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Abstract: Synthetic aperture radar (SAR) enables precise object localization and imaging, which
has propelled the rapid development of algorithms for maritime ship identification and detection.
However, most current deep learning-based algorithms tend to increase network depth to improve
detection accuracy, which may result in the loss of effective features of the target. In response to
this challenge, this paper innovatively proposes an object-enhanced network, OE-YOLO, designed
specifically for SAR ship detection. Firstly, we input the original image into an improved CFAR
detector, which enhances the network’s ability to localize and perform object extraction by providing
more information through an additional channel. Additionally, the Coordinate Attention mechanism
(CA) is introduced into the backbone of YOLOv7-tiny to improve the model’s ability to capture
spatial and positional information in the image, thereby alleviating the problem of losing the position
of small objects. Furthermore, to enhance the model’s detection capability for multi-scale objects,
we optimize the neck part of the original model to integrate the Asymptotic Feature Fusion (AFF)
network. Finally, the proposed network model is thoroughly tested and evaluated using publicly
available SAR image datasets, including the SAR-Ship-Dataset and HRSID dataset. In comparison to
the baseline method YOLOv7-tiny, OE-YOLO exhibits superior performance with a lower parameter
count. When compared with other commonly used deep learning-based detection methods, OE-
YOLO demonstrates optimal performance and more accurate detection results.

Keywords: synthetic aperture radar (SAR); ship detection; CFAR; attention mechanism; YOLOv7

1. Introduction

Synthetic aperture radar (SAR) stands out as a high-resolution imaging radar with
distinctive benefits in contrast to optical remote sensing techniques. It is capable of gen-
erating high-resolution radar images at any time and under various weather conditions
by emitting pulse electromagnetic waves and receiving reflected signals. Currently, with
the advancement of SAR technology, the resolution of captured images has progressively
increased. These images have applications in terrain feature reconnaissance, hydrological
monitoring, resource development planning, and object detection [1–4]. Leveraging the
advantages of all-weather, multi-angle imaging offered by SAR, it can also be applied to
maritime traffic monitoring and ship identification.

Over an extended period, multiple traditional ship detection algorithms have been
suggested, with a predominant focus on their application in optical remote sensing images.
Within the realm of SAR ship detection, conventional approaches have employed manual
feature extraction, relying on empirical techniques to extract simple features, e.g., visual
saliency-based approaches [5,6], algorithms based on superpixel segmentation [7,8], and
widely employed Constant False Alarm Rate (CFAR) algorithms [9,10]. CFAR is a statistical
characteristic-based method, wherein the core involves establishing a distribution model
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based on statistical data. Subsequently, a sliding window is employed to traverse the
entire image, utilizing adaptive threshold adjustments derived from the statistical distri-
bution of false alarm rates and background clutter to detect object regions. Describing the
scattering mechanism of ship objects using statistical data becomes intricate in complex
environmental settings. The performance of the CFAR method is significantly influenced
by statistical modeling and the setting of false alarm rates. Moreover, the over-reliance on
manually designed low-level features poses challenges in adjusting algorithm parameters
when confronted with complex scenes, thereby limiting the generalization capabilities of
traditional algorithms.

As artificial intelligence technology and digital image processing have gained promi-
nence, deep learning methodologies relying on Convolutional Neural Networks (CNNs)
have achieved substantial progress in the domain of remote sensing image object recogni-
tion [11–18]. These methods fall into two categories: one- and two-stage detection methods.
In the initial stage, the first category of detection algorithms usually entails the extraction
of candidate regions, with the second stage responsible for further object classification
and the precise localization of these identified areas.Typical two-stage algorithms include
the Faster R-CNN series [19,20], Mask R-CNN [21], and Cascade R-CNN [22]. On the
contrary, one-stage methods streamline the process by treating the task of detecting objects
as a straightforward regression problem, eliminating the need for an additional candidate
region extraction step. Examples of typical one-stage algorithms include the single-shot
multibox detector (SSD) [23], RetinaNet [24], and the YOLO (You Only Look Once) [25–27]
series of algorithms.Generally, one-stage algorithms adopt an end-to-end training approach,
resulting in faster detection speeds compared to two-stage algorithms. However, this speed
advantage may come at the cost of reduced detection accuracy. Zhang et al. proposed
RefineDet [28] to inherit the advantages of the two methods (maintaining the fast detection
speed while improving the detection effect), achieving improvements in speed and accu-
racy. CNN-based deep learning methods possess the capability to extract and learn ship
features from a vast amount of remote sensing images, enabling automatic identification
and detection of ships. While these features may be challenging for humans to comprehend,
computers exhibit a high sensitivity to them. Consequently, trained networks typically
possess a certain level of generalization ability. However, in reality, the distribution of ships
and sea conditions in synthetic aperture radar images is complex. The images not only
contain individual vessels, but also encompass intricate maritime backgrounds and various
clutter (as shown in Figure 1). Deep learning models may be prone to overfitting in such
complex environments. Moreover, SAR images exhibit directionality, causing significant
variations in the the reflection characteristics of vessels in different directions. In certain
situations, models may struggle to accurately capture and learn this directional information.
An additional factor to take into account is the variation in the size and shape of ship objects
in SAR images. Some objects may be very small or exhibit extremely elongated shapes
within the entire image. This necessitates that the model possess multi-scale detection
capabilities. To address the aforementioned challenges, researchers have proposed various
solutions. Du et al. [29] addressed the issue of interference from clutter in the maritime back-
ground by introducing a saliency-guided SSD to enhance detection accuracy. Li et al. [30]
introduced a novel RADet algorithm designed to acquire the rotation of bounding boxes for
objects utilizing shape masks. Feature pyramids are commonly employed to address the
multi-scale feature extraction problem. Addressing the challenge of detecting multi-scale
ship objects in intricate scenes of SAR images, Chen et al. [31] introduced a SAR-FPN model
that combines ATHOS spatial pyramid aggregation and attention transfer. The objective of
this model is to improve detection accuracy and enhance the capability to detect objects at
various scales, thereby reducing both false positives and false negatives.

These CNN-based improvement methods often involve an increase in the depth of
the network. While this expansion enlarges the perceptual field and semantic expressive
capability of the model, it can lead to the loss of localization information. The resolution
gradually decreases as images undergo multiple layers of convolutional operations, causing
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the loss of detailed features of the objects. Shallow-layered network models, on the other
hand, can capture more geometric details but may have a relatively weaker extraction
of semantic information. Traditional algorithms, e.g., CFAR, are computationally simple
and efficient. They do not rely on large-scale annotated data for training, making them
capable of delivering good performance even in scenarios with scarce data.Additionally,
these methods may exhibit robustness in handling small objects and low signal-to-noise
ratio (SNR) situations. On the other hand, CNN methods leverage end-to-end learning
to extract more complex feature representations from images. They excel at processing
images with hierarchical structures and multi-scale information. Furthermore, through
transfer learning, CNNs can apply knowledge learned from one task to another related
task, enhancing their adaptability to specific domain data. Therefore, the goal is to combine
the strengths of traditional algorithms and deep learning methods to achieve effective
detection and recognition of ships in SAR images. This hybrid approach aims to capitalize
on the simplicity and efficiency of traditional methods while harnessing the ability of deep
learning to learn intricate features.

Figure 1. Typical SAR scenarios from the SAR-Ship-Dataset and HRSID dataset, including examples
of images from inshore, offshore, complex, and simple backgrounds.

In light of these considerations, an object-enhanced network for SAR ship detection
is proposed in this paper, OE-YOLO, which integrates an improved CFAR algorithm.
This network model demonstrates enhanced multi-scale ship detection and improved
ship recognition capabilities in challenging scenarios. The primary contributions of the
proposed model include the following:

1. An improved CFAR algorithm is proposed to simply identify ship objects in the
original input images and handle background noise and sea surface clutter in SAR
images. Additionally, the network’s object localization capability is strengthened
through the additional channel dimensions.

2. The coordinated attention mechanism is introduced into the backbone network of
YOLOv7-tiny to capture directional and positional awareness information between
channels. This addresses the precision loss in lightweight models and enhances the
accuracy of the network.

3. To address false positives and false negatives caused by multi-scale variations in ship
objects in SAR images, Asymptotic Feature Fusion is introduced to optimize the model
neck and improve the feature extraction capabilities of the network at different scales.

4. Results from experiments conducted on the SAR-Ship-Dataset and HRSID datasets
demonstrate that the proposed method surpasses baseline methods and surpasses
most other detection approaches based on deep learning.

The rest of this article is organized as follows. Section 2 introduces the YOLO network
briefly. Section 3 describes the overall network structure and details of the proposed
method. Section 4 shows the experimental results. Section 5 is ablation analysis. Finally,
Section 6 presents the conclusions of this study.
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2. Overall Structure and Application Analysis of YOLOv7-Tiny

YOLO, as a representative of one-stage object detection algorithms, is known for
its rapid recognition and localization of objects. YOLOv7 [32] stands out as one of the
most advanced algorithms to date, surpassing its previous versions in terms of accuracy.
YOLOv7 comes in a lightweight version, YOLOv7-tiny, which is characterized by a smaller
model size, fewer parameters and faster speed. While its detection accuracy may be slightly
lower than YOLOv7, YOLOv7-tiny offers clear advantages in terms of model size and
training speed, rendering it particularly well suited for applications demanding rapid
real-time processing, such as SAR ship detection. Therefore, we choose YOLOv7-tiny as the
baseline framework for our model. Figure 2 illustrates the basic structure of YOLOv7-tiny.

Figure 2. Overall structure of YOLOv7-tiny.

The backbone begins with two convolutional layers, represented by the CBL module
in Figure 2. Another fundamental module in the network is ELAN, which is an efficient
structure composed mainly of VoVNet [33] and CSPNet [34]. The main purpose of the
ELAN module is to effectively integrate information across various layers of the network,
enhancing detection performance. The ELAN module dynamically adjusts connections
between feature layers, allowing it to flexibly change its structure based on different
characteristics of input images. This elastic feature aggregation contributes to improving
the precision of object detection, especially in scenarios involving tiny objects and intricate
backgrounds. ELAN consists of two branches: the initial one undergoes channel dimension
transformation via a 1 × 1 convolution, while the second branch, being more intricate,
commences with a 1 × 1 convolution for channel dimension transformation. Subsequently,
it proceeds through four 3 × 3 convolution modules. Ultimately, the four features are
consolidated to yield the final result of feature extraction.
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Following the backbone, the structure incorporates a PAFPN (Path Aggregation Fea-
ture Pyramid Network), similar to YOLOv4 and YOLOv5. The SPP (Spatial Pyramid
Pooling) module is employed to enlarge the receptive field, enabling the algorithm to adapt
to images with different resolutions. This is accomplished by employing max-pooling to
capture diverse receptive fields. The CSP (Cross-Stage Partial) module first partitions the
features into two segments. One part undergoes conventional processing, while the other
part undergoes processing with the SPP structure. The two parts are then merged to form
the SPPCSPC module, reducing half of the computational load and thereby increasing
speed and precision.

3. Materials and Methods
3.1. Overall Network Structure

As mentioned above, to better suit the requirements of SAR ship detection, various
improvements have been proposed for the baseline model. The resulting new model is
referred to as OE-YOLO. The overall network architecture of OE-YOLO is illustrated in
Figure 3, primarily comprising three components: image processing module based on
improved CFAR, backbone network integrating CA mechanism, and the new neck section
for multi-scale feature extraction that contains the AFF module. The main process of
OE-YOLO begins by inputting the original image into the improved CFAR module. This
module performs coarse recognition and object extraction on the original image, adding
object-related positional information. The obtained image is then dimensionally processed
to convert it into a single-channel image, which is concatenated with the original image
to serve as the input for the backbone to guide network feature extraction. The backbone
conducts feature extraction and fusion through the main network. To compensate for the
accuracy loss resulting from model lightweighting, the CA mechanism is introduced into
the backbone to capture more useful information. The SPPCSPC module in the neck part
is replaced, and AFF is integrated to enhance the model’s multi-scale feature extraction
performance. Ultimately, the model recognizes and locates ship objects in the fused feature
map, outputting the detection results.

Figure 3. Overall structure of OE-YOLO. Further details about the MCFAR-Guided, CA, and AFF
modules’ additional details can be found in Sections 3.2, 3.3, and 3.4, respectively.

3.2. Image Processing Module Based on Improved CFAR Detection Algorithm
3.2.1. Traditional CFAR Algorithm

The detection process of radar can be described by threshold detection. The majority
of detection judgments are based on the comparison between the output of the receiver
and a specific threshold level. Recognizing the presence of an object occurs when the
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amplitude of the receiver’s output surpasses the specified threshold. Radar detection is
susceptible to the influences of noise, clutter, and interference, leading to the occurrence of
false alarms when employing fixed thresholds for object detection. This issue is particularly
pronounced when the clutter background undergoes fluctuations, causing a significant in-
crease in the false alarm rate and consequently impacting the radar’s detection performance.
Therefore, a technique known as Constant False Alarm Rate detection is utilized to dynam-
ically adjust the detection threshold based on radar clutter data. This adaptive approach
aims to maximize the probability of object detection while maintaining a Constant False
Alarm Rate.

The input for the CFAR detector involves importing a SAR image and identifying
each pixel within the entire image. Typically, this comprises a detection cell (denoted as Y)
and 2n reference cells. As illustrated in Figure 4, where D represents the guard cell, it is
primarily employed in single-object scenarios to prevent object pixels from leaking into the
reference cells, thereby affecting detection performance. Assuming the reference threshold
is denoted as V, where V = T × Z, Z represents an estimate of the overall clutter power
level, and T is the threshold factor. Therefore, when Y > V, the presence of an object is
considered, while conversely, it is deemed to be the background. In general, clutter and
noise are assumed to be mutually independent, and after square-law detection, they both
follow an exponential distribution. The probability density function for the reference cells
is expressed as

f (x) =
1

2µ
e−

x
2µ , x ≥ 0 (1)

Let K0 represent the absence of an object, and P[Y > V|K0 ] denote the probability of
falsely determining the presence of an object in the absence of an actual object. This leads
to the expression for the false alarm rate Pf a:

Pf a = EZ{P[Y > V|K0 ]}
= EZ{

∫ ∞
V f (y)dy}

= EZ{
∫ ∞

V
1

2µ e−
y

2µ dy}

= EZ{e−
V
2µ }

(2)

where µ denotes the noise power and Z is a random variable.

Figure 4. The fundamental procedure for object detection employs the CFAR algorithm.

3.2.2. MCFAR: Improvement to the CFAR Algorithm

Due to the significant presence of background clutter in SAR images and the difficulty
in acquiring prior knowledge about the background and object, it is essential to utilize
statistical models for clutter in SAR object detection. Common clutter statistical models
encompass Gaussian distribution, Rayleigh distribution [35], Weibull distribution [36],
and the more complex G0 distribution [37], which are employed to describe the scattering
mechanisms in SAR images. The Rayleigh distribution is frequently used in common
object detection and background modeling techniques, such as CFAR detection. It is
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often employed to model background noise and can be considered a special case of the
Weibull distribution.

The probability density function for the Rayleigh distribution is expressed as

f (x; σ) =
x

σ2 e−
x2

2σ2 (3)

where x represents the random variable and σ is the scale parameter.
In the context of detecting ship objects in SAR images, the Rayleigh distribution is

commonly employed for statistical analyses of the grayscale values in sea clutter images.
However, the Rayleigh distribution may not accurately match the grayscale values of
clutter in SAR images with high resolution. In complex scenarios, the fit between the actual
grayscale value distribution and the relatively poor grayscale values may be inadequate.
Therefore, it is necessary to address false alarms caused by unreasonable false alarm rate set-
tings or chaotic background clutter. While some methods can dynamically adjust thresholds
based on environmental conditions and noise levels, such an approach requires substantial
effort for statistical analysis and model building. Additionally, it may entail continuous
updates and adjustments based on new data, making it potentially time-consuming and
resource-intensive in practice. Here, we propose the use of morphological operations to
eliminate false alarm objects in the filtered SAR images. Morphology-based post-processing
methods are typically simpler and easier to implement, making them suitable for situations
where resources are limited or real-time requirements are high. Morphology is a mathemat-
ical method used for image processing and analysis, grounded in set theory and topology
principles. Its goal is to offer a systematic representation and manipulation of images and
its fundamental operations include erosion and dilation.

For the post-filtered SAR image, a simple erosion operation can effectively remove
small and insignificant objects mistakenly identified as object pixels, as well as isolated high-
brightness speckle noise. The erosion operation involves sliding a structuring element (i, j)
over the image. When all parts of the structuring element intersect with the corresponding
parts of the image, the output image at that position is set to white; otherwise, it is set to
black. The erosion operation is defined as follows:

(A ⊖ B)(x, y) = ∩(i,j)∈B A(x + i, y + j) (4)

where A represents the input image; B is the structuring element; ⊖ denotes the erosion
operation; (x, y) is the pixel position on the two-dimensional image; and ∩ means the
intersection operation. This operation helps eliminate small false objects and isolate bright
speckle noise in the filtered SAR image.

The dilation operation is utilized to fill black holes caused by low-value coherent
speckle noise in the object region. Additionally, it can fill in missing object pixels and
connect neighboring, unconnected pixels in the object region. The definition of the dilation
operation is as follows:

(A ⊕ B)(x, y) = ∪(i,j)∈B A(x + i, y + j) (5)

where ⊖ denotes the dilation operation and ∪ means union operation.
After CFAR processing, there might still be some minor interfering white noise in the

image. This white noise can be eliminated through an opening operation, which involves
first eroding and then dilating procedures. Additionally, small holes in detected objects can
be filled using a closing operation, which involves dilating first and then eroding. This helps
fill small gaps and smooth the edges of the objects. Therefore, combining morphological
image processing methods with a CFAR algorithm based on the Rayleigh distribution can
effectively improve detection accuracy and smooth object edges. For ease of reference, this
combined method is referred to as MCFAR throughout the subsequent text, indicating the
CFAR algorithm integrated with morphological operations.
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3.2.3. MCFAR-Guided Image Feature Extraction

After setting the threshold for the MCFAR detector (Pf a set to 0.04 in this paper, which
represents the false alarm rate), preliminary identification and object extraction can be
performed on the input image. The detector traverses each pixel in the image using a
sliding window. The size and shape of this window can be adjusted according to the
application’s requirements, and the window size influences the detection performance.
Subsequently, the pixel threshold for each region is calculated, and pixels exceeding the
threshold are identified as objects, resulting in the detection result image. As depicted in
Figure 5, the top row represents the original image, the middle row displays the outcome
of object–background segmentation, and the bottom row showcases the image processed
through MCFAR, containing solely the objects and some false positive points induced by
clutter. It can be seen that the object and background are well distinguished.

Figure 5. Comparison between the original image, the segmentation results of objects and background
obtained through MCFAR processing (second row), and the image after object extraction (third row).

While SAR data are inherently of single channel, in some datasets, images are repre-
sented in a three-channel format. This practice is often adopted to align with the input
format requirements of traditional computer vision tasks and deep learning models. The
use of three-channel SAR images facilitates convenient processing with existing deep learn-
ing frameworks and models. Consequently, the image obtained after MCFAR processing
from the original image I remains a three-channel image, denoted as IMCFAR. For ease
of subsequent fusion operations, the processed image IMCFAR is further converted into a
grayscale image with a single channel. This grayscale image is then concatenated with the
original image I through a dimensional stacking operation, resulting in an image Iconcat
containing four channels. Iconcat serves as the input to the network, replacing the original
image. Figure 6 illustrates the resulting single-channel grayscale image obtained through
this process. The entire raw image processing procedure is shown in Figure 7.
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Figure 6. Grayscale image obtained through MCFAR processing.

Figure 7. Raw image processing operation based on MCFAR detection algorithm.

The images processed by MCFAR have an additional channel compared to the original
images. The additional channel represents the grayscale image of the objects extracted
through coarse recognition and background removal. It provides the network with more
object information, aiding in better learning and analysis, and enhances the network’s
feature representation capabilities, facilitating more precise localization for object extraction.

3.3. Combined with Coordinated Attention Mechanism (CA)

The Coordinate Attention mechanism (as shown in Figure 8) is designed to capture
inter-channel information, particularly spatial relationships within the feature map. This
enables the model to locate and identify object regions more accurately. In our model’s
backbone network, the CA mechanism is integrated by following the second ELAN mod-
ule, as illustrated in Figure 3. This combination leverages ELAN’s flexible feature and
aggregation capabilities (detailed in Section 2) and the spatial attention of the Coordi-
nate Attention mechanism, providing an effective approach to boost the performance of
lightweight detection models. Attention mechanisms, when applied to mobile networks
(smaller models), may significantly lag behind larger networks. This is primarily due to
the computational overhead introduced by most attention mechanisms (e.g., self-attention
mechanisms), which is often impractical for mobile networks, especially those with limited
computational resources. Therefore, in mobile networks, Squeeze-and-Excitation (SE),
BAM, and CBAM are commonly used. Nevertheless, SE exclusively takes into account
internal channel information, overlooking the significance of spatial information, a crucial
aspect in computer vision where the spatial structure of objects plays a pivotal role. The
other two methods attempt to introduce position information by performing global pooling
on channels, but this approach is limited to capturing local information and is incapable of
acquiring information about long-range dependencies.

In comparison, the CA mechanism exhibits several advantages when dealing with
small object detection and complex backgrounds: It not only considers channel information,
but also takes into account directionally relevant positional information, encompassing both
direction-aware and position-sensitive details. It is sufficiently flexible and lightweight,
allowing for straightforward integration into the core modules of lightweight networks.
CA not only considers the spatial and channel relationships, but also addresses long-range
dependency issues with relatively fewer parameters and computational requirements.
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Figure 8. The framework of the Coordinate Attention mechanism.

As shown in Figure 8, CA conducts average pooling along the X and Y directions
on the input feature map, denoted as "Input" with a size of C × H × W. This operation
produces two one-dimensional vectors, leading to the generation of feature maps with sizes
C × H × 1 and C × 1 × W, respectively. To prevent the complete compression of spatial
information into channels, global average pooling is not employed in this context. In order
to capture accurate positional information for distant spatial interactions, a decomposition
of global average pooling is performed, as detailed below:

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (6)

zw
c (w) =

1
H ∑

0≤i≤H
xc(j, w) (7)

Concat and 1 × 1 Conv are performed on zh and zw to compress the channel in the
spatial dimension. The formula is as follows:

f = δ(F1(
[
zh, zw

]
)) (8)

Furthermore, encoding spatial information in both vertical and horizontal dimensions
is accomplished through batch normalization (BatchNorm) and non-linear operations.
Subsequently, a split operation is performed, dividing the processed information into
f h ∈ RC/r×H×1 and f w ∈ RC/r×1×W . Each subset then undergoes a 1 × 1 convolution to
match the channel count of the input feature map. The combination of a sigmoid activation
function yields the ultimate attention vectors gh ∈ RC×H×1 and gw ∈ RC×1×W :

gh = σ(Fh( f h)) (9)

gω = σ(Fω( f ω)) (10)

3.4. Asymptotic Feature Fusion Module

In object detection, low-level features and high-level features complement each other.
Low-level features encompass more robust positional information, whereas semantic infor-
mation is richer in high-level feature maps. To enhance the accuracy of object detection,
Feature Pyramid Networks (FPNs) [38] are commonly employed for subsequent predic-
tions by fusing low-level and high-level features. However, in the top–down feature fusion
process, semantic information becomes sparse and can easily lead to the loss of positional
details, particularly for small objects. YOLO typically extracts features from intermediate
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layers of the backbone network. C3, C4, and C5 correspond to feature maps from different
levels of the backbone. Unlike some other object detection frameworks that use traditional
FPNs, YOLO simplifies this process by directly utilizing features from specific layers (C3,
C4, C5), avoiding the need for a complex FPN structure.

In the original YOLOv7-tiny network, SPP and CSP were integrated to process the
feature maps’ output by the backbone. In our model’s network, the feature fusion module is
integrated to further enhance the fusion of multi-scale features; we have made modifications
to the original neck section framework (refer to Figure 3) and added the AFF module (as
shown in Figure 9). In the bottom–up process of feature extraction in the backbone, the role
of the neck component, composed of the AFF module, is to progressively fuse feature maps
from different levels [39]. Directly fusing features from C3 and C5 is deemed unreasonable,
as C5 represents high-level feature maps, signifying the most abstract features. There exists
a significant semantic gap between non-adjacent levels, resulting in suboptimal fusion
when performed directly. However, the fusion process of AFF is progressive, starting with
the fusion of C3 and C4, followed by the fusion with C5. The fusion of C3 and C4 reduces
the semantic gap between them, and since C4 and C5 are adjacent levels, it also narrows
the semantic gap between C3 and C5. A set of multi-scale features (P3, P4, P5) is generated
after the feature fusion step. To address dimensionality mismatches between different
levels, 1 × 1 convolutions and bilinear interpolation are employed for upsampling.

Figure 9. AFF module. Corresponding to three different levels of feature map fusion and output,
including upsampling fusion and downsampling fusion.

3.5. Loss Function

The loss function of OE-YOLO adopts a multi-task loss, including classification confi-
dence loss Lclc, confidence loss Lconf, and coordinate regression loss Lreg. The total loss L is
expressed as follows:

L = αLconf + βLclc + γLreg (11)

where α, β, and γ are weighting coefficients.
The confidence loss and classification confidence loss employ binary cross-entropy

loss with the logarithm operator, as shown in Equation (12). It is commonly applied to
binary classification problems, and the log operator makes the measurement of errors more
sensitive to the model’s performance:

L(y, ŷ) = − 1
N ∑N

i=1 (yi log(ŷi) + (1 − yi) log(1 − ŷi)) (12)

where N is the number of samples, yi represents the ground truth, and ŷi represent the
predicted values of the model.

The coordinate regression loss utilizes the CloU loss [40], expressed as shown in
Equation (13):

CIoU = IoU −
(

ρ2(b, bgt)
c2 + αν

)
(13)

where α represents the weight function, and v is employed to gauge the coherence of
aspect ratios:

α =
v

(1 − IoU) + v
(14)
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v =
4

π2

(
arctan

ωgt

hgt − arctan
(w

h

))2

(15)

Finally, Lreg is defined as

Lreg = 1 − IoU +
ρ2(b, bgt)

c2 + αν (16)

4. Results

In this section, the detection performance of the proposed model is evaluated on
two commonly used remote sensing datasets and is compared with existing classical object
detection algorithms to validate its superiority.

4.1. Datasets and Settings

To assess the reliability of the model across different datasets, experiments were
conducted using the SAR-Ship-Dataset [41] and HRSID dataset [42]. These datasets feature
diverse scene types, encompassing not only typical images of ships in open seas, but also
ports, coastal areas, and islands. This diversity makes them suitable for evaluating the
detection performance of our model.

4.1.1. SAR-Ship-Dataset

The SAR-Ship-Dataset was released by a research team from the Chinese Academy
of Sciences in 2019. It is a large-scale dataset specifically designed for SAR ship detection,
comprising 102 images from GF-3 and 108 images from Sentinel-1, captured in various
imaging modes such as Fine Strip-Map 1 (FSI), Full Polarization 1 (QPSI), and S3 Strip-
Map (SM), etc. And then, they were cropped into 39,729 images with dimensions of
256 pixels in both range and azimuth, totaling 59,535 ships. The dataset encompasses
diverse background types and ships of different scales, including scenes from coastal areas,
islands, and ports. The dataset was divided into the training set, the validation set, and the
test set in a ratio of 7:1:2 for experimentation.

4.1.2. HRSID

The HRSID dataset comprises 5604 images and 16,951 ship instances sourced from
Sentinel-1B, TerraSAR-X, and TanDEMX satellites. It encompasses three polarization modes:
HH, HV, and VV. High-resolution imaging methods were selected, such as the S3 Strip-Map
imaging mode for Sentinel-1B satellite images, with a spatial resolution ranging from 1 m
to 5 m. We downsampled all images in HRSID from 800 × 800 to 256 × 256 resolution to
expedite the processing steps in MCFAR and the resulting impact was evaluated and is
presented in Section 4.4. The dataset was then split into training (60%), validation (5%),
and test (35%) sets.

4.1.3. Training Settings

All experiments in this paper were conducted on a computer running the Ubuntu
20.04.6 LTS operating system, equipped with an AMD Epyc 7y83 64-core processor and
an NVIDIA GeForce RTX 4090 24 GB graphics card. The training was performed using
PyTorch, with a batch size of 16. The Adam optimizer was employed with a learning
rate of 0.01. The training for both the SAR ship dataset and HRSID dataset was set to
100 epochs. The non-maximum suppression (NMS) threshold was configured to 0.5. None
of the models utilized pre-trained weights.

4.2. Evaluation Metric

To assess the effectiveness of OE-YOLO, we utilized precision (P), recall (R), average
precision (AP), and mean average precision (mAP) as assessment metrics.
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The definitions of precision, recall and AP are

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

AP =
∫ 1

0
P(R) ∗ dR (19)

mAP is the average AP of each category and definition of the mAP is

mAP =
1
N

N

∑
i=1

AP(i) (20)

4.3. Experiments on SAR-Ship-Dataset

In this section, we conduct a comparative analysis, pitting the proposed OE-YOLO
against other CNN-based methods on different SAR ship datasets and evaluating its efficacy.
Given that our model is a one-stage architecture, our primary focus is on comparing it
with other one-stage models. Table 1 presents the detection results of different CNN-based
algorithms, including other versions of the YOLO series (v4 and baseline v7-tiny), as well
as several classical object detection algorithms like RetinaNet, SSD, etc. As shown in
Table 1, the detection outcomes of our approach are markedly superior to those of other
algorithms, with an mAP of 86.04%, which is 0.39%, exceeding the second-highest accuracy
obtained by the YOLOv7 model. Compared to the baseline model, YOLOv7-tiny, our
method demonstrates a 1.59% improvement in mAP, increasing from 84.45% to 86.04%. It
outperforms YOLOv4, RetinaNet, Cascade R-CNN, and SSD by 7.71%, 3.7%, 3.59%, and
1.26%, respectively. This improvement can be attributed to the preprocessing and coarse
recognition provided by our MCFAR module, which offers more useful information to the
model, greatly reducing interference noise in SAR images and minimizing false positives
caused by reflections from islands and coastal objects. The inclusion of the CA mechanism
allows our method to further accurately locate objects and mitigate the influence of complex
backgrounds. The neck network, enhanced with the AFF, effectively extracts accurate multi-
scale ship features, boosting sensitivity to medium- and small-sized ships by learning
their distinctive features. RetinaNet requires additional computation to handle multi-scale
feature maps and is slower in detection speed compared to other algorithms. The SSD is
insensitive to small-sized objects, resulting in poorer detection performance. Moreover, in
scenarios with densely packed targets, SSD’s detection accuracy is significantly affected.
While YOLO performs well in detecting small objects, its performance in detecting dense
objects is also typically average. Note that the AFF module can effectively improve the
network’s precision in object localization through enhanced multi-scale detection capability.

The visualized detection results of the proposed OE-YOLO and comparative meth-
ods on the SAR-Ship-Dataset are shown in Figure 10. In the figure, red boxes represent
ground truth, yellow circles indicate objects falsely detected by the model, and blue circles
represent objects missed by the model. We selected six representative images to evaluate
the algorithm’s performance. From Figure 10, OE-YOLO showcases the most superior
detection performance, with the fewest occurrences of both omitted and false detections.
Comparing the second row and the sixth row in Figure 10, our method shows no missed
or false detections, while traditional algorithms struggle to correctly detect objects in such
inshore scene images. This difficulty arises due to the numerous interfering factors in
inshore scenes, making it challenging for algorithms to effectively differentiate between
the feature-highlighting capability of the CA module, as it can focus better on the object
itself, thusenhancing the network’s detection performance. Additionally, the AFF module
in OE-YOLO progressively fuses features from different levels, enabling the network to be
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more sensitive to numerous small ships in the scene, as demonstrated in the second-row
image in Figure 10.

Table 1. Experimental results of different methods on the SAR-Ship-Dataset.

Methods Backbone P (%) R (%) mAP0.5 (%) mAP0.5:0.95 (%)

YOLOv4 Darknet53 79.48 73.94 78.33 32.89
YOLOv7 ELANCSP 83.52 82.73 85.64 39.72

YOLOv7-tiny ELANCSP 83.68 80.63 84.45 39.41
RetinaNet ResNet50 83.14 79.64 82.34 –

Cascade R-CNN DetNet59 81.65 75.89 82.45 –
SSD VGG-16 82.34 81.45 84.78 –

OE-YOLO ELANCSP + CA 85.38 81.49 86.04 39.62

Figure 10. Results of detection on the SAR-Ship-Dataset: (a) ground truth; (b) YOLOv4; (c) YOLOv7;
(d) YOLOv7-tiny; (e) OE-YOLO. The red box represents the ground truth, the blue circles indicate the
objects missed by the model, and the yellow circles represent the object falsely detected by the model.

4.4. Experiments on HRSID Dataset

It is worth noting that the original images in the HRSID dataset have a high resolution
of 800 × 800, which may impose computational and storage burdens. We attempted to
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downsample the original images to 256 × 256 before inputting them into the MCFAR
module to expedite image processing and detection speed. While this operation speeds up
image processing, it inevitably impacts detection accuracy. Table 2 illustrates the effect of
downsampling on the detection performance of OE-YOLO. From Table 2, it is evident that
the file size of the original dataset significantly decreased to less than 10% of its original
size. Additionally, the processing speed of MCFAR improved by nearly 5 times, which
greatly aids in image preprocessing. As the resized images have lower resolution and
fewer details, the computational workload is also reduced, thereby enhancing processing
speed. However, this acceleration comes at the cost of sacrificing detection accuracy, as the
detection performance (mAP) decreased by 0.46% compared to the original. Therefore, it
is necessary to determine whether to adjust the image size based on specific application
scenarios and requirements. For scenarios with high real-time performance demands,
higher-resolution videos or images may impact real-time performance; it may be acceptable
to sacrifice a small degree of accuracy in exchange for higher processing speed or lower re-
source consumption. We adopted the HRSID dataset (256 × 256) for experimentation, along
with exploring the feasibility of this operation. Moreover, through the object enhancement
of MCFAR, it is possible to partially compensate for the loss of detection accuracy.

Table 2. The impact of downsampling on the detection performance of OE-YOLO.

Image Size File Size Processing Time P (%) R (%) mAP0.5 (%)

800 × 800 582 M 7.3 s/img 77.3 62.17 67.84
256 × 256 36 M 1.5 s/img 78.45 60.74 67.38

Table 3 presents a comparison of the detection performance between our OE-YOLO
and other algorithms on the HRSID dataset (256 × 256). It reveals that our algorithm
achieves a 3.16% rise in mAP in contrast to the baseline YOLOv7-tiny (rising from 64.22%
to 67.38%). Additionally, the precision improves by 3.05% (from 75.40% to 78.45%), and the
recall increases by 2.05% (from 58.69% to 60.74%). Furthermore, our method outperforms
other traditional algorithms significantly. The mAP of OE-YOLO is 9.96% and 6.51% higher
than SSD and RetinaNet, respectively. SSD struggles to capture complex patterns and
features within large-scale datasets due to its smaller model size, and its insufficient feature
extraction leads to a decrease in accuracy. Through our optimization of the neck part of the
OE-YOLO network, we have successfully reduced the number of model parameters without
compromising detection performance—details are provided in the ablation experiments
in Section 5. Furthermore, our model has a higher mAP compared to Cascade R-CNN, by
8.85%. Due to the introduction of a multi-stage cascading structure, Cascade R-CNN incurs
significant computational overhead, particularly during the training phase. It requires
more data for training to ensure each stage is sufficiently optimized.

Figure 11 displays the visualized detection results of our OE-YOLO and other algo-
rithms on the HRSID dataset. We selected six representative scenes for experimentation.
From Figure 11, it is evident that the targets in the HRSID dataset are relatively small
compared to the background. Additionally, the lower image resolution poses a significant
challenge for detection. In the scenes depicted in the first row of Figure 11, the objects
are small, located near the coastline, and subject to numerous interfering factors, posing a
considerable challenge for detection. As a result, other algorithms such as YOLOv4 and
YOLOv7-tiny exhibit a considerable amount of false detections and missed detections. In
contrast, OE-YOLO demonstrates better localization of small targets, particularly evident
on the right edge of the images. Furthermore, in the inshore scenes presented in the fourth
row of Figure 11, our model’s detection results outperform other methods, providing
substantial evidence of the reliability of our method in detecting targets within complex
backgrounds. Conversely, in the images of ships in the offshore scene in the second and
fourth rows, detection is relatively straightforward, resulting in comparable results across
different algorithms.
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Table 3. Experimental results of different methods on the HRSID.

Methods Backbone P (%) R (%) mAP0.5 (%) mAP0.5:0.95 (%)

YOLOv4 Darknet53 78.38 59.95 66.45 33.76
YOLOv7 ELANCSP 71.78 57.05 61.91 29.92

YOLOv7-tiny ELANCSP 75.40 58.69 64.22 30.63
RetinaNet ResNet50 76.56 56.34 60.87 –

Cascade R-CNN DetNet59 73.43 51.34 58.53 –
SSD VGG-16 73.06 32.29 57.42 –

OE-YOLO ELANCSP + CA 78.45 60.74 67.38 34.55

Figure 11. Results of detection on the HRSID: (a) ground truth; (b) YOLOv4; (c) YOLOv7; (d) YOLOv7-
tiny; and (e) OE-YOLO. The red box represents the ground truth, the blue circles represent the object
missed by the model, and the yellow circles represent the object falsely detected by the model.

5. Discussion

In this section, we thoroughly assess the detection capabilities of our proposed OE-
YOLO through ablation experiments conducted on both the SAR-Ship-Dataset and HRSID.
We examined the impact of each improvement in the model, including MCFAR image
processing and coarse recognition, integration of the CA mechanism, and the fusion of the
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AFF multi-scale feature extraction module. The number of parameters and FLOPs are also
used as performance evaluation metrics.

The outcomes of the ablation experiments on the SAR-Ship-Dataset are presented
in Table 4. Analyzing the data in the table reveals that compared to the baseline method
(YOLOv7-tiny), using MCFAR for processing the input images results in a 0.51% improve-
ment in mAP. After incorporating the CA module, there is an additional mAP improvement
of 0.7%. This indicates that the inclusion of the CA module allows the model to more accu-
rately locate and identify object regions in ship detection with complex backgrounds.When
simultaneously using MCFAR to guide network positioning and incorporating AFF in
the neck, the model’s performance increases from 84.45% to 86.13%, showing a growth of
1.68%. This improvement is slightly higher than the performance gain of +1.59% achieved
when using all three improvement measures simultaneously. We believe that while the CA
mechanism can be well applied to lightweight models to enhance detection performance, it
still leads to an increase in model computational complexity. By simultaneously replacing
the neck part of YOLOv7-tiny with an architecture that integrates the AFF module, the
model undergoes significant changes (with a noticeable reduction in parameters from
6.015 M to 5.852 M). Therefore, there is still room for improvement in the adaptability of CA.
Low adaptability can lead to a decrease in model detection accuracy in certain scenarios.
However, this is not the case for all situations. For example, on the HRSID dataset, when
all three improvement measures are used simultaneously, the model’s performance sees
the maximum improvement.

Table 4. Results of ablation experiment on SAR-Ship-Dataset.

Methods MCFAR CA AFF P (%) R (%) mAP0.5 (%) Params FLOPs

Baseline – – – 83.68 80.63 84.45 6.015 M 13.2 G
Methods (1) ✓ – – 84.90 80.15 84.96 6.015 M 13.2 G
Methods (2) ✓ ✓ – 85.66 81.49 85.15 6.018 M 13.2 G
Methods (3) ✓ – ✓ 85.89 81.06 86.13 5.852 M 13.2 G
Methods (4) ✓ ✓ ✓ 85.38 81.49 86.04 5.855 M 13.2 G

Additionally, we observed that the performance improvement is relatively high when
incorporating the AFF module. This suggests that the neck network, fused with the AFF
module, can effectively capture multi-scale objects, reducing the semantic gap between
features at different levels. The progressive fusion of contextual information does bring
performance improvements. Compared to the original SPPCSPC structure of the feature
extraction network, it can more effectively guide the detector to recognize ship object
images with significant scale variations.

The outcomes of the ablation experiments on the HRSID dataset are displayed in
Table 5. It is evident that with the incremental addition of modules, the accuracy of the
proposed model rises from 75.40% to 78.45%, the recall rate increases from 58.69% to 60.74%,
and mAP rises from 64.22% to 67.38%. The performance improvement demonstrates the
effectiveness of the designed improvement methods. As the majority of objects in the
HRSID dataset are medium- and small-sized ships, the introduction of the CA mechanism
and the progressive feature fusion module enables the model to be more sensitive to
medium and small objects, learning useful features. Additionally, the coarse recognition
processing by MCFAR, combined with the fusion of features in the neck network, in
mitigating the problem of positional information loss for small-scale SAR ships in features
at higher abstraction levels, our approach effectively improves the precision of detecting
SAR ships.
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Table 5. Results of ablation experiment on the HRSID dataset.

Methods MCFAR CA AFF P (%) R (%) mAP0.5 (%) Params FLOPs

Baseline – – – 75.40 58.69 64.22 6.015 M 13.2 G
Methods (1) ✓ – – 76.70 60.72 66.53 6.015 M 13.2 G
Methods (2) ✓ ✓ – 76.37 60.12 66.21 6.018 M 13.2 G
Methods (3) ✓ – ✓ 75.86 59.36 65.35 5.852 M 14.2 G
Methods (4) ✓ ✓ ✓ 78.45 60.74 67.38 5.855 M 14.2 G

6. Conclusions

The maritime SAR images inherently contain numerous clutter interferences and
objects of various sizes. Existing models tend to struggle in complex SAR scenes, being
prone to false positives or overlooking small objects due to interference. To address these
challenges, we propose OE-YOLO based on YOLOv7-tiny. It incorporates an improved
Constant False Alarm Rate algorithm for initial recognition and the processing of raw input
images, enhancing the network’s object localization capabilities. Additionally, we introduce
a CA mechanism in the backbone to obtain direction-aware and position-sensitive informa-
tion between channels, compensating for accuracy loss in lightweight models. Finally, we
embed an Asymptotic Feature Pyramid in the neck to construct a novel multi-scale feature
extraction module, fusing position details and semantic information from different feature
maps. This significantly improves the network’s capacity to learn features from multi-scale
objects, improving detection accuracy. Experiments on two SAR datasets demonstrate that
the OE-YOLO can outperform other similar methods with regard to detection accuracy,
while simultaneously reducing the model’s parameter count. However, we are aware that
the current algorithm’s inter-module compatibility is suboptimal, and there is redundancy
in calculations. To further enhance detection efficiency and accuracy, in the future, we plan
to further explore the adaptability between modules by considering pruning and module
rearrangement, and seeking optimal combinations for better performance.
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