–74].

The IWR gradually increased from the northern to the southern area, and the IWR
exceeded 1000 mm in severely water-scarce areas. The total crop irrigation water require-
ment far exceeded the maximum water supply in the NEC. This indicated that the effective
precipitation has been unable to meet the amount of water required for crop growth in
the NEC and needs agricultural irrigation measures [71,75]. Therefore, we propose to
build water conservancy projects vigorously and set strict water quotas, strictly controlled
crop water requirement in water-scarce areas, promote drip irrigation, sprinkler irrigation,
rain harvesting and irrigation to achieve water-saving irrigation, and strengthen the pre-
cision management of the agricultural water requirement and reduce agricultural water
losses [76–78].

5.3. Innovation, Deficiencies, and Prospects

Compared to previous studies [79–81], this study analyzed the annual spatiotemporal
changes in the irrigation water requirement for different crops, calculated the amount
of crop type transfer contributing to IWR, and explored the spatial heterogeneity of key
climate factors on the ETc and IWR. This study could provide some insight into the amount
of water requirement for crop growth in different years and it improved the agricultural
irrigation efficiency, and it was also possible to adjust the profitable crop cultivation to
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agricultural producers and managers and provide recommendations for more effective
water allocation.

However, this study only estimated the theoretical crop irrigation water requirement,
not the actual irrigation water requirement. Future research could use multi-source remote-
sensing data to reveal the spatial and temporal distribution for the actual crop irrigation
water requirement and provide more comprehensive basic data for sustainable agricultural
water management. In addition, the model parameters used in this study differed by
crop type, but the parameters of the same crop in different spaces are the same. Future
research could integrate RS vegetation indexes and technologies and field observations to
map spatially-differentiated and crop-specific key parameters (e.g., growth period and Kc
coefficients) for the more accurate estimation of agricultural water use in future studies.
Moreover, we used gradient boxplots to analyze the impact of climate change on the
ETc and IWR, but we did not quantify the climatic contribution rate and the correlation
coefficients between climatic factors and agricultural water use. Future research could use
spatial correlation analysis and a structural equation model to analyze the correlation and
quantitative contributions of key climate factors to agricultural water dynamics, supporting
a more in-depth scientific basis for sustainable agricultural water management practices.

6. Conclusions

This study integrated multi-source data and multiple digital agriculture technologies
to analyze annual crop-specific spatiotemporal changes in Pe, ETc, IWR, and M, reveal the
impacts of crop type and climate changes on agricultural water dynamics, and discuss the
reasons and policy implications for spatiotemporally heterogeneous changes and impacts
in the NEC from 2000 to 2020. The results indicated that regional average Pe, ETc, IWR, and
M increased by 1.56%/a, 0.74%/a, 0.42%/a, and 0.83%/a, respectively. Jointly influenced
by crop type and climate changes, the regional total IWR increased from 166.78 × 109 m3

in 2000 to 200.37 × 109 m3 in 2020, of which 39.28% and 41.25% were attributed to crop
type transfer, and the remaining 60.72% and 58.75% were caused by cropland expansion
from 2000 to 2010 and 2010 to 2020, respectively. This suggested that we should curb the
massive expansion of cropland and water-intensive crops and encourage the cultivation
of water-saving and soil-beneficial soybean to reduce the IWR and promote agricultural
sustainability. Gradient boxplot analysis found that the ETc and IWR increased with
increasing temperature and solar radiation, and increasing precipitation led to decreasing
IWR in the NEC. The scientific implementation of crop planting structure adjustment
and water-efficient management practices need to comprehensively quantify the trade-
offs and synergies of the spatiotemporally heterogeneous multi-dimensional impacts of
crop type and climate changes on agricultural water use and its efficiency, crop yield, and
photosynthetic and soil carbon sequestration. Future studies could more accurately estimate
agricultural water use through RS-based mapping of spatially differentiated parameters,
and more synthetically quantify the impact mechanisms of key natural–anthropogenic
factors to support the scientific basis for integrated water resource management and
sustainable agricultural development.
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