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Abstract: The Nile River Basin (NRB) has experienced a notable rise in drought episodes in recent
decades. The propagation of meteorological, agricultural, and groundwater drought dynamics in
the NRB was investigated in this study. The following drought indices examined the correlation
and propagation among meteorological, agricultural, and groundwater droughts. These are the stan-
dardized precipitation evapotranspiration index (SPEI), soil moisture index, Gravity Recovery and
Climate Experiment, and GRACE Follow-On (GRACE/GRACE-FO)-derived groundwater drought
index (GGDI). These droughts were comprehensively evaluated in the NRB from 2003 to 2022. The
cross-wavelet transform approach highlighted the links between droughts. The following are the
key findings: (1) In the NRB, the cross-wavelet energy spectrum of wavelet coherence can indicate
the internal connection between meteorological versus (vs.) agricultural and agricultural versus
(vs.) groundwater drought. The time scale with the most significant correlation coefficient is the
drought propagation time. (2) The El Niño–Southern Oscillation (ENSO) correlated with agricultural
and groundwater drought much more than the Indian Ocean Dipole (IOD), demonstrating that
ENSO has an important impact on drought advancement. (3) The R2 values were 0.68 for GGDI vs.
standardized soil moisture index (SSI), 0.71 for Blue Nile Region (BNR) GGDI vs. SSI, and 0.55 for
SSI vs. Standardized Precipitation Evapotranspiration Index (SPEI). Similarly, in the Lake Victoria
Region (LVR), GGDI vs. SSI was 0.51 and SSI vs. SPEI was 0.55, but in the Bahr-el-Ghazal Region
(BER), GGDI vs. SSI was 0.61 and SSI vs. SPEI was 0.27 during the whole research period with varied
lag durations ranging from 1 to 6 months. Thus, the propagation of drought (i.e., meteorological,
agricultural, and groundwater drought) dynamics has the potential to reshape our understanding
of drought evolution, which could lead to early drought forecasting across the NRB and similar
climatic regions.

Keywords: cross-wavelet transformation; agricultural drought; soil moisture depletion; drought
propagation; Nile River Basin

1. Introduction

Drought is a complex, recurring, and extreme climatic condition characterized by
below-normal precipitation for weeks to years, causing negative impacts on life on Earth.
Droughts are divided into four types: meteorological, agricultural, hydrological (i.e.,
groundwater drought), and socioeconomic [1]. Meteorological drought is caused by below-
normal rainfall for months to years. In contrast, agricultural drought [2] is caused by a lack
of soil moisture to sustain crop production [3,4], resulting in crop yield decrease or failure.
According to Van Loon et al. [5], hydrological drought occurs when the total water storage
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in water bodies (e.g., rivers, lakes, reservoirs, or aquifers) falls below normal levels for an
extended period of time.

Furthermore, when more groundwater is exploited owing to natural climate change or
human-induced factors, groundwater drought can occur through a reduction in groundwa-
ter storage [6]. These droughts are linked by interlinkage within the water cycle [3] and by
climate change [7], which causes hydrological cycle changes [5,8,9]. Thus, understanding
the propagation of these droughts (i.e., meteorological, agricultural drought, and ground-
water droughts) and their occurrence under drought conditions is crucial to understanding
the driving factors of propagation time.

Drought-related conditions affect the Nile River Basin, which is a vital water source
for eleven countries in northeastern Africa. It is crucial for sustainable water resource
management to comprehend the dynamics of drought in this area. NRB has been severely
affected by drought catastrophes. For example [4], droughts in Ethiopia and Sudan between
1985 and 1986 affected 450,000 lives in 2008 and 2010, and more than 13 million people faced
tragedy; the worst drought occurred in 2010–2011, leading to significant food insecurity
and famine.

Meteorological droughts that cause hydrological droughts spread across the hydrologi-
cal system and impact the terrestrial parts of the water cycle. Changes in drought indicators,
such as attenuation, lag time, and lengthening, are a part of drought propagation and are
impacted by basins’ hydrogeological, geomorphological, and climatic factors [10]. Since
precipitation serves as the primary water source for streams and soil, prolonged droughts
are more likely to cause agricultural and hydrological droughts [11]. The time interval
that separates the beginning, peak, and termination of various types of drought—from
hydrological to meteorological to soil moisture—is referred to as the lag time. Improving
water resource management once a drought occurs requires understanding the influence of
regulating variables on drought propagation.

These complex hydrologic processes can essentially be revealed by cross-correlation
analysis [12], especially in hydrologic series with non-stationary features over multi-
temporal scales. Conventional techniques, including ergodic and linear series, have draw-
backs and are unable to identify cross-correlations at particular scales. When examining
cross-correlations across hydrologic variables, wavelet cross-correlation analysis techniques
(WCCs) work better [12]. WCC techniques have a broad potential range of applications in
hydrologic series cross-correlations at many temporal scales, which can be found using the
WCC approach.

Furthermore, these complex hydrologic processes are linked with major natural phe-
nomena [10], such as the El Niño Southern Oscillation and Pacific Decadal Oscillation [13],
that affect local climate, soil moisture storage and groundwater recharge. Meteorological
droughts propagate more slowly in groundwater systems due to teleconnection effects,
which can have an indirect impact on regional precipitation. Forecasting and assessing
regional drought episodes ahead of time requires an understanding of how these elements
affect the propagation of drought.

Several studies using various approaches have analyzed groundwater drought and
its relationship with precipitation and teleconnection [14–17] at global and regional scales.
Among these, globally, Liu et al. [11] studied worldwide reach; although it could oversim-
plify local details and geographical variation, worldwide research investigates drought
dynamics in several regional contexts. Hence, more data accessibility, methodological im-
provements, and a variety of approaches are needed to strengthen the findings’ robustness.
Furthermore, understanding climatic conditions is crucial for effective drought warning
and prevention. Zhang et al. [18] examined the propagation relationship between three
types of droughts in the Yangtze and Yellow River basins with a focus on the correlation
and quantification of droughts from 2002 to 2020.

Similarly, several researchers [10–13] found that extreme climate change has increased
the frequency and severity of drought occurrences and that groundwater responds to mete-
orological drought more slowly. Furthermore, some researchers [19,20] have focused on
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meteorological to hydrological drought propagation. However, in drought propagation, the
water cycle is not restricted to climatic or hydrological circumstances. Thus, investigating
the dynamic propagation of meteorological versus (vs.) agricultural and agricultural vs.
groundwater drought is critical for establishing efficient monitoring and early warning
systems for the dynamic propagation of drought in the NRB.

To the best of our knowledge, the propagation and linkage of meteorological, agri-
cultural, and groundwater droughts in the Nile River Basin has not been thoroughly
researched. Moreover, no research has been conducted to analyze the correlation and
propagation distinction between these two factors. Thus, this study will plug this gap by
exploring the propagation and correlation among the three types of droughts. This study
had two specific goals: (1) to understand the dynamic propagation of meteorological vs.
agricultural and agricultural vs. groundwater drought and (2) to investigate the possible
effect of teleconnections on drought propagation time and dynamics.

2. Methodology
2.1. Study Area Description

The NRB is the world’s longest drainage basin, stretching over 6700 km and encom-
passing 11 nations (Figure 1) and over 400 million people. The basin is divided into four
distinct regions based on the hydroclimatic conditions and previous studies [8]: the Blue
Nile Region (BNR), the Lake Victoria Region (LVR), the Bahr-el-Ghazal Region (BER), and
the Main Nile Region (MNR). The population of NRBs is expected to reach 700 million by
2030, prompting issues about fair resource usage [21] and the sustainable management of
basin water resources. Sub-basins of the NRB provide significant geographic coverage for
identifying changes in terrestrial water storage. In this study, the term sub-basins is used
equivalently to denote the NRB’s four regions.

Ethiopia receives the most annual rainfall (RF) in the NRB [8], with 2292 mm/year,
during its two rainy seasons. Egypt and Sudan have the greatest annual mean surface tem-
perature (27–31 ◦C), while air temperatures vary both geographically and chronologically.
Savana woods are mainly found in countries where rainfed agriculture is prevalent, such
as Ethiopia, Uganda, Burundi, Congo, Kenya, Rwanda, and Tanzania. Both Ethiopia and
Sudan have notable variations in yearly precipitation; Ethiopia has the greatest mean pre-
cipitation of 803–1581 mm/year and a rainy season that lasts from mid-June to September.
Conversely, Sudan has moderate to high levels of precipitation and is mostly characterized
by deserts and dryness.

The mean annual RF is consistent with the temporal fluctuation and amount of annual
evapotranspiration (ET) over the Nile River Basin. Seasonal variations in ET and its
constituents cause them to peak during the rainy season and to minimize during the dry
one. Vegetation species assimilation across climatic areas influences the ET climatology in
the region. From 1980 to 2014, trend analysis reveals a declining trend of 18.8 mm/year
with marginal rises in ET trends in dry and semi-arid zones. Savannas and forests are
prime locations for reducing ET.

Groundwater change and abstraction for irrigation (i.e., human-induced activity) play
an important role in drought occurrence and impact in NRB countries [22]. For example,
Sudan and Egypt rely heavily on groundwater abstraction for industrial, municipal, and
agricultural uses. The rest of the NRB countries rely, to a limited extent, on groundwa-
ter abstraction for agricultural purposes. Drought affects the sustainable management
of groundwater resources, which is critical in the NRB countries to ensure water secu-
rity, especially in the face of increasing water demand, population growth, and climate
change impacts.
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Figure 1. NRB lakes, rivers, countries and altitude variations.

2.2. Data

The Global Land Data Assimilation System (GLDAS) and “Gravity Recovery and
Climate Experiment and GRACE Follow-On” (GRACE/GRACE-FO)-derived groundwa-
ter storage were among the datasets utilized in this study. Rainfall (RF), temperature
(Temp), soil moisture (SM), and evapotranspiration (ET) are all driven by GLDAS and other
hydrological datasets (see details in Table 1).
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Table 1. Dataset used in this research.

Data Types Model Name Data
Interval

Spatial
Resolution Data Retrieving Sources

GWS GRACE-DADM 2003–2022 0.25◦ × 1◦ https://disc.gsfc.nasa.gov/datasets?
keywords=GRACE-DADM

SM ERA5-Land 1981–2022 0.1◦ × 0.1◦ https://www.ecmwf.int/en/era5-land

MERRA-2 1980–2022 0.5◦ × 0.625◦ https:
//gmao.gsfc.nasa.gov/reanalysis/MERRA-2

GLDAS-NOAH (M2.0
& 2.1) 1950–2022 1◦ × 1◦

https://catalog.data.gov/dataset/gldas-noah-
land-surface-model-l4-monthly-0-25-x-0-25

-degree-v2-0-gldas-noah025-m-at-ges-di

RF GLDAS-NOAH 1950–2022 0.25◦ × 0.25◦
https://disc.gsfc.nasa.gov/datasets?

keywords=rainfall
https://gpm.nasa.gov/data/sources

Temp GLDAS-NOAH 1950–2022 0.25◦ × 0.25◦ https://disc.gsfc.nasa.gov/datasets?
keywords=temperature

ET GLDAS-NOAH 1950–2022 0.25◦ × 0.25◦ https:
//disc.gsfc.nasa.gov/datasets?keywords=ET

Drought data SPEI 1950–2022 0.5◦ × 0.5◦ https://spei.csic.es/map/maps.html

SST Niño3.4 1950–2022 NA https://psl.noaa.gov/gcos_wgsp/Timeseries/
Nino34

Groundwater Storage (GWS) Data

Groundwater storage (GWS) drought indicator data are produced using terrestrial
water storage observations derived from the GRACE/GRACE-FO observations and a land
surface modeling and data assimilation (GLDAS) framework with a spatial resolution of
0.25◦ × 0.25◦. For data assimilation, GRACE/GRACE-FO observations are integrated with
ground- and space-based meteorological measurements into a sophisticated numerical
hydrological model to produce high-resolution, spatially and temporally continuous data.
GRACE-Data Assimilation for Drought Monitoring (GRACE-DA-DM) data products are
archived and disseminated by the Goddard Space Flight Center (GSFC).

2.3. Tri-Collocation Analysis (TCA) Using SM Data

For soil moisture, this study used “Global Land Data Assimilation System versions 2
and 2.1” (GLDAS-NOAH M2.0 & M2.1), “European Centre for Medium-Range-Weather-
Forecasts (ECMWF) Reanalysis” (ERA5-Land), and “Modern Era Retrospective-analysis for
Research and Applications” (MERRA-2) as detailed in Table 1. To obtain trustworthy soil
moisture estimations [23] throughout the NRB, the three independent data sources were
integrated using Tri-Collocation Analysis (TCA).

Optimal land surface states and atmospheric fields are produced using GLDAS, which
is an offline terrestrial modeling system with global coverage and high resolution (1◦ × 1◦)
that combines satellite and ground-based data [24]. In order to estimate TCA using the
hydrological model data indicated above, this study obtained the monthly soil moisture (0
to 2 m depth) products from GLDAS (version 2.1) for the years 1980 to 2022.

The TCA is used over the NRB to integrate SM data from the GLDAS [25], MERRA-
2 [26], and ERA5-Land [27] models. In the absence of ground reference data, TCA provides
an alternate method for measuring random error variances and reliably calculates changes
in soil moisture [22,23]. The process to compute TCA involves four steps [28,29]: (1) scaling
each soil moisture dataset to the primary reference set; (2) utilizing pairwise multiplication
to calculate the error variance; (3) estimating the relevant weights; and (4) combining
the datasets.

https://disc.gsfc.nasa.gov/datasets?keywords=GRACE-DADM
https://disc.gsfc.nasa.gov/datasets?keywords=GRACE-DADM
https://www.ecmwf.int/en/era5-land
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2
https://catalog.data.gov/dataset/gldas-noah-land-surface-model-l4-monthly-0-25-x-0-25-degree-v2-0-gldas-noah025-m-at-ges-di
https://catalog.data.gov/dataset/gldas-noah-land-surface-model-l4-monthly-0-25-x-0-25-degree-v2-0-gldas-noah025-m-at-ges-di
https://catalog.data.gov/dataset/gldas-noah-land-surface-model-l4-monthly-0-25-x-0-25-degree-v2-0-gldas-noah025-m-at-ges-di
https://disc.gsfc.nasa.gov/datasets?keywords=rainfall
https://disc.gsfc.nasa.gov/datasets?keywords=rainfall
https://gpm.nasa.gov/data/sources
https://disc.gsfc.nasa.gov/datasets?keywords=temperature
https://disc.gsfc.nasa.gov/datasets?keywords=temperature
https://disc.gsfc.nasa.gov/datasets?keywords=ET
https://disc.gsfc.nasa.gov/datasets?keywords=ET
https://spei.csic.es/map/maps.html
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34
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2.4. Drought Indices Computation

Technical methods and comprehensive TCA descriptions were provided by Nigatu
et al. [8] and [30]. The standardized soil moisture index (SSI) was estimated by computing
the soil moisture data using the TCA technique.

GRACE groundwater drought index (GGDI): In this study, a monthly climatology
(GWi) computed is based on (Equation (1)) that accounts for seasonality in the groundwater
records. We adopted the GRACE groundwater drought index (GGDI) from Wang et al. [31]
to examine the characteristics associated with groundwater drought in this work.

GWi =
1
ni

ni

∑
1

GWSAi (1)

where ni is the month number and i = 1, 2, 3, . . ., 12; GWSAi is the groundwater storage
anomaly for a month i.

Subtracting the computed monthly climatology (GWi) from the mean groundwater
storage anomaly in the basin produces the groundwater storage deviation (GSD), which
represents the net deviation of groundwater storage and is based on the suggestion of
Thomas et al. [32]. Lastly, the standard deviation (std(GSD)) was divided by the mean
(GSD) to normalize the GSD. The groundwater drought index (GGDIi,j) is used to represent
the drought condition and is determined by normalizing the net deviation of groundwater
storage volumes.

GGDIi,j =
(GSDi,j − GSD)

std(GSD)
(2)

Standardized Soil Moisture Index (SSI): Soil moisture is an important factor in agri-
cultural drought (SSI), as indicated by Hao et al. [33]. By employing the Standardized
Drought Analysis Toolbox (SDAT), a lognormal distribution function is used for the com-
putation of SSI, which is a drought index. Different hydrological variables, such as soil
moisture, precipitation, and relative humidity, might be measured using the nonparametric
SDAT framework [34].

Standardized Precipitation Evapotranspiration Index (SPEI): In order to assess me-
teorological drought, this study employed SPEI monthly gridded data at 0.5◦ spatial
resolution that was obtained from https://spei.csic.es/map/maps.html for January 1950 to
December 2022. Generally, the SPEI of one month indicates a meteorological drought [35].

The meteorological, agricultural, and groundwater drought indices were utilized to
evaluate the correlation and propagation among drought categories. Similarly, to under-
stand the climate teleconnections [36,37] with the NRB’s drought events [38], we conducted
a detailed analysis using recommended teleconnections [38,39] SSTs, such as the El Niño–
Southern Oscillation (i.e., Nino 3.4 ENSO Index) and Indian Ocean Dipole (i.e., IOD index).

2.5. Cross-Wavelet Transform (CWT) Technique

The phase relationship of signals in time–frequency space and the connections between
two signals could potentially be found using the cross-wavelet transform approach [31,40].
The cross-wavelet transform technique, which is based on wavelet analysis theory, could
be used to examine the frequency and time domain co-relationships between two non-
stationary signals. In order to investigate the dynamic links between groundwater and agri-
cultural drought with teleconnection elements in the NRB, this study used the cross-wavelet
transform approach. The following equation expresses the hypothetical distribution of the
cross-wavelet power of two-time series (i.e., x and y) with their respective background
power spectra Px

k and Py
k:

D(

∣∣∣∣∣Wx
n(s)W

y∗
n (s)

σxσy

∣∣∣∣∣ < P =
Zv (p)

v

√
Px

kPy
k

)
(3)

https://spei.csic.es/map/maps.html
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where Zv (p) is a “probability distribution function’s confidence level” associated with
probability p.

A novel multiscale time–frequency and multi-signal analysis methodology, the cross-
wavelet transform method, was created based on the conventional wavelet transforma-
tion [14,30]. In both the time and frequency domains, the CWT is capable of effectively
analyzing correlations and reflecting the phase structure between two time series. The
correlation between two sequences in the high-energy domain may be measured using
the cross-wavelet transform. However, for the analysis of the low-energy spectrum in
time–frequency space, this technique is not sufficient. On the other hand, the connection
between two low-energy spectrum sequences may be more clearly seen when using wavelet
coherence (WTC) [19].

Thus, the WTC of the monthly data revealed the relationships between meteorological,
agricultural, and hydrological drought in the NRB during the study period. The complete
procedures of the WTC can be found in Grinsted et al. [40]. To avoid the wavelet transform’s
boundary effect [41] and high-frequency false information, the thin gray solid line in the
WTC figure is the cone of influence (COI) boundary per its effective spectral area.

3. Results
3.1. Pattern of Hydrological Drought and SST in NRB

Numerous drought occurrences, especially in the 1980s, were noted in the NRB
drought history. To give some examples, consider the extreme drought years of 1984/1985,
2005/2006, 2010/2011, and 2014/2015 (Figure 2). Nigatu et al. [38] report that in 1985, the
NRB was severely affected by drought with the exception of the northern BNR (summer
and fall) and the southwestern LVR (winter and fall). Correspondingly, the NRB’s central
regions experienced drought in 2005–2006 especially in the spring and fall. The NRB
countries [38], which include the whole of Kenya, Ethiopia, and some parts of Uganda,
were severely hit by the 2010–2011 drought because of a prolonged decrease in rainfall
during the springtime.

According to some climate studies [42], temperatures in NRB countries have risen
by more than 1 ◦C and 1.5 ◦C, respectively, resulting in 1.5 ◦C and 2 ◦C of warming.
Furthermore, supporting the importance of temperature in the research region, the same
study found that NRB nations warm more quickly than the world average. Similar to this,
Touma et al. [43] state that the changes in drought characteristics corresponding to the SPEI
are more substantial than those corresponding to the SPI and have bigger consequences
for meteorological and agricultural drought development owing to the more significant
influence of temperature changes.

In order for groundwater drought to extend from meteorological drought, it needs to
initially lag behind and penetrate the soil layer, which is why it is linked to agricultural
drought. As observed in Figure 2, the GGDI was able to highlight six groundwater droughts
in the years 2004–2006, 2009–2010, 2012, 2015, 2017–2018, and 2019. The droughts varied in
length and severity. In the NRB, these are the years of drought. Drought in the weather
always precedes drought in the groundwater. A significant drought is more likely to result
from the SPI’s ongoing decrease. However, during the drought seasons of 2004–2006 and
2009–2010, there were some instances of extremely severe and protracted groundwater
droughts.

Groundwater drought frequency increased, and its duration persisted in the NRB
even after 2010, when there was an average SM anomaly (Figure 2a) that was possibly
connected with meteorological drought-increased intensity. There are several factors influ-
encing precipitation that contribute to groundwater drought [44]. In addition, temperature,
evapotranspiration (ET), and human activity (such as abstractions) all influence it. In a
similar vein, groundwater droughts typically spread quicker, responding to meteorological
droughts or agricultural droughts.
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Figure 2. The change patterns of SST, soil moisture, and groundwater drought in the NRB (red, yellow,
and gray bands indicate severe, moderate, and slight degrees of groundwater drought, respectively).

3.2. Implications of the Altered Water Cycle on the Propagation of Drought

The precipitation that falls as rainfall can either move horizontally—runoff—or
vertically—evaporating in the sky or penetrating the soil to form soil moisture—before
replenishing groundwater and groundwater aquifers [45]. The reason for the stronger
correlation between soil moisture anomalies and rainfall rather than groundwater storage
change in the basin might also be attributed to this lag in response.

It is anticipated that as a result of global warming, the land-based hydrological cycle
will become more intense with an increase in water vapor feedback [46], changing the
behavior of climatic extremes as well as RF, SM, Temp, and ET. As indicated in Figure 3a,
ET exhibited a consistent pattern with RF. Particularly during the NRB drought years
(1984/1985, 2005/2006, 2010/2011, 2015, 2017–2018, and 2019), both RF and ET showed
decreasing tendencies. The temperature has a comparatively increasing pattern in the entire
time series during the study period (Figure 3a) with higher temperature anomaly records
occurring during drought periods. Particularly, after 1985, the temperature anomaly was
above normal, which coincided with decreasing RF and ET anomaly (Figure 3b). Flash
droughts intensified during the warming phase as a result of higher soil moisture drying
trends and rapid ET, which offset the declining temperature [47]. It resulted in more severe
drought events that tended to occur during this period.
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Figure 3. Changes in rainfall (RF), ET (a), and temperature (b) in the NRB from 1950 to 2022.

In addition, the basin’s water cycle and the ability of the climatic circumstances to
react quickly to groundwater dryness are exacerbated by the rise in extremely hot temper-
ature events and the decline in extremely low-temperature events [27,48]. A noteworthy
development after 1985 was the rise in precipitation, which in turn caused an increase
in the ET rate (Figure 3b). This increased humidity year-round and, coupled with high
temperatures, increased the likelihood of heat waves [49]. Drought has generally spread
more quickly as a result of heat waves, flash droughts, and increased water cycle intensity
brought on by global warming.

3.3. Links between Teleconnection Factors and the Dynamics of Drought

This study examined the dynamic links between teleconnection elements and drought
(i.e., meteorological, groundwater, and agricultural drought) using bivariate wavelet coher-
ence. Not just the direct effects of human activity and climate change but also the indirect
effects of teleconnection [41] variables are linked to drought [9,15]. As a result, the NRB’s
groundwater and agricultural drought were exposed to the impacts of teleconnection
variables, such as ENSO and IDO, via the cross-wavelet transform approach (Figure 4).
An arrow, with a negative correlation pointing left and positive affiliations going right, is
used to represent the relative phase relationship. The left-to-right arrows show that the
hydrological drought coincided with the shift in teleconnections (ENSO). The negative
phase is shown by the right-to-left arrows. The drought that occurs behind or ahead of
the 1/4 cycle’s climatic index is shown by the vertically upward or downward arrows,
respectively, demonstrating a nonlinear association.
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Figure 4. The CWT between the monthly ENSO and GGDI events for the NRB (a), BNR (b), LVR (c),
BER (d), and MNR (e) covering 2003–2022 in the NRB.

Figures 4–6 show a thick contour representing a 95% confidence level against red noise
with arrows indicating the relative phase connection (i.e., negative correlations pointing
left and positive affiliations pointing right). The correlation based on wavelet energy is
indicated by the color bar labeled on the right. Grinsted et al. [40] explain that in wavelet
analysis, the color of a cross-wavelet plot usually indicates the intensity or degree of the
covariance between two signals at various frequencies and time scales. Regions of high
color intensity or brightness in the cross-wavelet plot indicate a high degree of covariance
between two signals that are comparable in phase and frequency. On the other hand, low
covariance or different signals result in low color intensity or a less colorful plot.

Warmer colors, such as red, orange, and yellow, imply stronger covariance or corre-
lation between the signals, whereas cooler colors, such as blue and green, indicate lower
covariance or correlation. The color scale commonly follows this practice in cross-wavelet
plots. Generally, regions of strong correlation or covariance between signals across sev-
eral frequencies and time scales may be visually identified using a cross-wavelet plot’s
color scheme.

Regarding the black outlines, they are frequently employed to indicate statistically
significant coherence zones. These contours show areas where, usually based on statistical
testing, the coherence between the two signals is considered significant at a given confidence
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level. This makes it easier to spot places where the coherence is probably not the result of
random chance but rather shows a significant correlation between the signals under study.

To summarize, wavelet coherence analysis uses a color scale to signify the intensity
of coherence between signals, and black outlines, which denote statistically significant
coherence at a specific confidence level, aid in the differentiation of meaningful coherence
patterns from random fluctuations.

In the NRB, four significant resonance periods can be observed between the GGDI
and ENSO: 5–12 months in 2004–2006, 5–7 months in 2013–2016, a very short period
in 2017–2018 with positive correlations, and 15–31 months in 2007–2013 with negative
correlations (Figure 4a). Similarly, in the LVR, four significant resonance periods were
noted: 1–3 months in 2007, 5–8 months in 2013–2016, and 15–32 months in the very long
period 2005–2019, with GGDI drought ahead of ENSO and 2–6 months in 2017–2019 with
positive correlations (Figure 4b). As indicated in Figure 4a,b,d, arrows in between negative
and positive correlation indicate that the signals are correlated. Still, with a delay, which
the arrow’s angles can calculate, there is a large pattern from 16 to 32 months. The arrows
there point downwards, close to −90 degrees, or 1/4 of a cycle of 360. Considering the
average time scale of 20 months in that range, the arrows angle would convert to 1/4 of
20 months, or 5 months. It means that there is a delay of 5 months between ENSO and
GDI, highlighting that ENSO affects GGDI and not the opposite (negative GGDI occurring
before ENSO). If we assume that ENSO affects GGDI inversely and with a delay, then it
could be said that El Nino (+) leads to negative GGDI 5 months in the future and that La
Nina (−) causes positive GGDI 5 months after.

Furthermore, as shown in Figure 4c, GGDI drought occurred before ENSO events
6–13 months in 2005–2006 and 15–24 months in 2005–2015, revealing a positive correlation
of 5–7 months in 2013–2015 in the BNR. The arid and hyperarid/desert dominant sub-
basins (i.e., BER and MNR) exhibit low coherence with one or two significant resonances
for a short period, as indicated in Figure 4d,e. This low coherence reveals that groundwater
depletion is mostly associated with groundwater withdrawal for irrigation/other uses.

Therefore, the dynamic linkages between groundwater drought and teleconnection
elements in the NRB may be efficiently shown by the cross-wavelet transform. Groundwa-
ter drought and ENSO have a statistically significant association, suggesting that ENSO
occurrences are crucial to the development of drought. When it comes to groundwater
dryness in the NRB across the Indian Ocean Dipole (IOD), the ENSO generally has the
most impact.

3.4. Soil Moisture Anomaly and ENSO

The arrows in Figure 4 indicate the relative phase connection: that is, relationships
that are negative are pointing left, and positive correlations are heading right. Like the GW,
the ENSO affects the NRB and sub-basin SM, as seen in Figure 5. Three major resonance
intervals between the SMI and ENSO are found in the NRB: 1–3 months from 2011 to
2012, 1–3 months from 2013 to 2014, and 28–36 months from 2006 to 2011 with negative
correlations; these times are linked to the La Nina (Figure 5e).

Similarly, in the LVR (Figure 5a), four significant resonance periods were noted, which
were 6–12 months in 2004–2007 and 1–3 months in 2007–2008 with positive correlations
and a 15–24 month very long period in 2007–2012 with SM drought ahead of ENSO and
4–6 months in 2013–2014 with positive correlations. As indicated in Figure 5b, BNR SM
drought exhibited a negative correlation of 24–36 months in 2005–2012 and 1–3 months
ahead of ENSO in 2010–2011. The BER and MNR arid/hyperarid and desert dominant
sub-basins exhibited low coherence with one or two significant resonances for a short
period, as indicated in Figure 5c,d. This low coherence reveals that SM depletion is mostly
associated with surface water withdrawal for irrigation and high evaporation loss from
different LULCs.
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Figure 5. Monthly soil moisture anomaly and ENSO bivariate wavelet coherence in the LVR (a), BNR
(b), BER (c), MNR (d), and NRB (e).

The phenomenon known as El Niño Southern Oscillation (ENSO) occurs when the
eastern Pacific Ocean, which is colder in the equatorial region, heats up every two to seven
years [37]. Seven of the nine driest years in the BNR between 1960 and 2003 took place
during El Niño years (1994, 1983, 1972, 1982, 1987, 1990, and 2003), which included the
strong El Niño years and the 1988–1989 Ethiopian famine, which coincided with the strong
El Niño of 1988 [37].

In Figure 5, thick contour represents a 95% confidence level against red noise with
arrows indicating the relative phase connection (i.e., negative correlations pointing left
and positive affiliations pointing right). Similarly, the arrows point downwards, close to
−90 degrees, or 1/4 of a cycle of 360. For example, the average time scale of 16 months in
that range, the arrows (Figure 5a) angle would convert to 1/4 of 16 months, or 4 months.
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3.5. Relationships between the Three Drought Stages

Using the cross-wavelet energy spectrum (CWES) of monthly SSI vs. SPEI sequences
and SSI vs. GGDI, the correlations between agricultural versus meteorological and agricul-
tural vs. groundwater drought were examined (Figure 6) in the NRB and at the sub-basin
level. Figure 6a–h shows that there were five significant resonance periods between the
SSI and SPEI at the basin scale in the NRB. A 6–10 month signal (2003–2006) demonstrated
phase angle relationships in which the SSI was positively correlated with the SPEI and
lagged behind the SPEI, indicating a meteorological drought developing into an agricul-
tural drought. In contrast, a twenty to thirty-month signal (2003–2009) showed that the
SPEI led the SSI with a positive correlation.
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Moreover, a 3–6 month (2010–2012) and a 14–30 month (2013–2018) phase angle
relationship showed that the SPEI was positively correlated with the SSI and lagged behind
the SSI. Thus, during the NRB’s most severe drought period (2003–2009), agricultural
drought (SSI) and meteorological drought (SPEI) had feedback effects. This feedback effect
might be associated with the equatorial region convective process that causes the rising
dry air to bear rainfall and aggravates meteorological drought. Similarly, the SSI shows a
positive and lagged correlation with the GGDI (Figure 6b).

In Figure 6, thick contour represents a 95% confidence level against red noise with
arrows indicating the relative phase connection (i.e., negative correlations pointing left
and positive affiliations pointing right). Similarly, the arrows point downwards, close to
−90 degrees, or 1/4 of a cycle of 360. For example, arrows pointing mostly downward in
Figure 6b (i.e., 2006–2009) and Figure 6d (i.e., 2013–2017) show that hydrological drought
occurs prior to agricultural drought in the propagation of drought. That might be associated
with the BER region’s strong reliance on irrigated agriculture, especially in Sudan [50],
which needs further study, as mentioned in Section 4.2.

In the NRB and BNR (Figure 6a,c), among the four significant resonance periods, the SPEI
led the SSI during a long-duration coherence (16–32 months in 2003–2009 and 2014–2017). In
contrast, the SSI leads to the SPEI during short-duration coherence (2–12 months in 2003–2007
and 2013–2017). Similarly, groundwater drought (GGDI) and agricultural drought (SSI)
were positively correlated with the leading SSI between 2006 and 2016 during a few months
of coherence, while the GGDI led to a 10–32 month coherence period in 2012–2016. LVR
(Figure 6e,f) shows constant coherence for a longer period between the SPEI and SSI and
between the SSI and GGDI, while the BER (Figure 6h) shows a short-term spectrum of
monthly index sequences among different drought types. Different correlations between
the wavelet coherence of the monthly SPEI vs. SSI and SSI vs. GGDI sequences in the NRB
and sub-basins are shown in Figure 6a–h both in the time and frequency domain.

In general, the CWES of wavelet coherence can provide a detailed picture of the
internal correlation between groundwater drought and meteorological vs. agricultural
conditions in the NRB as well as the relationships with the intricate details of oscillation
periods that change over time. Therefore, agricultural drought may develop more quickly
because of meteorological drought. However, from 2003 to 2022, there was a variation in
the incidence of hydrological drought intermittent oscillation intervals between the SSI and
SPEI as well as between the GGDI and SSI. Additionally, there was a positive correlation
between agricultural drought and groundwater drought.

As presented in Figure 6, to acquire further insights, we compared lagged correlation
coefficients (R2) among the monthly SSI vs. SPEI and GGDI vs. SSI throughout the entire
study period (2003–2022) and during the period with significant resonance. In the NRB,
the R2 values for GGDI vs. SSI were 0.68, those for BNR GGDI vs. SSI were 0.71, and those
for SSI vs. SPEI were 0.55.

Similarly, in LVR (Figure 6e,f), GGDI vs. SSI showed 0.51 and SSI vs. SPEI showed 0.55,
while in BER (Figure 6g,h), GGDI vs. SSI showed 0.61 and SSI vs. SPEI showed 0.27 during
the whole study period with different lag periods 1–6 months. Nonetheless, the R2 values
improved during significant resonance periods, as shown in Figure 6a–h, ranging from 0.8
to 0.9. As a result, in the substantial resonance periods based on the CWT, the correlation
coefficient between the SPEI vs. SSI and GGDI vs. SSI was significantly improved. These
improvements in correlation prove the significance of considering various time scales when
exploring the interactions among the three drought types.

4. Discussion

The discussion part of this research has been divided into three parts. The significance
of applying the CW method to investigate the relationships between different droughts is
covered in the first section, which is followed by recommendations for further studies.
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4.1. CW Method to Analyze the Relationships between Different Droughts

In previous research, correlation analysis [51] was used to measure the linear connec-
tion between droughts. However, traditional correlation analysis may not capture nonlinear
or time-varying correlations, while wavelet coherence offers a more comprehensive under-
standing of drought dynamics by capturing both linear and nonlinear interactions. Unlike
the Fourier transform [52], which focuses on periodic components, wavelet coherence effec-
tively detects localized patterns and changes in coherence over time, providing valuable
insights into drought dynamics.

Additionally, some studies used Granger causality analysis [53] to examine drought
connections, but it may not capture instantaneous or bidirectional influences. Wavelet
coherence offers insights into instantaneous and time-lagged relationships, while Empirical
Mode Decomposition (EMD) decomposes [53] time series into intrinsic mode functions
(IMFs), capturing nonlinear and non-stationary characteristics. However, EMD may lack
the frequency localization and multi-resolution analysis capabilities of wavelet coherence.

Consequently, this study employed the wavelet coherence approach to examine the
interactions between three distinct types of droughts. WC analysis is an effective tech-
nique for examining complex drought associations, providing information that may not be
available using typical linear methods. Therefore, meteorological drought is triggered by a
decline in precipitation and an increase in evapotranspiration, which in turn causes agri-
cultural drought. This induction highlights the propagation of hydrological drought from
meteorological drought. This study cross-correlated the monthly meteorological drought
(SPEI) with the agricultural drought (SSI) to investigate the proliferation of agricultural
drought. While the SSI operates on a one-month scale (SSI-1), the SPEI series operates on
many time scales ranging from one to twenty-four months. Temperature and precipitation
have the greatest effects on soil moisture, which is a reliable indication of agricultural
drought [54,55]. Thus, groundwater drought has a more delayed effect than meteorological
drought [56]. The propagation time differed in each sub-region due to the differences in
topography, climate, hydrology, and anthropogenic activities in the NRB. For example, the
evapotranspiration rate increases crop water requirement in highly irrigated areas of the
NRB [43–45].

Moreover, the pumping of groundwater to satisfy agricultural irrigation needs during
the cropping season exacerbates the groundwater shortage [57,58]. Because of this, the
amount of time it takes for a meteorological drought to progress to a groundwater drought
varies according to the season. However, GRACE/GRACE-FO has uncertainties and
limitations in detecting GW drought dynamic variations [41], mainly from limited spatial–
temporal resolution, postprocessing errors, and missing and assimilated data to quantify
other key water components ranging from surface water to groundwater storage changes.

4.2. Future Research Direction

In the future, the study of groundwater drought based on GRACE/GRACE-FO and
other hydrological models’ data could improve the spatial (i.e., hourly to daily) and tempo-
ral (less than 0.5◦) resolutions. Furthermore, GGDI propagation can be improved in future
studies when GRACE/GRACE-FO data are combined with advanced hydrological models
and interferometric synthetic aperture radar [59] or in situ GW data. Thus, we recommend
exploring the GRACE Follow-On satellite product with improved spatiotemporal resolu-
tion assimilated with other data. This approach is important for determining the dynamic
variations in regional and global groundwater drought propagation.

Similarly, future research can evaluate the benefits and drawbacks of each strategy
and develop a more thorough grasp of the connections between various droughts by
contrasting the outcomes of wavelet coherence with those from other techniques like
correlation analysis, spectral analysis, Granger causality analysis, or EMD. Furthermore,
these kinds of comparisons can aid in verifying the results and resilience of the wavelet
coherence approach in describing intricate interactions in drought propagation.
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Furthermore, the order in which different types of droughts occur can, in fact, change
in the context of how they propagate, particularly around areas where irrigated agriculture
plays a major role. However, it is crucial to understand that agricultural drought and
groundwater drought are linked and can affect one another. Farmers may experience diffi-
culties obtaining water for irrigation if groundwater levels drastically drop, which might
have an effect on crop production that could be interpreted as GGDI propagated to SSI.
On the other hand, a drought in agriculture may cause more groundwater to be extracted,
which might worsen groundwater depletion, which is thought to be SSI propagated to
GGDI. Therefore, by differentiating between areas dominated by irrigated and rainfed
agriculture, we propose that future studies focus on agricultural and groundwater drought
propagation.

5. Conclusions and Recommendations

The dynamics of groundwater, agricultural and meteorological drought propagation
in the Nile River Basin are assessed. The NRB conducted a thorough evaluation of the
correlations and propagations between groundwater (GGDI), agricultural (SSI), and me-
teorological (SPEI) droughts from 2003 to 2022. Through the application of cross-wavelet
transform, the linkages between droughts were detected.

The CWES of wavelet coherence was able to reveal the internal correlation between
meteorological vs. agricultural and agricultural vs. groundwater drought in the NRB.
Among the three types of drought, the propagation time has the strongest correlation
coefficient. In the study area, the R2 values for GGDI vs. SSI were 0.68, those for BNR
GGDI vs. SSI were 0.71, and those for SSI vs. SPEI were 0.55. Similarly, in LVR, GGDI vs.
SSI showed 0.51 and SSI vs. SPEI showed 0.55, while in BER, GGDI vs. SSI showed 0.61
and SSI vs. SPEI showed 0.27 during the whole study period with different lag periods of
1–6 months.

The main limitation of this study is that agricultural irrigation and human-induced
factors that are significant in drought propagation were not considered. However, the
increased use of groundwater and agricultural irrigation could efficiently shorten the
time needed for meteorological drought to progress to agricultural drought, which is
critical for reducing agricultural drought. As a result, future research should address
agricultural irrigation and other human-induced variables in drought propagation studies.
Overall, the findings of this study will unpack to a better knowledge of the dynamics and
factors that influence the propagation of droughts as well as local or regional drought
mitigation strategies.

In conclusion, by using the wavelet coherence approach, our work has significantly
advanced our knowledge of drought dynamics in NRB. Using this cutting-edge analyt-
ical method, we have shown complex linkages between various drought occurrences,
providing insight into their frequency and temporal aspects. Our results emphasize that
non-stationarity and nonlinear interactions must be taken into account when examining
drought events, and the wavelet coherence approach proves to be an effective tool for
capturing these complexities. Furthermore, we recommend implementing the CWT on
a smaller scale in NRB sub-basins and similar hydroclimatic conditions in order to ex-
amine the propagation of drought in more detail, considering agricultural irrigation and
human-induced factors.
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