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Abstract: In this study, a new vegetation observable derived from spaceborne Global Navigation
Satellite System-Reflectometry (GNSS-R) was developed. Firstly, a linear relationship between the
Cyclone Global Navigation Satellite System (CYGNSS) reflectivity and soil moisture was derived
based on the tau-omega (τ − w) model. The intercept and slope of this linear function were associated
with the vegetation properties. Moreover, the intercept is not affected by soil moisture and depends
only on vegetation properties. Secondly, to validate the new observable, the intercept demonstrated a
significant correlation with vegetation water content (VWC), with the highest correlation coefficient of
0.742. Based on the intercept and slope, a linear model and an artificial neural network (ANN) model
were established to retrieve VWC by combining geographical location and land cover information.
The correlation coefficient and root-mean-square error (RMSE) of VWC retrieval based on the linear
model were 0.795 and 2.155 kg/m2, respectively. The correlation coefficient and RMSE for the ANN
model were 0.940 and 1.392 kg/m2, respectively. Compared with the linear model, the ANN model
greatly improves the global VWC retrieval in accuracy, especially in areas with poor linear model
retrieval results. Therefore, compared with conventional remote sensing techniques, the spaceborne
GNSS-R can provide a new and effective approach to global VWC monitoring.

Keywords: cyclone global navigation satellite system (CYGNSS); vegetation water content (VWC);
soil moisture; spaceborne GNSS-reflectometry (GNSS-R)

1. Introduction

Vegetation is a crucial component of terrestrial ecosystems, playing a significant role
in carbon sequestration and oxygen release. As a key variable of vegetation properties, veg-
etation water content (VWC) can be used to evaluate forest fire disasters and crop drought.
High-precision and long-term monitoring of VWC can contribute to our understanding of
vegetation and better forest fire disaster and crop drought assessment.

Recently, Global Navigation Satellite System (GNSS) has been developed in various
fields [1,2]. With using the Earth’s surface reflected GNSS signals, GNSS-Reflectometry
(GNSS-R) has been developed as a new remote sensing technique for earth surface phys-
ical parameters retrieval. Because the L-band signals utilized by GNSS-R can effectively
penetrate atmosphere and rain, GNSS-R can easily sense vegetation properties under
clouds and rain. Moreover, the GNSS-R receiver eliminates the need for an extra trans-
mitter, thereby enhancing the sustained high spatial and temporal coverage of GNSS-R
observables. This design also promotes the development of compact, cost-effective, and
energy-efficient GNSS-R receivers with reduced volume.

The remote sensing observation of earth surface physical parameters using GNSS-reflected
signals can be traced back to the early 1990s. In 1993, Martin-Neira (1993) suggested the use of
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GNSS-reflected signals to retrieve sea surface height [3]. Subsequently, GNSS-R-based ground-
based platforms and space-based platforms have shown the capacity for surface geophysical
parameter retrievals, such as snow depth [4,5], sea surface height [6–8], and soil moisture [9–11].
With the efforts of scholars and experts, the platform of GNSS-R has expanded from ground-
based to spaceborne. With the unique advantage of rapidly obtaining a large range of surface
physical parameter information, spaceborne GNSS-R has broader application prospects. Earlier
applications of spaceborne GNSS-R were focused on cryosphere/polar applications and ocean
parameters, such as sea ice remote sensing [12–14], sea surface wind field [15–18], significant
wave height [19,20] etc. The applications of spaceborne GNSS-R on land surfaces are later than
those on ocean surfaces owing to the more complex scene of the land surface. The received
reflected signal power from the land surface is not only affected by soil moisture but also
by surface vegetation and surface roughness [21]. Therefore, information on soil moisture,
vegetation parameters, roughness, and other land surface physical parameters can be retrieved
by obtaining the relevant information of the reflected signals. GNSS-R has been shown to have
the capacity for monitoring land surface geophysical parameters, such as soil moisture [22–24],
wetlands [25,26], flood inundation [27,28], roughness [29], freeze/thaw [30] etc.

Recently, spaceborne GNSS-R has shown great potential in remote sensing observa-
tions of vegetation. Carreno-Luengo et al. (2017) first used spaceborne GNSS-R data to
retrieve the soil moisture and above ground biomass (AGB) in a rainforest [31]. Carreno-
Luengo et al. (2020) proposed a new observable named “length of the trailing edge” (TE)
for AGB retrieval, and the results showed that TE increased with AGB [32]. However,
the spaceborne GNSS-R reflectivity is affected by the combination of soil moisture and
vegetation effects. Considering the effect of soil moisture, Chen et al. (2021) proposed an
AGB retrieval method considering the influence of soil moisture [33]. Although the results
had shown some improvements, it cannot entirely eliminate the effects of soil moisture or
roughness. Furthermore, the above research showed that dry mass of vegetation (i.e., AGB)
is highly correlated with signal attenuation. However, as description in [21], VWC also
affects signal attenuation. Motivated by this, we aimed to develop an observable based
solely on vegetation and investigate its correlation with AGB and VWC. In the derivation,
the tau-omega model is used, which has been previously considered in GNSS-R [34,35]. In
addition, the semiempirical model established by Yueh et al. [21] is also used. Through
a comparison of the two model derivations, we obtained a new GNSS-R observable that
exhibits a stronger correlation with vegetation. Based on these findings, we proposed a
VWC retrieval method utilizing spaceborne GNSS-R.

2. Data

The data used in this study were derived from CYGNSS, Soil Moisture Active Passive
(SMAP) and Moderate-resolution Imaging Spectroradiometer (MODIS). Note that the
data derived from CYGNSS and the soil moisture data derived from SMAP were initially
matched in terms of time and space. Since soil moisture exhibits minimal daily variation,
the CYGNSS data and soil moisture data were collocated daily in EASE 2.0 36 km grid.
Then, for convenient comparison, the new vegetation observables and VWC were collocated
monthly and half-year (January to June and July to December) in EASE 2.0 36 km grid.
Since there is a single map of land cover dataset, the land cover dataset was collocated once
in EASE 2.0 36 km grid.

2.1. CYGNSS

The primary purpose of the NASA CYGNSS mission was to monitor hurricanes
using a revised Space GNSS Receiver Remote Sensing Instrument (SGR-ReSI). Using
eight microsatellites, CYGNSS cover the regions within latitudes of approximately 38◦ N
and 38◦ S and reduces the revisit time by several hours. Most recently, in addition to
ocean applications, CYGNSS has shown the potential to retrieve the Earth’s geophysical
parameters. The CYGNSS has the advantages of great spatial coverage and high temporal
resolution for VWC monitoring.
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The CYGNSS provides data with four different processing levels. Since the temporal
resolution of CYGNSS data was improved by twice (=2 Hz) after July 2019, the Level 1 data
in NetCDF format, from Jan 2019 to December 2019, were used for further analysis in this
study. Data collected from July 2019 to December 2019 were used to retrieve VWC. These
data are available at https://podaac.jpl.nasa.gov, accessed on 1 August 2022. The observ-
ables derived from Level 1 data are DDM bin analog power, Specular point latitude and
longitude, GPS effective isotropic radiated power, antenna gain, ranges from specular point
to satellite and receiver, and incidence angle.

2.2. VWC

The VWC dataset used in this study was provided by SMAP, which is based on the
land cover and normalized difference vegetation index (NDVI) derived from MODIS and
can be available at https://nsidc.org/data/smap/smap-data.html, accessed on 1 August
2022 [36]. The VWC algorithm of SMAP is given by [36]

VWC = (1 .9134 × NDVI2 − 0.3215 × NDVI) + stem factor × NDVImax − NDVImin

NDVImin
(1)

where the stem factor is the peak amount of water residing in the stems. This algorithm has
been shown the capacity for global VWC reasonable estimations [36,37]. Figure 1a shows
the monthly VWC in kg/m2 for each land cover in 2019. Figure 2 shows average VWC
from July to December 2019. Figure 2 illustrates that VWC varies relatively small in each
land cover category. It should be noted that due to the limited amount of data for Barren
or Sparsely Vegetated, there were significant fluctuations in VWC as shown in Figure 1b.
In other words, the limited amount of data may be derived from high or low VWC areas,
which may lead to gross error.
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Remote Sens. 2024, 16, 931 4 of 15Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Average VWC provided by the Soil Moisture Active Passive mission from July to Decem-
ber 2019. 

2.3. Soil Moisture 
The SMAP mission was launched by NASA in January 2015, and it provides global 

soil moisture data for land within 45°N–45°S, every 2–3 days, with high accuracy and spa-
tial resolution. This data can be downloaded at https://nsidc.org/data/smap/smap-data. 
html, accessed on 1 August 2022. The SMAP L3 radiometer global daily 36 km EASE-Grid 
soil moisture product, from January 2019 to December 2019, was used in this study. As 
example, Figure 3 shows the average soil moisture obtained from the SMAP from January 
to June 2019. 

 
Figure 3. Average soil moisture (SM) obtained from SMAP from January to June 2019. 

2.4. Land Cover 
The other auxiliary data was land cover. This dataset was extracted from the Terra 

data using different classification schemes based on land cover characteristics every year. 
It was re-projected to geographic coordinates in GeoTIFF format with a spatial resolution 
of 0.5°, covering a longitude range of 180°W–180°E and a latitude range of 64°S–84°N. The 
land cover classification is defined by the International Geosphere–Biosphere Programme 
(IGBP), which consists of 11 categories of natural vegetation, 3 categories of land use and 
land mosaics, and 3 categories of non-vegetative land, as shown in Figure 4. 
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2.3. Soil Moisture

The SMAP mission was launched by NASA in January 2015, and it provides global soil
moisture data for land within 45◦N–45◦S, every 2–3 days, with high accuracy and spatial
resolution. This data can be downloaded at https://nsidc.org/data/smap/smap-data.html,
accessed on 1 August 2022. The SMAP L3 radiometer global daily 36 km EASE-Grid soil
moisture product, from January 2019 to December 2019, was used in this study. As example,
Figure 3 shows the average soil moisture obtained from the SMAP from January to June 2019.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Average VWC provided by the Soil Moisture Active Passive mission from July to Decem-
ber 2019. 

2.3. Soil Moisture 
The SMAP mission was launched by NASA in January 2015, and it provides global 

soil moisture data for land within 45°N–45°S, every 2–3 days, with high accuracy and spa-
tial resolution. This data can be downloaded at https://nsidc.org/data/smap/smap-data. 
html, accessed on 1 August 2022. The SMAP L3 radiometer global daily 36 km EASE-Grid 
soil moisture product, from January 2019 to December 2019, was used in this study. As 
example, Figure 3 shows the average soil moisture obtained from the SMAP from January 
to June 2019. 

 
Figure 3. Average soil moisture (SM) obtained from SMAP from January to June 2019. 

2.4. Land Cover 
The other auxiliary data was land cover. This dataset was extracted from the Terra 

data using different classification schemes based on land cover characteristics every year. 
It was re-projected to geographic coordinates in GeoTIFF format with a spatial resolution 
of 0.5°, covering a longitude range of 180°W–180°E and a latitude range of 64°S–84°N. The 
land cover classification is defined by the International Geosphere–Biosphere Programme 
(IGBP), which consists of 11 categories of natural vegetation, 3 categories of land use and 
land mosaics, and 3 categories of non-vegetative land, as shown in Figure 4. 

Figure 3. Average soil moisture (SM) obtained from SMAP from January to June 2019.

2.4. Land Cover

The other auxiliary data was land cover. This dataset was extracted from the Terra data
using different classification schemes based on land cover characteristics every year. It was
re-projected to geographic coordinates in GeoTIFF format with a spatial resolution of 0.5◦,
covering a longitude range of 180◦W–180◦E and a latitude range of 64◦S–84◦N. The land
cover classification is defined by the International Geosphere–Biosphere Programme (IGBP),
which consists of 11 categories of natural vegetation, 3 categories of land use and land
mosaics, and 3 categories of non-vegetative land, as shown in Figure 4.

https://nsidc.org/data/smap/smap-data.html
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3. Derivation of the Vegetation Observables and the Correlation Analysis
3.1. Derivation of the Vegetation Observables from CYGNSS

When vegetation grows on the soil surface, the reflected signals from the soil are
attenuated. For low vegetation, the effect of vegetation on the reflected signals for the
microwave band can be modeled using the tau-omega model [38] as follows.

E =
1 − Γ(θ i)

L
+

[
1 − 1

L

]
· (1 − w) +

Γ(θ i)

L
·
[

1 − 1
L

]
(1 − w) (2)

where E is the surface emissivity; Γ(θ i) represents the reflectivity of the bare soil surface,
which depends on soil surface properties (such as moisture, texture, roughness, and salin-
ity); w represents the single scattering albedo, mainly related to the vegetation canopy; L is
the vegetation attenuation. L and E can be expressed as

L = eτ/ cos (θ) (3)

E = 1 − Γ(θ i) (4)

where τ is the optical depth; θ is the incidence angle. Γ(θ i) is given by [39]

Γ(θ i) = |R|2 · exp(− 4k2h2 cos2 θi

)
(5)

where |R|2 is Fresnel reflection coefficient; exp(− 4k2h2 cos2 θi
)

denotes scattering loss due
to the surface roughness; k is the electromagnetic wavenumber, and h is the root-mean-
square (rms) surface height. As described in [21,39], |R|2 can be expressed as a function of
soil moisture. Therefore, Γ(θ i) is assumed to be a function of soil moisture, which can be
represented as

Γ(θ i) = δ · SM (6)

where δ is a function of soil properties (including texture, roughness, and salinity) and the
incident angle; SM is soil moisture. Therefore, by combining Equations (2), (4) and (6)

E =
δ ·

[
1 − 1

L

]
· (1 − w)− δ

L
SM +

[
1 − 1

L

]
· (1 − w) +

1
L

(7)
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According to the relationship between the surface emissivity and the reflectivity [38],
for GNSS-R, E is given as

E = 1 − Γe f f (θ)N (8)

where Γe f f (θ)N represents the normalized reflected power, which can be derived from
DDM (Delay Doppler Map); Note that, E does not depend on the reflectivity of GNSS-R
but on soil’s properties (moisture, texture, roughness et al.). Equation (8) means that the
variation of the surface emissivity (E) can be indirectly reflected through the reflectivity of
GNSS-R. The GNSS-R reflectivity (Γe f f (θ)) is given as [15]

Γe f f (θ) ≈
Ppeak(Rt + Rr)

2

PtGtGr

(
4π

λ

)2
(9)

where Rt and Rr are the transmitter-to-surface and surface-to-receiver ranges, respectively;
PtGt represents the GNSS effective isotropic radiated power (EIRP); Ppeak is the peak power
of DDM; Gr is the receiver gain. The relationship between Γe f f (θ) and Γe f f (θ)N is given as

Γe f f (θ)N =
Γe f f (θ)−Γe f f (θ)min

Γe f f (θ)max−Γe f f (θ)min

= 1
Γe f f (θ)max−Γe f f (θ)min

Γe f f (θ)−
Γe f f (θ)min

Γe f f (θ)max−Γe f f (θ)min

= α · Γe f f (θ)− β

(10)

where Γe f f (θ)max represents the maximum value in array Γe f f (θ), while Γe f f (θ)min repre-
sents the minimum value in array Γe f f (θ). Because the maximum and minimum values
are determined for each set of numbers, α and β are constants. Thus, Equation (7) can be
further derived as

Γe f f (θ) =
δ ·

[
1
L − 1

]
· (1 − w)− δ

α · L
SM +

[
1
L − 1

]
· (1 − w)− 1

L − 1 − β

α
(11)

Here, assuming that

A =
δ ·

[
1
L − 1

]
· (1 − w)− δ

α · L
(12)

B =

[
1
L − 1

]
· (1 − w)− 1

L − 1 − β

α
(13)

Equation (11) can be written as

Γe f f (θ) = A · SM + B (14)

where coefficient A depends mainly on soil properties (including texture, roughness, and
salinity) and the incident angle. Note that, as description in [38], the single scattering
albedo (w) can be considered a constant. Therefore, intercept feature B depends on L, which
is directly related to vegetation properties. From Equation (3), L depends on τ, which is
commonly assumed to be linearly proportional to VWC [40]

τ = b · VWC (15)

Thus, intercept feature B is related to VWC. Therefore, intercept feature B was used for
VWC retrieval. In addition, although coefficient A is mainly related to soil properties and
the incident angle, it is also related to vegetation properties. Thus, coefficient A was further
used to retrieve VWC. Note that VWC is depends on AGB and relative water content
(RWC) [41]

VWC = RWC · AGB (16)
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Therefore, the analysis of the relationship between intercept feature B and AGB was
further conducted. Due to intercept feature B was directly related to VWC, the focus of this
paper was on VWC retrieval.

The mentioned above showed the linear relationship between the spaceborne GNSS-R
reflectivity and soil moisture based on the tau-omega model. In this regression relationship,
the coefficient A depends mainly on soil properties while the intercept feature B is a quantity
directly related to vegetation properties. Here, to extract coefficient A and intercept feature
B, we utilize matched data of CYGNSS and soil moisture from each month and half-year
(January to June and July to December) to establish a linear relationship between spaceborne
GNSS-R reflectivity and soil moisture.

3.2. Correlation Analysis Correlation Analysis between the GNSS-R Observables and Vegetation
Parameters (VWC, AGB)

As previously mentioned, intercept feature B is more suitable for characterizing vege-
tation properties in theory compared to coefficient A. Additionally, the intercept feature
B is directly related to VWC and indirectly related to AGB. To verify this relationship,
an analysis of the correlation between the new observables and VWC, AGB was con-
ducted. The AGB data was obtained from LUCID (Land use, Carbon & Emission Data,
http://lucid.wur.nl/datasets, accessed on 1 August 2022). Note that, the coefficients and
intercepts derived from Equation (14) may change over time due to errors in soil moisture
provided by SMAP and changes in VWC. Therefore, to assess its stability, a correlation
analysis was conducted between the new observables and VWC as well as AGB in different
periods. Specifically, monthly and semi-annual analyses were carried out. Furthermore,
to evaluate the performance of the new observables, a correlation analysis between the
traditional observable (Γe f f (θ)) and VWC as well as AGB.

Figures 5 and 6 display the global distribution of coefficient A and intercept feature B
from January to June 2019, respectively. The correlation coefficients are presented in Table 1.
Figures 2 and 6 reveal that the global distribution of coefficient A differed significantly
from the VWC distribution. Conversely, intercept feature B display consistency with the
reference VWC distribution presented in Figure 2.
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Table 1. Correlation coefficients between the GNSS-R observables and vegetation parameters (VWC,
AGB) in 2019.

Month A B Γeff(θ)

VWC AGB VWC AGB VWC AGB
1 0.104 0.113 0.619 0.355 −0.210 −0.094
2 0.086 0.065 0.618 0.397 −0.218 −0.094
3 0.040 0.159 0.642 0.388 −0.230 0.093
4 0.119 0.082 0.648 0.389 −0.230 −0.121
5 0.156 −0.028 0.631 0.342 −0.238 −0.158
6 0.144 0.028 0.640 0.270 −0.224 −0.170
7 0.131 −0.027 0.651 0.435 −0.191 −0.183
8 0.012 −0.064 0.662 0.497 −0.268 −0.261
9 0.088 0.021 0.684 0.523 −0.259 −0.252

10 0.024 −0.033 0.692 0.589 −0.285 −0.273
11 0.066 −0.031 0.690 0.548 −0.302 −0.275
12 0.069 −0.031 0.678 0.548 −0.323 −0.279
1–6 0.242 0.101 0.607 0.390 −0.223 −0.137

7–12 −0.029 −0.210 0.742 0.624 −0.317 −0.298

Table 1 shows that the correlation coefficients between A and VWC as well as A and
AGB were small, with the values less than 0.25. Meanwhile, the absolute correlation
coefficients between Γe f f (θ) and VWC as well as Γe f f (θ) and AGB are less than 0.33.
However, the correlation coefficients between B and VWC as well as B and AGB are large,
with the values greater than 0.6. Furthermore, the correlation coefficients between B and
VWC are higher than the correlation coefficients between B and AGB. These results confirm
that, compared with the coefficient A and Γe f f (θ), intercept feature B are more sensitive to
VWC and AGB. Additionally, in most subsets, the correlation coefficients between January
and June are smaller than those between July and December. This was because the temporal
resolution of CYGNSS data was improved by twice (=2 Hz) after July 2019, resulting in an
increase in the amount of matched data in each pixel and a more stable regression effect.
Therefore, to improve regression stability, the data from July to December 2019 were used
to extract coefficient A and intercept feature B.

4. VWC Retrieval Models

As previously mentioned, we utilized the coefficient A and intercept feature B derived
from the tau-omega model to retrieve VWC. Because of the different VWC values under
different land cover and geographical location (i.e., latitude and longitude), land cover and
geographical location information are also used to retrieve VWC. Based on these input
features, namely coefficient A, intercept feature B, land cover, and geographical location,
we proposed five linear models and five ANN models in this study. Furthermore, to reduce
the impact of random errors, we performed regression using half-year data.

4.1. Linear Model

To verify the contribution of coefficient A, intercept feature B, land cover, and geo-
graphical location to VWC retrieval, five VWC retrieval linear models were adopted in this
study as follows.

VWC = a · B+b (17)

VWC = a · A+b · B+c (18)

VWC = a · A+b · B + c · Landcover+d (19)

VWC = a · A+b · B + c · lat+d · lon + e (20)

VWC = a · A+b · B + c · Landcover + d · lat+e · lon + f (21)
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where A is coefficient A; B is intercept feature B; Landcover is land cover; lat is latitude; lon is
longitude; the last term in all the formulas is the constant to be fitted. Note that because there
is no specific numerical value for land cover, different land cover values were assigned in this
study, as shown in Figure 4. To obtain a more stable model, the data was divided into training
set, verification set and test set. The training set comprises 25% of the total data, while the
validation set and the test set each account for 10% and 65%, respectively.

4.2. ANN Model

In theory, the relationship between the input features and vegetation properties is
complex. Since ANNs can learn the complex relationship between input features and
vegetation properties, an BP neural network was applied here. Similar to linear models,
five different ANN models were established to retrieve VWC using the input features of
coefficient A, intercept feature B, land cover, and geographical location. The input features
of different ANN models were shown in Table 2.

Table 2. Input features of different artificial neural network models.

Model Input Features

Model 1 B
Model 2 B, A
Model 3 B, A, landcover
Model 4 B, A, lat, lon
Model 5 B, A, landcover, lat, lon

As shown in Figure 7, structurally, the BP neural network typically consists of three
layers: the input layer, the hidden layer, and the output layer. Each layer contains nodes,
and the nodes in adjacent layers are interconnected through weights. However, the nodes
within each layer operate independently. The principle of forward propagation in a BP
neural network can be succinctly described mathematically as follows.

y = σ(Wx + b) (22)

where W and b are training parameters; σ is the nonlinear function, such as the sigmoid
function, hyperbolic tangent function, and rectified linear units (RELUs). These functions
are given as

σ(a) =


1

1+e−a , sigmoid
ea−e−a

ea+e−a , tan gent

max(a, 0), RELU

(23)
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In this study, hyperbolic tangent function was used. After testing, when the number of
hidden layers was one and the number of neurons in the hidden layer was 15, the training
results of each model were relatively better. Additionally, the training set comprises 25% of
the total data, while the validation set and the test set account for 10% and 65%, respectively.

5. VWC Retrievals

We evaluated the performance of the linear models and ANN models using mean
absolute error (MAE), mean relative absolute error (MRAE), root mean square error (RMSE),
and correlation coefficient. The MAE and MRAE are given by

MAE = |xtrue − xretrieval |/n (24)

MRAE = MAE/xtrue (25)

where xtrue is the reference VWCs; n is the number of samples; xretrieval is the VWC retrievals;
xtrue is the mean reference VWC.

Table 3 summarized the MAE, MRAE, RMSE, correlation coefficient and samples of
each linear and ANN model. Table 3 demonstrated that when using intercept feature
B alone of Linear model 1 achieved an MAE of 1.759, MRAE of 0.644, RMSE of 2.751 kg/m2,
and correlation coefficient of 0.741 for VWC retrieval. Similarly, with intercept feature
B alone, ANN Model 1 achieved an MAE of 1.623, MRAE of 0.593, RMSE of 2.506 kg/m2,
and correlation coefficient of 0.773 for VWC retrieval. After adding other features, the
MAE, MRAE, and RMSE of the VWC retrieval were reduced, and the correlation coefficient
was increased. According to the accuracy improvement in Table 3, it can be inferred that
intercept feature B contributed the most to the VWC retrieval, followed by land cover,
geographical location, and finally coefficient A. Compared with using intercept feature
B alone, the performance of Linear model 5 was further improved after adding coefficient
A, land cover, and geographical location, with RMSE reduced by 21.66% and the correlation
coefficient increased by 7.28%. Meanwhile, the RMSE and correlation coefficient of ANN
model 5 were reduced by 44.45% and increased by 21.60%, respectively, after adding land
cover, geographical location, and coefficient A. Moreover, compared with the Linear model,
the ANN model had better performance.

Table 3. VWC retrieval performance of different Models.

Model MAE MRAE RMSE Correlation Coefficient Samples

Linear Model
1/Equation (16) 1.759 0.644 2.751 0.741 32304

ANN Model 1 1.623 0.593 2.506 0.773 34225
Linear Model

2/Equation (17) 1.818 0.664 2.684 0.747 32304

ANN Model 2 1.481 0.542 2.439 0.787 34225
Linear Model

3/Equation (18) 1.662 0.547 2.327 0.790 32304

ANN Model 3 0.836 0.244 1.507 0.931 34225
Linear Model

4/Equation (19) 1.609 0.587 2.641 0.763 32304

ANN Model 4 0.962 0.287 1.496 0.932 34225
Linear Model

5/Equation (20) 1.580 0.619 2.155 0.795 32304

ANN Model 5 0.844 0.252 1.392 0.940 34225

To further analyze the performance of the proposed models, for avoiding repetition,
only the specific retrievals of Linear model 5 and ANN model 5 were given, as shown in
Figures 8–14. Figures 8 and 9 displayed the global distribution of VWC values retrieved by
Linear Model 5 and ANN Model 5. Figure 10 depicted a scatter plot of the VWC reference
values provided by SMAP and the VWC retrievals of Linear Model 5 and ANN Model
5. Figures 11–14 showed the absolute bias and MRAE of the VWC retrievals derived
from Linear Model 5 and ANN Model 5, respectively. It should be noted that, due to the
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elimination of pixels with more than 10% water body during data processing, the resolution
was poor in some regions, such as the Amazon region.
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Figures 8 and 9 showed that the CYGNSS VWC retrievals based on Linear Model 5 and
ANN Model 5 were in good agreement with the global distribution of the reference VWC.
Figure 10a,b demonstrated that the CYGNSS VWC retrievals based on Linear Model 5 and
ANN Model 5 and reference VWC values were scattered around the 1:1 line. However, there
was an obvious angle between 2 kg/m2 and 4 kg/m2 in the scatter distribution of the Linear
Model 5 retrievals. Compared to the Linear Model 5, the angle of the scatter distribution
in ANN Model 5 disappeared. The reason could be that the ANN model is more adept at
learning intricate nonlinear relationships among the input features. The aforementioned
analysis revealed that Linear Model 5 and ANN Model 5 exhibited good performance on a
global scale. Moreover, the performance of ANN Model 5 was better than Linear Model 5.

For local areas, more details must be explored. For example, from Figure 11, the
absolute bias values in the VWC retrievals of Linear Model 5 were greater than 4 in
northern Argentina, southern Bolivia, western Paraguay, northern Brazil, northern Laos,
northern Vietnam, northern Burma, and Malay Archipelago. Compared to the Linear Model
5, although Figure 12 showed that the absolute bias values of ANN Model 5 decreased
significantly in these areas, the absolute bias values of these areas were still large. It can be
found that these areas were mostly located in high vegetation with high VWC. This is not
surprising since a small error in these areas can lead to a large absolute bias. In addition,
GNSS-R signals mostly depend on vegetation volume scattering in these areas, which
weakens the regression between the GNSS-R observables and soil moisture. Therefore,
MRAE was more suitable for evaluating the accuracy of the models in these areas.

As shown in Figure 13, the MRAEs in the VWC retrievals of Linear Model 5 were greater
than 5 in local areas, including southern Sahara Desert, central Australia, Iraq, southern Iran,
Pakistan, Afghanistan. This is possibly because the linear model cannot accurately reflect the
relationship between the observables and VWC. Furthermore, Figure 10a illustrated that, there
was an obvious angle between 2 kg/m2 and 4 kg/m2 in the scatter distribution of the retrievals.
Thus, it can be inferred that the relationship between the observable and VWC is nonlinear.
Compared to the Linear Model 5, although ANN Model 5 showed better performance overall,
there were some low VWC areas showing poor performance with an MRAE greater than
5 (e.g., southern Sahara Desert, parts of the Middle East) as shown in Figure 14. This is because
most of these areas are desert areas with low VWC values. Compared with high VWC areas,
small changes in VWC in these areas can lead to larger MRAE values compared to areas with
high VWC.

All the above analyses and results demonstrated that not only new significant vege-
tation information can be provided by intercept feature B, but also a high VWC retrieval
performance can be obtained using the ANN model based on intercept feature B. However,
the VWC retrieval resolution in this study was 36 km, which is lower than that of the tradi-
tional remote sensing method. Therefore, improving the spatial resolution of spaceborne
GNSS-R VWC retrieval is a problem that needs to be solved in the future.

6. Conclusions

In this study, we developed a linear relationship between the CYGNSS reflectivity
observable and soil moisture based on the tau-omega model. We discovered that the slope
(coefficient A) and intercept (intercept feature B) of this linear function were associated with
vegetation properties. Moreover, intercept feature B was solely dependent on vegetation
properties and unaffected by soil moisture. Additionally, intercept feature B was highly
correlated with VWC measurements derived from SMAP, with the highest correlation
coefficient of 0.742. Hence, intercept feature B can provide crucial vegetation information.

To demonstrate the capability of the spaceborne GNSS-R for VWC retrieval, based on
coefficient A and intercept feature B, a linear model and an ANN model were established to
retrieve VWC by combining the latitude, longitude, and land cover information. The results
show that the CYGNSS VWC retrievals were in good agreement with reference VWCs.
Moreover, the performance of the ANN model was better than that of the linear model
with a correlation coefficient of 0.940 and RMSE of 1.392 kg/m2. Additionally, compared
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with conventional remote sensing techniques, these results show that spaceborne GNSS-
R can not only compensate for the limitations of traditional optical remote sensing in
meteorological effects but also provide a new effective approach to global VWC monitoring.
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